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Definition 2.2.3 The product of the 2× 2 matrices L and M is

LM =

[
l11 l12

l21 l22

] [
m11 m12

m21 m22

]
=

[
l11m11 + l12m21 l11m12 + l12m22

l21m11 + l22m21 l21m12 + l22m22

]
.

The first column of the product is obtained by taking the first matrix
times the first column of the second matrix (as a column vector); the second
column of the product is obtained by taking the first matrix times the second
column. Without the connection to composition of linear transformations
this would be a rather nonobvious way to multiply matrices!

Matrix multiplication has several nice properties, all of which are most
easily related to properties of composition of linear transformations. For
example, the identity linear transformation I d : R2 → R2 takes [x, y] to
itself. It has the property that L◦I d = I d◦L = L. The matrix corresponding
to this, an identity matrix has the form

I =

[
1 0
0 1

]
and has the property that IM = M and MI = M.

Let us look next at the matrix for L + M . Again we start by seeing what
L + M does to the basis elements:

(L + M )(~b1) = L(~b1) + M (~b1)

= l11
~b1 + l21

~b2 +m11
~b1 +m21

~b2

= (l11 +m11)~b1 + (l21 +m21)~b2

and

(L + M )(~b2) = L(~b2) + M (~b2)

= l12
~b1 + l22

~b2 +m12
~b1 +m22

~b2

= (l12 +m12)~b1 + (l22 +m22)~b2

so the matrix for the sum is

L + M =

[
l11 l12

l21 l22

]
+

[
m11 m12

m21 m22

]
=

[
l11 +m11 l12 +m12

l21 +m21 l22 +m22

]
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In a similar fashion we can get multiplication of a matrix by a scalar
corresponding to multiplication of a linear transformation by a scalar:

kL =

[
kl11 kl12

kl21 kl22

]

Exercises 2.2:
For problems 1-8

A =

[
1 0
−3 5

]
, B =

[
−2 1
1 7

]
and C =

[
0 1
−1 0

]
find the following:

1. AC

2. CA

3. BC

4. (BC)A

5. B(CA)

6. A + B

7. (A + B)C

8. AC + BC

9. Give the matrices for the linear transformation K ([x, y]) = [3x+y, y−x]
with respect to the following basis (on both domain and codomain):

(a) The standard basis

(b) ([1,−1], [1, 1])

(c) ([1, 1], [0, 1])

(d) ([2, 3], [−5, 2])

10. Give the matrices for the linear transformation M ([x, y]) = [−y, x] with
respect to the following basis (on both domain and codomain):
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(a) The standard basis

(b) ([1,−1], [1, 1])

(c) ([1, 1], [0, 1])

(d) ([2, 3], [−5, 2])

11. Give the matrices for the linear transformation P([x, y]) = [2x+3y,−5x−
8y] with respect to the following basis (on both domain and codomain):

(a) The standard basis

(b) ([1,−1], [1, 1])

(c) ([1, 1], [0, 1])

(d) ([2, 3], [−5, 2])

12. Give the matrices for the linear transformation L([x, y]) = [x − 2y, 0]
with respect to the following basis (on both domain and codomain):

(a) The standard basis

(b) ([1,−1], [1, 1])

(c) ([1, 1], [0, 1])

(d) ([2, 3], [−5, 2])

13. Show that if the columns of a matrix M form a basis for R2 then M is
the matrix of an onto linear transformation. (Recall that a function is
onto if its image is all of its codomain.)

14. Show that the matrix

I =

[
1 0
0 1

]
is an identity for the operation matrix multiplication: that is, show
IM = MI = M for all matrices M.

15. Give an example which shows that matrix multiplication is not com-
mutative.

16. Prove that matrix multiplication is associative. (Hint: composition of
functions is associative.)
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17. Show that the set of all 2× 2 matrices is a vector space using the oper-
ations + and scalar multiplication defined in this section; that is, show
that matrices have the same algebraic properties (as in Proposition
1.1.2) that R2 has. Conclude that the space of linear transformations
from R2 to itself is also a vector space.

2.3 Kernels, Images, and Subspaces

In this section we will consider some vector spaces smaller than R2 which
can be gotten by looking at susbsets which are themselves vector spaces.

Definition 2.3.1 A subset S of a vector space V which is itself a vector
space using the same operations as in V is called a subspace. We will write
S < V to distinguish subspaces from subsets, which we write S ⊂ V.

Example: The x-axis

The set {[x, 0]|x ∈ R} is a subspace of R2. To see this we need
to check 10 axioms:

1. Closure under both addition and multiplication by a scalar:
If we add two vectors of the form [x, 0] we get a vector of
that form and if we multiply such a vector by a real number
we get another vector with a second coordinate of 0.

2. Commutativity of +:

[a, 0] + [b, 0] = [a+ b, 0]

= [b+ a, 0]

= [b, 0] + a, 0]

3. Associativity of +:

[a, 0] + ([b, 0] + [c, 0]) = [a+ (b+ c), 0]

= [(a+ b) + c, 0]

= ([a, 0] + [b, 0]) + [c, 0].

4. Identity: [0, 0] is of the desired form.
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5. Inverses: [−a, 0] is of the desired form.

6. Absorption: k(h[a, 0]) = [k(ha), 0] = [(kh)a, 0] = kh[a, 0]

7. Distribtive laws (both of them): use the distributive laws for
R in the first coordinate, the second coordinate is always 0.

8. Identity for scalars: 1[a, 0] = [a, 0].

♦

In general, to show that a set equipped with two operations is a vector
space you need to show that all the properties in Definition 1.1.1 hold. For
subspaces, however, it is not necessary to check all of the axioms for a vector
space.

Theorem 2.3.1 A nonempty subset S ⊂ V which is closed under addition
and multiplication by scalars is a subspace of V.

Proof:

The operations of addition and multiplication by a scalar will
automatically satisfy all of the axioms of vector spaces given by
equations, since those equations hold in the larger vector space
V our subset S is contained in. Thus in addition to closure, we
get the commutative, associative, absorption, identity for scalar
multiplication, and distributive laws free. Every subspace must
contain the zero vector, since that is part of the data for a vector
space; we get the zero vector by multiplying the vector we know
is in S by 0. Inverses come from scalar multiplication by −1.

If a subspace of R2 contains a non-zero vector ~a it must also contain
the line through the origin given by all the multiples of ~a. In R2 the only
subspaces lines through the origin, just the origin, or all of R2.

Example: The set {[x, 2x]|x ∈ R} is a subspace of R2.

