The Mid-Latitude Mesosphere’s Response to Sudden Stratospheric Warmings as Determined from Rayleigh Lidar Temperatures

Leda Sox, Utah State University
Vincent B. Wickwar, Utah State University
Chad Fish
Joshua P. Herron
The Mid-Latitude Mesosphere’s Response to Sudden Stratospheric Warmings as Determined from Rayleigh Lidar Temperatures

Leda Sox¹, Vincent Wickwar¹, Chad Fish², Joshua P. Herron²

¹ Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah, USA

² Space Dynamics Lab, Utah State University, Logan, Utah, USA
How does the temperature of the Mesosphere at mid-latitudes behave during the full life cycle of a northern hemisphere, major Sudden Stratospheric Warming event?
Previous Studies

- **Whiteway and Carswell (1994), Von Zahn, et al. (1998), Walterscheid, et al. (2000), and Liu and Roble (2002)** report coolings in the upper mesosphere (~60-80 km), warmings in the lower mesosphere (around 50 km) at **high latitudes**

- **Yuan et al. (2012)**, reported coolings of ~20 K from 80-90 km at **mid-latitudes**
ALO Rayleigh Lidar 1993-2004

- Located at the Atmospheric Lidar Observatory (ALO; 42°N, 112° W)
- 900 nights of temperature data taken over 11 years in climatology (Herron, 2007)
- Climatological composite year averaged 31 days across and 11 years deep
ALO/BLO Mid-latitude Study

- Instruments at ALO and the Bear Lake Observatory (BLO) include: Imaging Doppler Interferometry (IDI) data from a dynasonde, a meteor wind radar, a Na lidar from Colorado State University (now at ALO), and the SABER instrument aboard the TIMED satellite

(See Fish, et al., 2.5-16 Monday 16:40)
Comparison with SABER Temperatures

Temperature at 40N, 120 W
Analysis Method

- Found 8 periods where Rayleigh lidar data overlapped with a SSW event
- MERRA zonal mean temperature and wind data at 60°N and 10 hPa used to define events and their life cycles
- Only looked at major SSWs for this study
Coolings and warmings defined by the difference between nightly averaged temperatures and climatological temperatures for that day of the year.

- Coolings between -15 and -45 K
- Coolings start at about 70-80 km before peak day, rise to 80-90 km during peak and lower again to 70-90 km afterward.
- Warmings between 15 and 25 K
- Warmings stationed in lower mesosphere from 50-70 km.
Results-1 of 3

Temperature Difference (in K) for 02/99-03/99

Temperature Difference (in K) for 03/00-04/00
Results-2 of 3

Temperature Difference (in K) for 01/01-02/01

Temperature Difference (in K) for 02/02-03/02
Results-3 of 3

Temperature Difference (in K) for 01/03-02/03

Temperature Difference (in K) for 03/03-04/03
Conclusions

- A general cooling pattern was found in the upper mesosphere using mid-latitude rayleigh lidar data acquired during six major, Northern Hemisphere SSWs.

- The coolings had magnitudes of 15-45 K.

- The temporal evolution of this phenomena showed coolings at altitudes of 70-90 km that then rise to 80-90 km while becoming colder near the peak of the SSW and finally descend back to 70-90 km while lessening in strength as the SSW descends from its peak.

- Similar coolings were shown at high latitudes previously, whereas these coolings happened at mid latitude.
New Questions

• With new lidar capabilities *(Wickwar, et al., 2.5-20, Tuesday 10:30)*, what sort of temperature pattern will we observe in the lower Thermosphere (100-120 km)?
• What is the behavior of the mesosphere during minor SSWs?
• What else is happening during the SSW periods when the mesospheric temperatures do not follow the observed pattern (i.e. change in vertical winds)?
• How will new Rayleigh lidar data analysis techniques *(Khanna, 2012)* modify the current SSW pattern?
References

