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A Topological Structure on the Structure Sheaf
of a Topological Ring

L. Stout

The construction of the structure sheaf E of a commutative
ring R is well known, It is natural to ask whether Curther struc-
ture on R can be reflectad in further structure on the sheaf Rj
in particular, for a topological ring (R, TR) is there a topological
structure on g guch that the sectional representation thecrem
produces an isomorphism which is also a homzomorphism? Under suit-
able hypotheses on the relationship between multiplication and the

topolozy on R, the answer to this question is yes.
I. Topolozical Structures on Sheaves

Since we are asking for a topological structure on R, it would
be wise to specify which of the several possible meanings of a topo-
logical structure on a sheaf we are talking about. For algebraic
structures there is no difficulty-- exterunal and Iinternal definitions
agree, so the external definition is usually used ( we talk about
sheaves of rings rather than ring objects in the category of sheaves,

for ipnstance). For topological structures, the internal and external

definitions do not agree, nor do all internal definitions produce

the same results, We will be using the internal definition obtained



by stating the usual definition in terms of open subsets in the
internal lozic of the topos: a topological structure on a shea:
A is a subsheaf of its powerobject PA satisfying formal statements
to the effact that it is closed under pairwise intersection and
arbitrary internal union and contains both A and @. This approach
was explored to see how much of general topology carries over to
the sheaf setting in [4] ; it was made possible by the observation
of Lawvere and Tierney ( [ 1] ,[2] ,{5], and [6]) that categoriss

of sheaves have a higher order internal logic., While the internal
logic makes the concepts involved in this paper more natural, we
will need an external characterization of topological structures
in order to work with the topolozy explicitly in the proof of the
representation theorem., Rather than take the space here to prove
that characterization, we will use it as our definition of a

topological structure on a sheaf on a topological space.

Definition: Let A ba a sheaf on the topological space (X,TX), and let

A —2 > X be its associated étale space, Then a topological structure

on A is a second topology on A, TA , which is coarser than the

topology making p étale but fine enough that p is still continuous.
The value topology on the set fYé) of global sections of A is

the topology with basis ir%g) : U is open in TA%.

A map £: (A, TA) —> (B , TB) is continuous internally if
the associated map on étak spaces is continuous with respect to the
second topologies on the total spaces.

For such structures prodict and quotiznt structures may be
constructed as pullbacks and quotients, raspectively, in the

category of topolozical spaces over X.



Examples:
1) If Y is a topological space, then there is a natural
topulogical structure oa the sheaf of germs of locally constant

Y-valued functinns on X. The associated étale space is
x
X X (Y, discrete) — = —> x

the second topolozy is the product X X (Y, TY).

2) For any sheaf there are two trivial topologies: the
discrete topology, which is the same as the topology making p étale;
and the indiscrete topology, which is the same as the topology
induced by p.

In order to use these internal notions of topology on a sheaf
we will need an internal construction of the structure sheaf.

By making the whole construction internal we will be able to
introduce the topolozy without having to take an associated sheaf

Or consider the passage from internal to external topology more than
once,

II. TInternal Construction of tha Structure Sheaf

The classical construction of g (as in, say, Macdonald [3])
proceeds by constructing the space X = Spec(R) and then defining g
presheaf of rings on certain basic open sets and showing that it {s
a sheaf, 1In the exposition cited, X is the set of prime ideals,

D. is a basic open set consisting of those x € X such that no

f
power of f is in x., The value of E’at Dy is s”IR where § is the
multiplicative system of all powers of f.
This construction could easily be carried out at the level of
presheaves on X as a formation of a ring of quotients inverting a

presheaf of multiplicative systems in the constant presheaf of

rings with value R. Since this process is carried out by forming



a quotient of SXR by an equivalence relation defined in terms of
multiplication and equality, we may obtain the associated sheaf of
the ring of quotients by forming the ring of quotients of the
associated sheaf of rings at the associated sheaf of multiplicative
systems in the topos of sheaves on X. Since the presheaf E'is in
fact a sheaf, this construction will yjeid the strus:ture sheaf.