To see this we need only show that [0, 0] is in {[x, 2x]|x ∈ R}
and that {[x, 2x]|x ∈ R} is closed under both addition and scalar
multiples. Now

[0, 0] = [0, 2(0)]
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so [0, 0] is of the right form. If we add we get another pair of the
right form:

[x, 2x] + [y, 2y] = [x+ y, 2x+ 2y] = [x+ y, 2(x+ y)]

and similarly a constant multiple of a vector of the form [x, 2x]
is also of that form:

k[x, 2x] = [kx, k(2x)] = [kx, 2(kx)]

♦
In general if a subspace contains vectors ~a1 . . .~an it must contain all vec-

tors ~b which can be obtained from ~a1 . . .~an using sums and multiplication by
scalars. These are called linear combinations of the given vectors and the
set of all linear combinations of the vectors ~a1, . . . ,~an is called the subspace
spanned by {~a1, . . . ,~an}, which we will denote Span({~a1, . . . ,~an}).

Definition 2.3.2 A linear combination of the vectors ~a1 . . .~an is any vector
of the form

~b =
n∑
i=1

ki~ai

. For any finite set of vectors S = {~a1 . . .~an}, the set of linear combinations
of vectors in S is Span(S)

Proposition 2.3.2 For any finite set of vectors S = {~a1 . . .~an}, the set
Span(S) of linear combinations of vectors in S is a subspace.

Proof:

We need to show that Span(S) is non-empty and that it is
closed under both operations. Notice that ~a1 ∈ Span(S) (by let-
ting k1 = 1 and all other ki = 0), giving non-emptiness. Closure
under addition comes from

n∑
i=1

ki~ai +
n∑
i=1

hi~ai =
n∑
i=1

(ki + hi)~ai

and closure under multiplication by scalars comes from

r

n∑
i=1

ki~ai =
n∑
i=1

(rki)~ai.



46 CHAPTER 2. LINEAR TRANSFORMATIONS ON R2

Later on we will extend this concept to the span of arbitrary sets of
vectors. Since the smallest possible vector space consists of just the zero
vector, we define Span(∅) = {~0}.

Example: What is the subspace of R2 spanned by the set {[1, 2], [2, 4]}?

A vector [a, b] will be in Span({[1, 2], [2, 4]}) if and only if it
can be written as [a, b] = x[1, 2] + y[2, 4]. This is the same as
asking for a and b for which solutions exist for the system of
equations

x+ 2y = a

2x+ 4y = b

It is clear that this is hopeless unless b = 2a. Thus Span({[1, 2], [2, 4]}) =
{[a, b]|b = 2a}. ♦

Example: What is the subspace of R2 spanned by the set {[1, 2], [2,−4]}?

A vector [a, b] will be in Span({[1, 2], [2,−4]}) if and only if
it can be written as [a, b] = x[1, 2] + y[2,−4]. This is the same
as asking for a and b for which solutions exist for the system of
equations

x+ 2y = a

2x− 4y = b

This has solutions

x =
2a+ b

4

y =
2a− b

4

so Span({[1, 2], [2,−4]}) = R2. ♦

If Span(S) = V then we say that S is a spanning set for V . Notice that

the requirement on (~b1,~b2) that every element ~v of R2 have a representation

of the form k1
~b1 + k2

~b2 tells us that a basis must be a spanning set.
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2.3.1 Images of linear transformations

In our study a linear transformations L from R2 (the domain) to R2 (the
codomain) we sometimes get every element of the codomain as the image of
an element in the domain (in which case L is onto) and sometimes we do not.
For example, the linear transformation in Example 2.1.1, which collapsed R2

onto a line, is not onto; its image is smaller than its codomain. This suggests
that the image of a linear transformation might be an interesting set to look
at.

Definition 2.3.3 The image of a linear transformation L : V → W is the
subset Im(L) = {L(~v)|~v ∈ V} ⊂ W.

Proposition 2.3.3 The image of a linear transformation is a subspace of
its codomain.

Proof:

If ~v1 ∈ Im(L) and ~v2 ∈ Im(L), then there are vectors ~u1 and
~u2 with L(~u1) = ~v1 and L(~u2) = ~v2. Then r~v1 = L(r~v1) and
~v1 +~v2 = L(~u1 +~u2). This tells us that both r~v1 and ~v1 +~v2 are in
Im(L). We know as well that L(~0) = ~0, so the image also contains
the zero vector. Since Im(L) is nonempty and closed under both
sum and multiplication by a scalar, it is a subspace of W .

Proposition 2.3.4 If {~b1,~b2} spans R2, then {L(~b1),L(~b2)} spans Im(L).

Proof:

A vector ~w is in Im(L) if it is of the form L(~v) for some ~v ∈ R2.

Now since {~b1,~b2} spans R2, ~v = k1
~b1 +k2

~b2 for some k1, k2. Then

~w = L(~v)

= L(k1
~b1 + k2

~b2)

= k1L(~b1) + k2L(~b2).
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In the last section we saw that once we have an ordered basis for R2

in mind, talking about linear transformations and talking about matrices
is really the same thing. With this in mind recall that the columns of the
matrix for a linear transformation were obtained by looking at the image of
the basis vectors. Now the image of a basis gives a spanning set for the image
of a linear transformation, so if we look at the subspace of R2 spanned by
the columns of a matrix for L we will obtain the image of L. This subspace
of R2 is called the column space of the matrix. Summarizing, we get the
following definition:

Definition 2.3.4 The column space of a matrix is the subspace spanned
by its column vectors.

If we represent a linear transformation with respect to a choice of ordered
bases, then the column space of the matrix will give the image.

2.3.2 Kernels of linear transformations

The other question we ask about linear transformations is whether or not
they are one-to-one. This is equivalent to asking whether you can conclude
that ~a = ~b from knowing that L(~a) = L(~b) or equivalently that

L(~a)− L(~b) = L(~a−~b) = 0.

This suggests that it might be useful to look at the set of vectors a linear
transformation sends to ~0.

Definition 2.3.5 We call the set of vectors ~v such that L(~v) = ~0 the kernel
of L, written Ker(L).

Proposition 2.3.5 The kernel of a linear transformation L is a subspace of
the domain of L.

Proof:

It is clear that ~0 ∈ Ker(L), so Ker(L) 6= ∅. If ~a ∈ Ker(L) and
~b ∈ Ker(L) then

L(~a+~b) = L(~a) + L(~b) = ~0 +~0 = ~0

Thus ~a+~b ∈ Ker(L). Since L(k~a) = kL(~a) = k~0 = ~0, k~a ∈ Ker(L)
as well, giving closure under both operations. Thus Ker(L) is a
subspace of the domain of L.
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In terms of the matrix for L with respect to a basis, the kernel will be
exactly the set of all solutions to the pair of equations given by the matrix
equation [

a b
c d

] [
x
y

]
=

[
0
0

]
.

A system of equations in which all of the constants are 0 is called homoge-
neous. Thus we conclude that the set of solutions to a homogeneous system
of linear equations is a subspace. We also observe that if we want to get
our hands on the kernel of a linear transformation what we really need to
know how to do is describe the solutions to such systems. For systems of two
equations in two unknowns most of us can muddle through without much
difficulty. Clearly for larger systems we will need some systematic approach.

