Skip to main content
Seasonal variation in phosphorus removal processes within reed beds - mass balance investigations
Water Science and Technology
  • Tom R Headley
  • David O Huett
  • Leigh Davison, Southern Cross University
Document Type
Publication Date
Peer Reviewed
The phosphorus (P) removal processes in two pairs of High and Low Loaded reed beds were investigated during five periods within a 27-month study. The uptake/release of P was measured in seven mass balance compartments. With the exception of the first year of operation, the reed beds consistently removed over 96% of the influent P load, with total phosphorus (TP) concentrations being reduced from 0.5 mg/L to generally less than 0.005 mg/L across the range of loading rates and seasons studied. During the first year, uptake by Phragmites australis accounted for greater than 75% of P removed, and was equally distributed between above and below-ground biomass. During the second and third years, three seasonal stages were identified in the uptake and cycling of P by P. australis. A period of rapid above-ground growth and uptake occurred during spring fuelled partly by P reserves accumulated in rhizomes during the previous year. During summer, uptake by above-ground biomass was governed by the influent P loading rate, while the amount of P held in below-ground biomass remained relatively stable. During autumn and winter, P appeared to be translocated from senescent shoots to reserves in the rhizomes. Approximately 85% of the below-ground biomass P occurred in the top 20 cm of the substrate. Gravel fixation increased in importance from 12% in the first year to approximately 30% of P removed in the second year, with a highly significant correlation between the influent P loading rate and P fixed by the gravel. The weakly-bound P fraction from a sequential extraction was the dominant form of P fixed by the gravel. HCI extracts were inappropriate for the examination of sorption processes as they dissolved large amounts of mineral P from within the basaltic gravel. The bottom 30 cm of the substrate became the most important site for gravel fixation during the second year. Incorporation of P into the detritus/microbiota/other compartment increased after the first year to become one of the most important P removal processes, probably consisting mainly of leaf litter and slowly accreted organic sediments.
Citation Information
Headley, TR, Huett, DO & Davison, L 2003, 'Seasonal variation in phosphorus removal processes within reed beds - mass balance investigations', Water Science and Technology, vol. 48, no. 5, pp. 59-66.