The assnziated sheat of the constant presheaf R is the sheaf
R of locally constant R-valued functions on X. The associated
sheaf of multiplicative systems is easily specifiable as the sub-
sheaf of R with stalk at x the set of all r € R not in x. Since

each £ e R is in S precisely on D this is a sheaf; since each x

£
is prime, it is a sheaf of multiplicative systems. If we now shift
our foundations from sets to the category of sheaves on X, we have

aring equipped with a multiplicative system which we want to invert.,

This is the formation of a quotient of RX S by the equivalence

relation internalizing (r,s) ~ (r',s') iff rs' = r's. This equival-

ence may be obtained as the equalizer of two maps from RxS xR« S

to Re
All of this may be made explicit at the level of étale spaces:

r
R is the &tale space X x(R,discrete) .

—

> X; S is the subspace
of X 4R consisting of those pairs (x,r) with r ¢ x; and the equival-
ence relation is

(r,s,x) ~ (r',s', x) iff rs' =r's.

III. Introduction of the Topology

The étale space for R looks suspiciously familiar. It was the
total space for our first example of topological structures. It

has a natural structure given by the product topology X K(R,Tk).



We have three obvious options for the topology on §: the
subspace topology induced by the inclusion into X xR, the discrete
topology, and the indiscrete topology. In the proof of the repres-
entation theorem our main difficulty will be in showing that there
are enough open subsheaves in S xR, so we will use the topology on
S which gives the most open subsheaves, the discrete topology.

We will then give Rx S the product topological structure and
endow R with the quotient structure. Our theorem will then give a
Sufficient condition for the topology of R to be recovered as the

value topology on T(K).

In any topological ring multiplication by an element of R is
a continuous map; in general it need not be open (in particular,
except for discrete rings, multiplication by a nilpotent is
never open). For our proof we will need the following hypothesis,
which is akin to the condition that multiplication by non-nil-
potents be open, but which is at least potentially stronger:
(H): If a € R is not nilpotent, then for any r € R and any
open set U containing r, there is an open neighborhood of ar, N,

such that (()a)-lN.C.U.

Theorem: For a topological ring satisfying the condition (H),
the isomorphism exhibited in the classical sheaf representation
theorem between F(E) and R is also a homeomorphism, where P(E§

is given the value topology for the quotient structure defined above.

Proof: The classical representation theorem shows that a global
section of E may be thought of as a constant section of R xS
lying entirely in the slice R » {1} . This is done by noting that

a global section of g results from a cover of X by basic open sets



D and a constant section of RxS on each D such that on the

£, £,
i i
overlap between two basic open sets Df and Df the two pairs
i h|
(r, fg) and (r', f?) are in the equivalence relation. It is then

shown algebraically that any such collection of constant partial
sections gives rise to a unique r € R such that the constant section
with value (r, 1) is in the saturation of the subobject of Rx S

determined by the family of partial sections with respect to the

equivalence relation ~ . Since open subsheaves in E are determined
completely by the saturated opens in R x§, it will suffice to show
that any open set in R can occur as the constant sections of a 1-
slice of a saturated open subsheaf and that only opens in R can so
appear,

The space X is compact and the image of any constant section
in the étale space is a homeomorph of X and hence compact. If V is
open in XXR, then any constant section of V has a cover consisting
of rectangular basic open sets. Since X is compact, this has a
finite subcover. The intersection of all of the open sets in R
occuring as factors in the rectangular sets in this finite subcover
is an open set containing elements r such that the constant section
with value r is in V. Thus the set of all r for which the constant
section with value r is in V is open.

Now in Rx S in the construction, S was given the discrete
topology, so any open subsheaf of RxS has an open l-slice.

(The l-slice is the intersection with R xi}l; it is homeomorphic
to XXxR.) Hence only open subsets of R can occur as sets of constant
sections of the one slice of open subsheaves of R xS.