2.3.3 Solution of systems of equations in two unknowns

For two by two matrices we can find the solution to the system[
a b
c d

] [
x
y

]
=

[
m
n

]
.

by solving the first equation for x

x =
m− by
a

and then substituting in the second equation:

c
m− by
a

+ dy = n

(ad− cb)y = an− cm

y =
an− cm
ad− bc

Then we can substitute back into the expression for x to get

x =
md− bn
ad− bc

.

This tells us that there will be a unique solution if the number ad− bc 6= 0.
If ad − bc = 0 then a

c
= b

d
. In this case our system has solutions only if

n = a
c
m in which case the second equation gives no new information, so there
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are an infinite number of solutions. If n 6= a
c
m then the system describes two

distinct parallel lines and there are no solutions.
We have encountered the expression ad − bc before (in the exercises on

linear transformations, Exercises 2.1#6, where it was related to areas in the
plane). Thus we will give it a name:

Definition 2.3.6 The determinant of a 2×2 matrix is given by the formula

det

[
a b
c d

]
= ad− bc.

We note that a system of two equations in two unknowns has a unique
solution if and only if the determinant of the matrix of coefficients is non-zero.

We can use Ker(L) to find out if L is one-to-one:

Proposition 2.3.6 The linear transformation L is one-to-one if and only if
Ker(L) = {~0}.

Proof:

Certainly if Ker(L) contains two distinct vectors, then L can-
not be one-to-one, since two vectors go to ~0. On the other hand,
if Ker(L) = {~0} and L(~a) = L(~b) then

L(~a−~b) = L(~a)− L(~b) = ~0

so ~a − ~b ∈ Ker(L), so it must be ~0. This makes ~a = ~b, so L is
one-to-one.

Corollary 2.3.7 A linear transformation is one to one if and only if the
determinant of any matrix representing it is non-zero.

Proof:

By Proposition 2.3.6 a linear transformation is one-to-one if
and only if its kernel consists only of the zero vector. If the matrix
for our linear transformation with respect to some ordered basis
(~b1,~b2) is [

a b
c d

]
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then a vector x~b1 + y~b2 is in the kernel if and only if x and y give
a solution to [

a b
c d

] [
x
y

]
=

[
0
0

]
.

This system has a unique solution if and only if the determinant
ad− bc 6= 0.

Example: Finding image and kernel of a linear transformation

Let us apply these ideas to find the image and kernel of the
linear transformation L which takes [x, y] to [x− y, 2x− 2y]. The
matrix for this linear transformation with respect to the standard
bases is [

1 −1
2 −2

]
.

This matrix has determinant (1 · −2) − (−1 · 2) = 0, so this
linear transformation is not one-to-one.

The image is spanned by the set of vectors{[
1
2

]
,

[
−1
−2

]}
.

Now, the second vector is just −1 times the first, so we can iden-
tify this as the line through the origin given by all multiples of
the first vector. A more familiar form for this line is as the set of
points (x, y) satisfying the equation y = 2x.

To find the kernel we need to solve the system of equations

x− y = 0

2x− 2y = 0.

This is easy. The set of solutions is spanned by

{[
1
1

]}
and is

recognizable as the line with equation y = x. ♦

Exercises 2.3:

For problems 1 to 8, describe the subspaces spanned by the following sets



52 CHAPTER 2. LINEAR TRANSFORMATIONS ON R2

of vectors: (Since subspaces are either {[0, 0]}, lines through the origin, or
all of R2, these should be the kinds of answers you give.)

1. {[0, 0]}

2. {[1, 0]}

3. {[1, 2]}

4. {[1, 3], [−2,−6]}

5. {[1, 3], [1, 2]}

6. {[1, 2], [2, 4], [−3,−6]}

7. {[1, 2], [−2, 4], [3,−6]}

8. {[2, 4], [−1, 3], [3, 4], [2, 5]}

9. Find the kernel of the following linear transformations:

(a) L1([x, y]) = [x+ y, 2x+ 2y]

(b) L2([x, y]) = [x+ 2y, 2x+ y]

(c) L3([x, y]) = [0, 2x+ y]

(d) L1([x, y]) = [0, 0]

10. Find the image of the following linear transformations:

(a) L1([x, y]) = [x+ y, 2x+ 2y]

(b) L2([x, y]) = [x+ 2y, 2x+ y]

(c) L3([x, y]) = [0, 2x+ y]

(d) L1([x, y]) = [0, 0]

11. Give examples of linear transformations with the following subspaces
as kernel:

(a) {[0, 0]}
(b) R2

(c) {[x, 3x]|x ∈ R}
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12. Give examples of linear transformations with the following subspaces
as image:

(a) {[0, 0]}
(b) R2

(c) {[x, 3x]|x ∈ R}

For problems 11-20 find the determinant and identify which represent
linear transformations which are one-to-one.

13.

[
2 1
0 3

]

14.

[
2 1
0 .1

]

15.

[
2 3
4 6

]

16.

[
.2 .3
−.3 .2

]

17.

[
.2 1
0 .2

]

18.

[
.2 1
0 0

]

19.

[
2 3
−1 1

]

20.

[
2 3
1 1

]

21.

[
4 −2
1 3

]

22.

[
4 2
1 3

]



54 CHAPTER 2. LINEAR TRANSFORMATIONS ON R2

23. (Project Problem) In our later treatment of determinants we will ask
for certain properties and then show that there is only one function
satisfying those properties. For each of the following properties, give a
numerical example and then a proof using 2 by 2 matrices with variables
as entries:

(a) The determinant of the product of two matrices is the product of
their determinants.

(b) The determinant of the transpose of a matrix is the same as
the determinant of the matrix. The transpose switches rows and
columns: [

a b
c d

]t
=

[
a c
b d

]
(c) If you switch two rows of a matrix you multiply the determinant

by -1.

(d) Multiplying a row of a matrix by a constant multiplies the deter-
minant by the same constant.

(e) Any matrix with two identical rows has determinant 0.

2.4 Finding inverses

In the last section we saw that matrix multiplication represents composition
of linear transformations. The inverse of a matrix will correspond to the
inverse under composition of the linear transformation it represents.

Definition 2.4.1 The inverse of the matrix M, if it exists, is the matrix
M−1 such that MM−1 = M−1M = I. The inverse of the linear transforma-
tion L, if it exists, is a linear transformation L−1 such that L−1 ◦ L = I d =
L ◦ L−1.

Finding the inverse of a matrix is equivalent to finding the inverse of
a linear transformation and, in general, it takes some work. Inverses do
not always exist so it is an interesting problem to discover how to tell if
the inverse exists or not. Determinants provide an answer, almost as if by
magic. However, for large matrices it takes almost as much work to find the
determinant as it does to find the inverse of a matrix.
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A function has an inverse (under composition) if it is one to one and
onto. We looked at conditions on the matrix which guarantee that the linear
transformation is one to one (having Ker(L) = {~0} is equivalent to the
system of equations L~x = ~0 having only the trivial solution). We also looked
at how to recognize onto linear transformations by noticing that the column
space of a matrix is the image of the linear transformation it represents.

Finding the inverse (under matrix multiplication) of a matrix will give
us an expression for the inverse of the linear transformation it represents.
Finding such an inverse actually boils down to finding the solution to two
systems of two equations, with constant terms given by the columns of the
identity matrix: [

a b
c d

] [
x1

y1

]
=

[
1
0

]
and [

a b
c d

] [
x2

y2

]
=

[
0
1

]
.

This gives us the formula[
a b
c d

]−1

=

[
d

ad−bc − b
ad−bc

− c
ad−bc

a
ad−bc

]
.

Thus we can find the inverse if the determinant is not 0. If the determinant
is 0, then we will not be able to find an inverse. While for the 2 × 2 case
this isn’t bad, in general this is a lousy way to find the inverse of a matrix
because for larger systems it has a very high operation count compared with
other methods.

In this section we will see how to find the inverse of a matrix using
elementary row operations.

There are three kinds of elementary row operations: interchanging two
rows, multiplying a row by a constant, and adding a constant multiple of one
row to another. For example interchanging the first and second rows of[

1 2
3 4

]
gives [

3 4
1 2

]
;
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multiplying the second row by 3 then gives[
3 4
3 6

]
,

and then adding −1 times the first row to the second gives[
3 4
0 2

]
.

We would write this whole sequence as[
1 2
3 4

]
R1 ↔ R2

;

[
3 4
1 2

]
3R2

;

[
3 4
3 6

]
R2 −R1

;

[
3 4
0 2

]
Here we have labeled the row operations using a reasonably common conven-
tion. Clearly we can use elementary row operations to change the form of a
matrix; systematic use of row operations can reduce matrices to particularly
nice forms.

Notice that each of the row operations can be accomplished by multiplying
on the left by a matrix:[

0 1
1 0

] [
1 2
3 4

]
=

[
3 4
1 2

]
[

1 0
0 3

] [
3 4
1 2

]
=

[
3 4
3 6

]
[

1 0
−1 1

] [
3 4
3 6

]
=

[
3 4
0 2

]
The matrix which accomplishes the row operation is obtained by performing
the row operation on an identity matrix.

Each row operation can be undone: to undo R1 ↔ R2 do it again; to
undo 3R2 do 1

3
R2; to undo R2 − R1 do R2 + R1. Thus each of the matrices

which accomplishes a row operation must have an inverse; the matrix for the
row operation which undoes it.[

0 1
1 0

] [
0 1
1 0

]
=

[
1 0
0 1

]
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[
1 0
0 3

] [
1 0
0 1

3

]
=

[
1 0
0 1

]
[

1 0
−1 1

] [
1 0
1 1

]
=

[
1 0
0 1

]
That means any sequence of elementary row operations can be accom-

plished by multiplying on the left by a matrix (which has an inverse) found
by applying the sequence of row operations to the identity matrix. Our algo-
rithm for finding inverses of matrices will use elementary row operations to
make our matrix into an identity (if possible). We keep track of what we’ve
done by performing the same row operations on an identity matrix.

Example: Find the inverse of

[
2 4
1 3

]
First augment the matrix by adjoining an identity matrix to

keep track of our work and then do the following row operations:[
2 4 1 0
1 3 0 1

]
R1 ↔ R2

;

[
1 3 0 1
2 4 1 0

]
R2 − 2R1

;

[
1 3 0 1
0 −2 1 −2

]
−1

2
R2

;

[
1 3 0 1
0 1 −1

2
1

]
R1 − 3R2

;

[
1 0 3

2
−2

0 1 −1
2

1

]
We conclude that the inverse of[

2 4
1 3

]
is

[
3
2
−2

−1
2

1

]
.

♦

Example: Find the inverse of the linear transformation L([a, b]) =
[2a+ 4b, a+ 3b]
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The matrix for this linear transformation with respect to the
standard ordered basis is [

2 4
1 3

]
which we just showed has inverse[

3
2
−2

−1
2

1

]
.

Thus the inverse of L is given by L−1([a, b]) = [3
2
a− 2b,−1

2
a+ b],

obtained by multiplying[
3
2
−2

−1
2

1

] [
a
b

]
=

[
3
2
a− 2b
−1

2
a+ b

]
.

♦

This algorithm may be summarized in terms of its strategy: first use
interchange or division of a row to get a 1 on the main diagonal (the one
from upper left to lower right) then use that row to get 0 in the rest of its
column. The tactics are the use of elementary row operations. We decide
what to do by looking at the left hand side of the augmented matrix. The
right hand side keeps track of the row operations we have performed.

If you reach an impasse in attempting to use this algorithm, then the
matrix you started with does not have an inverse. The impasse shows up as
a zero on the diagonal which you cannot get rid of without messing up your
previous work.

Example: The matrix

[
1 2
1 2

]
does not have an inverse.

Again we try our algorithm:[
1 2 1 0
1 2 0 1

]
R2 −R1

;

[
1 2 1 0
0 0 −1 1

]
at which point we are stuck. There is no way we can get the 1 on
the lower right corner. We conclude that there is no inverse. ♦
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Exercises 2.4:
For problems 1-5 find the inverse, if it exists, of the matrix

1.

[
2 3
4 8

]

2.

[
2 3
4 6

]

3.

[
1 −1
2 2

]

4.

[
1 −1
−1 1

]

5.

[
2 2
4 4

]
For problems 6-10 find the inverse, if it exists, of the linear transformation

6. L([x, y]) = [2x+ 4y, 3x+ 8y]

7. L([x, y]) = [2x+ 4y, 3x+ 6y]

8. L([x, y]) = [x+ 2y,−x+ 2y]

9. L([x, y]) = [x− y,−x+ y]

10. L([x, y]) = [2x+ 4y, 2x+ 4y]

11. Show that if a matrix has an inverse, then the inverse is unique: if
MN1 = I and N2M = I then N1 = N2.

12. Show that if M and N have inverses, then so does MN.

13. Show that if a linear transformation has an inverse as a function, then
that inverse is a linear transformation.

14. What happens if you multiply on the right by an elementary matrix
instead of multiplying on the left?
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15. One way of deciding which of several algorithms is best for solving a
kind of problems is to calculate worst case computational complexity.
One way to do this in linear algebra involves counting the number of
multiplications (or divisions) needed to carry out an algorithm (addi-
tion and some other manipulations involved in matrix algorithms are
much less costly in terms of computation time unless the matrices in-
volved are so large that memory management considerations dominate
the problem). Count how many multiplication operations are used in
the algorithm in this section for finding the inverse of a 2 by 2 matrix.
Compare with the 6 multiplications needed if you use the formula from
the determinant.