We now construct a saturated open subsheaf of R xS with 1-

slice equal to Xx y for a given open subset USR. For this we



recall that the functor "pull back along ()a" has a right adjoint ‘%)a
taking a subset B to the set of all elements of R either nondivisible
by a or of the form ba with b in B (Lawvere [1]). Taking interior we
get a right adjoint to (()a)-1 as a functor from the topology of R to
itself as well. Since ()a is continuous,

(O (Vg 07 <
and if V is an open subset whose pullback along ()a is in U, then
V is contained in ( Vk)an 5

Now define U to be the subset of the total space of RxS
consisting of those (r, a, x) such that a ¢ x and r ¢ (\/()an 3
We need to show that this is an open subset of the total space with
the second topology before we are justified in calling it an open
subsheaf (indeed we must check that it is open in the &tale space
topology before we are justified in calling it a subsheaf at all).
The defining statement is true for fixed r and a on the basic open
set Dé in X, so the X factor can be ''thickened" to an open set for
fixed a and any r ¢ ('V()an . Since S was given the discrete
topology the S factor does not need to be '"thickened% the R factor
can te extended to all of (‘V()aU)’ . Therefore if the point (r,a,x)
is in U, so is the open neighborhood of that point (V()aU)nx{a'kx Da'

Now suppose (r, a, x) ~ (r', a', x) and (r, a, x) € U. Take
an open set Y containing r with V contained in (\/()aU)° . Since

only mon- nilpotents occur in S, we may use the hypothesis (H) to

obtain an open neighborhood N of a'r such that (()a')_lN s V.
Then (()a )'IN contains r' by the definition of the equivalence
relation and is open because ()a is continuous. We wish to show

that (()a')-l(()a)'lN is contained in U, since then (()a)-lN is



contained in ( V?)a’U)Q’ and thus (r', a', x) € U. Multiplication
is commutative in our rings so aa' = a'a and

©0a) l0a) !t = (Oaa) !t = (Oa'a)t = (0 H0an .

Thus (()a')-l(()a)-lN = (()a)_l(()a‘)-lN, which is contained in
(()a)'lv. But (()a)'lv is contained in U since V € (“J()au)° .
So (()a)'lN $;('V()a.u)° as needed.

It is immediate from the construction of the topology on §
and the fact that its addition and multiplication are defined in terms
of addition and multiplication in R (the fact that a discrete
topology was used in the S factor makes continuity easier to
satisfy) that E is a topological ring object in the category of
sheaves on X. By restricting to a stalk gx we still get a topological
ring, since in the étak space associated to Ex each fiber is a
topological space and a ring with multiplication, addition and
additive inverse continuous.
Example: Consider the ring of integers Z with the topology with
basis given by the set of cosets of ideals. This is a topological
ring in which multiplication by a non-zero element is an open map,
so the condition (H) is satisfied and our construction applies.
We determine the topology on the stalk zp' This is the set of all
rational numbers m/n in lowest terms such that p does not divide
n. Since it is a topological ring, it will suffice to give a
fundamental system of neighborhoods of 0.

Consider the set N(a,k) consisting of integers divisible by
“Pkt It is a subset of E;. We will show that the family of all
8uch gubsets forms a fundamental system of neighborhoods of O in
the topology on Ep. For this we need to show that any neighborhood
of 0 contains one of the N(a,k) and that the N(a,k) are themselves

neighborhoods. The inverse image of N(a,k) under the map into the



quotient is the set of ordered pairs (s,t) with s a multiple of

tapk. For each fixed t the set of all s which so appear is an ideal,
so the inverse image of N(a,k) is open, hence N(a,k) is. Observe
that 0 is always a member of N(a,k), so we have a family of neighbor-
hoods.

Now suppose that U is an open neighborhood of 0., Then the
inverse image of U is a saturated open set in Zx Z-pZ, which must
therefore have an open l-slice. This means that the l-slice
contains an ideal, which must be principle, hence of the form
bZz. 1If p does not divide b, the open neighborhood N(b,1l) is
contained in U. If p does divide b, let k be the highest power
of p which divides b and let a be the other factor, then N(a,k)

is in U,
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