Chapter 3

Eigenvalues in R2

3.1 Dynamics of iteration: introduction to

eigenvalues

One of the main uses of linear algebra comes in the description of linear sys-
tems, either using linear differential equations or linear difference equations.
Often this is the first step in understanding the behavior of nonlinear sys-
tems as well. In this section we will consider the dynamics of iteration for
linear transformations in the plane, asking what happens when we start with
a nonzero vector and then repeatedly apply L. We are asking what happens
to Ln(~a) as n gets large.

The easiest kind of vectors to follow are the eigenvectors of L because
iteration only changes their length:

Definition 3.1.1 A number λ is called an eigenvalue for L if there is a
nonzero vector ~a (called an eigenvector ) with L(~a) = λ~a.

Now suppose we are interested in the behavior of iterates of an eigenvector
with eigenvalue λ. Since

L(~a) = λ~a

L2(~a) = L(L(~a))

= L(λ~a)

= λ2~a

Ln(~a) = λn~a.

61
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If λ > 1 then the length grows with each iteration: the values are headed
straight out to infinity. If −1 < λ < 1 then the length is shrinking with
each iteration and the iterates are approaching zero. A negative eigenvalue
leads to a change of direction on each iteration, hence to oscillations. Large
negative eigenvalues lead to divergent oscillations. We will return to examples
illustrating this behavior after we find out how to find eigenvalues and their
corresponding eigenvectors.

The first thing we do is shift our attention from finding eigenvalues of a lin-
ear transformation L to finding eigenvalues of the matrix L which represents
that transformation with respect to some choice of ordered basis B. A vector
~a which has B-coordinate representation ~xt will have B-coordinates given by
L~xt. If applying the linear transformation to a particular vector multiplies
that vector by λ, then multiplying the corresponding B-coordinate column
vector on the left by the matrix corresponding to the linear transformation
will also have the effect of multiplying by λ. This changes the eigenvalue
problem to that of finding a λ such that there is a non-trivial solution to the
system of equations

L~xt = λ~xt

or equivalently

(L− λI)~xt = ~0t.

This will happen only when the matrix L − λI does not have an inverse,
since if it does have an inverse the only answer for ~x is ~0. When we discussed
inverses of 2× 2 matrices in Section 2.4 we noted that there is an inverse if
and only if the determinant is nonzero. Thus we need

det(L− λI) = 0.

This gives a quadratic equation in λ and thus poses no particular difficulty
(for other linear transformations the problem of finding eigenvalues is more
difficult).

Definition 3.1.2 The characteristic polynomial for a matrix L is det((L)−
λI). The characteristic equation is det((L)− λI) = 0.

Example:
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The diagonal matrix [
1 0
0 2

]
has eigenvalues 1 and 2. We can find these by finding where

det

[
1− λ 0

0 2− λ

]
= (1− λ)(2− λ) = 0.

Obviously finding eigenvalues for diagonal matrices isn’t much of
a challenge; the eigenvalues are just the entries on the diagonal.
♦

Example:

In the Section 2.2.1, fourth example, we noted that the matrix[
1 −2
1 4

]
could be diagonalized by choosing an appropriate basis. We can
now see how that basis was found using eigenvalues. We start by
finding the solution to

det

[
1− λ −2

1 4− λ

]
= (1− λ)(4− λ) + 2 = 0

This gives the characteristic equation

λ2 − 5λ+ 6 = 0,

so λ = 3 and λ = 2 are the eigenvalues.
Next let us look for an eigenvector for the eigenvalue 3. We

want x and y so that[
1 −2
1 4

] [
x
y

]
= 3

[
x
y

]
This gives two equations in two unknowns

x− 2y = 3x

x+ 4y = 3y
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which becomes

−2x− 2y = 0

x+ y = 0

when we put all the variables on the left. This is not enough
to specify both variables, since the second equation gives no new
information. Any pair with x = −y will satisfy both equations.
In our diagonalization we used [1,−1] for the eigenvector for 3.

Similarly for the eigenvalue λ = 2 we get the system

x− 2y = 2x

x+ 4y = 2y

which simplifies to the single equation x + 2y = 0. The vector
[2,−1] satisfies this equation and hence is an eigenvector for the
eigenvalue 2.

Since [1,−1] and [2,−1] are not collinear, they form a basis
for R2. As noted in Example 2.2.4, the matrix for L with respect
to the ordered basis ([1,−1], [2,−1]) is[

3 0
0 2

]
.

♦

A matrix with real entries need not have real eigenvalues. It is possible
for the characteristic equation det(M− λI) = 0 to have complex roots. The
rotation example we looked at in Example 2.1.3 is typical:

Example:

A rotation of the plane through π
4

radians has the matrix with
respect to the standard ordered basis[ √

2
2
−
√

2
2√

2
2

√
2

2

]
.

The characteristic equation is

det

[ √
2

2
− λ −

√
2

2√
2

2

√
2

2
− λ

]
= 0
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or 1−
√

2λ+λ2 = 0. This equation has no real roots, however, it
does have the complex roots λ =

√
2

2
±
√

2
2
i. Later on we will see

how to find vectors in C2 which are eigenvectors corresponding
to these complex eigenvalues. ♦

Let us now look at some examples that show how the behavior of an
iterative dynamical system can vary depending on the kind and size of eigen-
values:

3.1.1 Behavior when the eigenvalues are both real

Example: Both λ1 and λ2 > 1

An example here is the linear transformation with matrix

[
1.1 0
0 1.2

]

When we iterate this map points run away from the origin. Here
is a graph showing the paths taken by some selected points.
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-1.5-1-0.5 0.5 1 1.5

-3

-2

-1

1

2

3

♦

Example: λ1 > 1 and 0 < λ2 < 1

Let’s use the matrix

[
1.1 0
0 .4

]

for this example. We expect that points will shrink fairly rapidly
in the y direction while growing in the x direction as shown in
this graph:
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-2 -1 1 2

-2

-1

1

2

♦

Example: Both λ1 and λ2 strictly between 0 and 1

An example here has matrix

[
.9 0
0 .8

]

In this case all points approach the origin as shown in this graph:
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-2 -1 1 2

-2

-1

1

2

♦

Example: One positive and one negative eigenvalue

Here let us look at the dynamics of the linear transformation
with matrix [

1.1 0
0 −.9

]
This system shows growth in the direction of the x-axis and

a decreasing oscillation in the y-direction. This is illustrated in

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

♦
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3.1.2 Dynamics of systems with complex eigenvalues

So far our examples have had the characteristic equation having real roots. A
quadratic equation can also have a pair of complex roots. We can represent a
complex number as a+ bi where a and b are real numbers and i2 = −1. The
conjugate of a+ bi is a− bi. Both a+ bi and a− bi lie on a circle centered at
the origin of radius

√
a2 + b2, which gives a measure of the size of a complex

number, called the modulus and written ‖a+ bi‖.

Example: Complex eigenvalues of modulus 1

If the eigenvalues both have modulus (or absolute value) 1 we
get rotation. The matrix [ √

2
2
−
√

2
2√

2
2

√
2

2

]
which we considered above gives dynamics with period eight no
matter where you start as shown in the rotation below:

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3
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♦

Example: Complex eigenvalues with modulus less than 1

For an example of complex eigenvalues appearing in a conju-
gate pair, we can use the matrix[

0.6 −0.5
0.5 0.6

]
which has eigenvalues 0.6±0.5i. The dynamics give a spiral mov-
ing toward the origin. We can tell that the motion is toward the
origin and not away from it because ‖0.6±0.5i‖ =

√
0.62 + 0.52 <

1. The dynamics are shown in the following graph, a spiral:

-1 -0.5 0.5 1 1.5 2

-0.5

0.5

1

1.5

2

♦

Exercises 3.1:
For numbers 1 through 8 find the characteristic equation, the eigenvalues
and an eigenvector for each eigenvalue, and then use your work to describe
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the dynamics for the linear transformations with the following matrices with
respect to the standard basis:

1.

[
2 1
0 3

]
2.

[
2 1
0 .1

]
3.

[
2 3
4 1

]
4.

[
.2 .3
−.3 .2

]
5.

[
.2 1
0 .2

]
6.

[
.2 1
0 .3

]
7.

[
2 2
−1 1

]
8.

[
2 2
1 1

]
9–16. Since we know how to multiply matrices, add matrices, and multiply

matrices by a scalar, we can evaluate polynomials at a matrix. For
example if

p(x) = x2 − 2x+ 1

and

M =

[
1 2
3 4

]
,

then

p(M) =

[
1 2
3 4

] [
1 2
3 4

]
− 2

[
1 2
3 4

]
+ 1

[
1 0
0 1

]
=

[
7 10
15 22

]
−
[

2 4
6 8

]
+

[
1 0
0 1

]
=

[
6 6
9 15

]
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For each of the matrices in problems 1-8 find p(M) where p(x) is the
characteristic polynomial of M. (What you are seeing at work here is
the Cayley-Hamilton Theorem.)

For the next five problems the dynamics of iteration of the linear transfor-
mation L : R2 → R2 are described below. What can you say about the
eigenvalues of L?

17. Successive iterations spiral clockwise inward

18. Successive iterations spiral counterclockwise inward

19. Successive iterations spiral outward

20. Iterations grow rapidly approaching the line y = 3x with successive
iterates on opposite sides of the line

21. Iterations approach the origin with no apparent oscillation

22. (Project Problem) A stochastic matrix has all entries non-negative and
has the sum of each column equal to 1.

(a) Find the eigenvalues of the stochastic matrix[
.5 .7
.5 .3

]
.

(b) Find the eigenvalues of the stochastic matrix[
.9 .8
.1 .2

]
.

(c) Show that the general case[
p q

1− p 1− q

]
has eigenvalues λ = 1 and λ = p− q. Since long term behavior is
determined by the largest eigenvalue, this tells us that dynamics
for a stochastic matrix tend to a fixed point (an eigenvector for
the eigenvalue 1).
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(d) An epidemic with particularly simple dynamics has 10% of those
who are not sick becoming ill each week. Fortunately, 80% of
those who were sick recover in the next week. Show that the
disease becomes endemic (there is always a certain percentage of
the population which is sick) and find the long term incidence level
for the disease.

3.2 Canonical forms for 2× 2 matrices

Given the importance of eigenvalues it would be nice if we could find forms
for matrices in which the eigenvalues can be determined by inspection. Since
similar matrices represent the same linear transformation with respect to
different ordered bases and eigenvalues are properties of the linear transfor-
mation, similar matrices will have the same eigenvalues. Finding a matrix
similar to a given matrix but in a nicer form is the same as finding an con-
venient ordered basis for the linear transformation the matrix represents. In
this section we will discuss some of the nice forms that matrices can be put
into by judicious choice of basis.

We start with a proposition telling us that eigenvectors for different eigen-
values must point in independent directions:

Proposition 3.2.1 If T is a linear transformation with eigenvalues λ1 6= λ2,
~a is an eigenvector for the eigenvalue λ1, and ~b is an eigenvector for λ2, then
the only solution to x~a+ y~b = ~0 is x = 0 and y = 0.

Proof:

Suppose we have x~a+ y~b = ~0. Then we also have

T (x~a+ y~b) = T (~0)

xT (~a) + yT (~b) = ~0

xλ1~a+ yλ2
~b = ~0.

Multiplying x~a + y~b = ~0 by λ2 and subtracting it from xλ1~a +
yλ2

~b = ~0 gives x(λ1 − λ2)~a = ~0. This tells us that x = 0, since
λ1 6= λ2. Multiplying by λ1 and subtracting will show that y = 0
as well.
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This tells us that if T has distinct eigenvalues, then there is a basis of
eigenvectors. With respect to that basis the matrix of T will be the matrix[

λ1 0
0 λ2

]
.

Actually we can get a diagonal matrix whenever we have a basis of eigenvec-
tors, not just when the eigenvalues are distinct.

If the characteristic equation has the form (λ1−λ)2 = 0, we may find that
we get the eigenvalue λ1 twice, but that there is no basis for R2 consisting of
eigenvectors. In this case we look for vectors ~a and ~b such that T (~a) = λ1~a

and T (~b) = ~a+ λ1
~b. Using those vectors for our basis we get the form[

λ1 1
0 λ1

]
.

Example: Repeated eigenvalue

The linear transformation L([x, y]) = [5x + y,−x + 3y] has
matrix [

5 1
−1 3

]
with respect to the standard bases. This has characteristic equa-
tion

λ2 − 8λ+ 16 = 0,

so its only eigenvalue is 4. The system[
5 1
−1 3

] [
x
y

]
= 4

[
x
y

]
becomes

x+ y = 0

−x− y = 0

from which we conclude that y = −x. We have only one free
choice in finding eigenvectors, not two. Thus there is not a basis
of R2 consisting of eigenvectors.
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If we use the eigenvector ~a = [1,−1] as our first basis vector
then we can find another using[

5 1
−1 3

] [
x
y

]
= 4

[
x
y

]
+

[
1
−1

]
.

This yields

x+ y = 1

−x− y = −1.

This system also has one degree of freedom in its solutions. A
second basis vector is ~b = [.5, .5].

To find the matrix for the linear transformation with respect
to the new basis we calculate

L([1,−1]) = [4,−4] = 4[1,−1] + 0[.5, .5]

L([.5, .5] = [3, 1] = 1[1,−1] + 4[.5, .5],

so the matrix with respect to this new basis is[
4 1
0 4

]
.

♦

We noted earlier that matrices with real entries could have a pair of
conjugate complex numbers for eigenvalues. In such a case the eigenvectors
will usually involve complex numbers. But we are working with R2, not C2,
so we need to see how this situation can be handled using real numbers. The
general result is that if the eigenvalues for a linear transformation L are a±bi
then we can find a basis such that the matrix for L is[

a b
−b a

]
.

If the matrix L has eigenvalues a ± bi, this will give a matrix similar to L
which has a canonical form from which we can read off the eigenvalues. We
will illustrate this process with an example:

Example: Complex conjugate eigenvalues
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Suppose we want to find a basis such that the matrix for
the linear transformation L[x, y] = [x − 2y, 5x + 3y], which has
eigenvalues 2± 3i, is

[
2 3
−3 2

]
.

Eigenvectors are found by solving the systems L([x, y]) = 2 +
3i[x, y] and L([x, y] = 2− 3i[x, y]. The system for 2 + 3i gives

x− 2y = (2 + 3i)x

5x+ 3y = (2 + 3i)y

so

(−1− 3i)x− 2y = 0

5x+ (1− 3i)y = 0

giving

y =
−1− 3i

2
x

So ~e1 = [1, −1−3i
2

] is an eigenvector for λ1 = 2 + 3i and similarly
~e2 = [1, −1+3i

2
] is an eigenvector for λ2 = 2− 3i. We can get real

vectors with the desired properties by taking ~b1 = ~e1+~e2 = [2,−1]

and ~b2 = i(~e1 − ~e2) = [0,−3]. Now L(~b1) = [4, 7] = 2[2,−1] −
3[0,−3] and L(~b2) = [6,−9] = 3[2,−1] + 2[0,−3]. Thus we get
the desired matrix. ♦

To summarize, given a linear transformation L : R2 → R2 we can find
a basis for R2 which gives a matrix in one of the following canonical forms,
where λ1 and λ2 have eigenvectors ~v1 and ~v2, respectively:
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eigenvalues basis canonical form

λ1, λ2 real, distinct (~v1, ~v2)

(
λ1 0
0 λ2

)
λ1 = λ2 = λ real (~v1, ~v2) non-collinear

(
λ 0
0 λ

)
λ1 = λ2 = λ real

no basis of eigenvectors
Use (~v1, ~v3) with
L(~v3) = λ~v3 + ~v1

(
λ 1
0 λ

)
λ = a± b i {~v1 + ~v2, i(~v1 − ~v2)}

(
a b
−b a

)

Exercises 3.2:

For problems 1-12, find the canonical form described in this section and
a basis which gives it for the following matrices:

1.

[
2 3
0 1

]

2.

[
2 −3
2 1

]

3.

[
−2 3
1 1

]

4.

[
−1 −1
5 3

]

5.

[
2 −3
0 1

]

6.

[
1 5
0 1

]

7.

[
1 1
−2 4

]

8.

[
−1 3
−3 5

]
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9.

[
1 −1
1 3

]

10.

[
1 2
4 5

]

11.

[
1 4
−1 1

]

12.

[
3 2
2 3

]
13. Show that if M is in one of the canonical forms of this section then

the eigenvalues of kM are k times the eigenvalues of M. The form of
the matrices involved makes it easy to see what the eigenvalues are.
(Since any 2 × 2 matrix is similar to a matrix in canonical form, and
since eigenvalues are properties of the linear transformation the matrix
represents and not just of the matrix, this shows that multiplying a
matrix by a constant multiplies the eigenvalues by the same constant
for all matrices, not just those in our canonical form.)

14. Find an example to show that the eigenvalues of M + N need not be
the sum of eigenvalues of M and N.

15. Find examples to show that the eigenvalues of a product MN need not
be related to those of M and N. In particular, find M and N and
eigenvalues λi such that

(a) λ is an eigenvalue for M but not for MN.

(b) λ1 is an eigenvalue for M and λ2 is an eigenvalue for N but λ1λ2

is not an eigenvalue for MN.

16. Show that if 0 is an eigenvalue for N then it is also an eigenvalue for
MN.

17. Show that 0 is an eigenvalue for N if and only if N does not have an
inverse.

18. Using canonical forms show that the product of the eigenvalues of a
matrix is its determinant.
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19. The sum of the diagonal entries of a matrix is called its trace. For
canonical forms it is clear that the sum of the eigenvalues is the trace.
Show that in general the trace of a matrix is the sum of its eigenvalues.
This shows that similar matrices will have the same trace.
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Chapter 4

Properties of the dot product

An observant reader may have noticed something peculiar about what we
have done so far. We started by requiring that a vector have both magni-
tude and direction and we have not mentioned either the magnitude or the
direction of a vector since. This is because we have concentrated on the
properties that vectors have because they can be added and multiplied by
scalars. The notion of a vector space captures those aspects of R2 but not
the notions of angle between vectors and length. These need an additional
kind of structure, an inner product, exemplified in R2 by the dot product.

4.1 Dot Products in R2

Let us return temporarily to the geometric approach to vectors and the way
that they are used in physics. In one dimension, if we move an object a
distance d against a force F , then the work done is given by the number Fd.
But both force and displacement are actually vector quantities, so in two
dimensions (or more) we need to take into account the direction. We reduce
to the one dimensional case by taking the component of the force in the
direction of the displacement, rather than the whole force in our calculation.

Given two vectors ~a and ~b, we often write ~a as a sum of a vector in the
same direction as ~b and one perpendicular to ~b,

~a = k~b+ ~c with ~c ⊥ ~b.
The piece parallel to ~b is called the component of ~a in the direction of ~b. It
gives the vector which is a multiple of ~b which is closest to ~a. The situation
is illustrated in Figure 4.1.

81



82 CHAPTER 4. PROPERTIES OF THE DOT PRODUCT

�
�
�
�
�
��

��
��

��
��

��
��

��
��

��
��1

��
��

��
��1B
B
B
BM

k~b

~b

~a ~c

θ

Figure 4.1: Geometry of the dot product

We can find the length of k~b by applying some simple trigonometry to the
right triangle formed by ~a as hypotenuse with sides k~b and ~c. Since cos(θ) is
the ratio of the length of the adjacent side to the length of the hypotenuse,

cos θ =
k‖~b‖
‖~a‖

.

Solving for k gives

k =
‖~a‖ ‖~b‖ cos(θ)

‖~b‖2
.

This concept forms the basis for the geometric definition of the dot prod-
uct between two vectors:

Definition 4.1.1 The dot product of two vectors is defined geometrically as

~a ·~b = ‖~a‖ ‖~b‖ cos(θ).

We may notice several immediate consequences of this definition.

1. The dot product gives a real number (a scalar), not a vector.

2. The right side is symmetric in ~a and ~b so ~a ·~b = ~b · ~a.

3. If ~a and ~b are perpendicular then ~a ·~b = 0.

4. The dot product of a vector with itself is the square of its magnitude.

We also notice that the definition is hard to use if we do not know θ, so
that an algebraic approach to the definition, if possible, would be preferable.
Fortunately, such a definition is readily available, as the next proposition
shows.
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A B

C

c

b a

Figure 4.2: Law of Cosines

Proposition 4.1.1 Let ~a = [a1, a2] and ~b = [b1, b2] and let θ be the angle

between them (0 ≤ θ ≤ π ). Then ~a ·~b = ‖~a‖‖~b‖ cos(θ) = a1b1 + a2b2.

Proof:

We will use the law of cosines from trigonometry, which in a
common formulation states that in a triangle with angles A, B,
and C, opposite the sides of length a, b, and c, respectively,

c2 = a2 + b2 − 2ab cos(C).

(See Figure 4.2)
We will express this same result in vector terminology:

‖~b− ~a‖2 = ‖~a‖2 + ‖~b‖2 − 2‖~a‖‖~b‖ cos(θ).

When we solve this equation for the last term on the right and
then express the norms of the vectors in terms of their components
we find

2‖~a‖‖~b‖ cos θ = ‖~a‖2 + ‖~b‖2 − ‖~b− ~a‖2

= a2
1 + a2

2 + b21 + b22 − ((b1 − a1)
2 + (b2 − a2)

2)
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= a2
1 + a2

2 + b21 + b22 − (b21 − 2a1b1 + a2
1 + b22 − 2a2b2 + a2

2)

= a2
1 − a2

1 + a2
2 − a2

2 + b21 − b21 + b22 − b22 + 2a1b1 + 2a2b2

= 2(a1b1 + a2b2).

Thus
‖~a‖‖~b‖ cos θ = a1b1 + a2b2.

Because the algebraic form given by this proposition is easier to work
with than our geometric definition we will use the following definition for the
dot product of algebraic vectors for our further generalization:

Definition 4.1.2 For vectors ~a = [a1, a2] and ~b = [b1, b2], the dot product is
given by

~a ·~b = a1b1 + a2b2.

Example: Finding the angle between vectors

We use the dot product to determine the angle between ~a =
[1, 2] and ~b = [3,−4]. To find θ we calculate,

cos(θ) =
~a ·~b
‖~a‖‖~b‖

=
(1× 3) + (2×−4)

‖~a‖‖~b‖

=
−5

5
√

5
≈ −.4472135955,

and thus

θ ≈ arccos(−.4472135955)

≈ 2.03443936 radians.

♦
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Example: Direction Cosines

The direction of a vector is often given by specifying the angle
formed by the vector and the standard basis vectors. Since the
dot product gives an easy way to recover the cosine of that angle,
what are usually given are the direction cosines. For example,
the vector [3,−4] forms an angle θx with the x-axis and θy with
the y-axis, where

cos(θx) =
[3,−4] · [1, 0]

‖[3,−4]‖ ‖[1, 0]‖

=
3

5

cos(θy) =
[3,−4] · [0, 1]

‖[3,−4]‖ ‖[0, 1]‖

=
−4

5
.

♦

The dot product is easily calculated from Definition 4.1.2; at the same
time Proposition 4.1.1 justifies our interpreting the dot product in the ge-
ometric sense originally used. Moreover, the essential properties of the dot
product are easily proven from its algebraic description.

Proposition 4.1.2 Let ~a,~b,~c be arbitrary vectors and let k ∈ R, then

1. Dot product is commutative: ~a ·~b = ~b · ~a

2. Dot products preserve multiplication by a scalar:k(~a · ~b) = (k~a) · ~b =

~a · (k~b)

3. Dot products distribute over sums:~a · (~b+ ~c) = ~a ·~b+ ~a · ~c

4. Lengths can be recovered from dot products: ~a · ~a = ‖~a‖2

5. ~a · ~a ≥ 0 and ~a · ~a = 0 if and only if ~a = ~0.

Proof:
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Commutativity follows immediately from commutativity of
multiplication in R.

For the preservation of scalar multiples we calculate

k(~a ·~b) = k(a1b1 + a2b2)

= ka1b1 + ka2b2

(k~a) ·~b = [ka2, ka2] · [b1, b2]
= ka1b1 + ka2b2

~a · (k~b) = [a1, a2] · [kb1, kb2]
= ka1b1 + ka2b2.

Since these all give the same result, they must have been equal.
For the distributivity over sums, we have

~a · (~b+ ~c) = [a1, a2] · ([b1, b2] + [c1, c2])

= [a1, a2] · [b1 + c1, b2 + c2]

= a1(b1 + c1) + a2(b2 + c2)

= a1b1 + a1c1 + a2b2 + a2c2

= a1b1 + a2b2 + a1c1 + a2c2

= ~a ·~b+ ~a · ~c.

We leave the proofs of 4 and 5 as exercises.

The first three parts of this proposition say that the dot product behaves
very much like multiplication of numbers. However, in one way the dot
product departs markedly from multiplication of numbers. If the product
of two numbers is 0, then one of the numbers must have been 0. For dot
product, however, this is not true. If ~a and ~b are perpendicular then since
θ = π

2
, cos(θ) = 0, and ~a ·~b = 0.

The converse is almost true by Proposition 4.1.1. If ~a · ~b = 0, then it
must follow that ‖~a‖ = 0 or ‖~b‖ = 0, or cos(θ) = 0. Thus if ~a ·~b = 0, either
the vectors are perpendicular or at least one of them is the zero vector. If
we agree that the zero vector is perpendicular to every vector, then we can
conclude that ~a ·~b = 0 if and only if ~a and ~b are perpendicular (a numerical
description of a geometric property).

We conclude this section with an important result which follows from the
geometric description of the dot product.
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Proposition 4.1.3 (Cauchy-Schwarz Inequality). For any two vectors ~a and
~b in R2

(~a ·~b)2 ≤ ‖a‖2‖b‖2

Equality holds if and only if ~b = k~a for some k ∈ R (which says that ~a and
~b are parallel).

Proof:

A good starting point is the geometric description of the dot
product:

(~a ·~b) = ‖~a‖‖~b‖ cos(θ).

If we square both sides we get

(~a ·~b)2 = ‖~a‖2‖~b‖2 cos2(θ),

or, since cos2(θ) ≤ 1,

(~a ·~b)2 ≤ ‖~a‖2‖~b‖2.

Now suppose (~a · ~b)2 = ‖~a‖2‖~b‖2. This is true, trivially, if

either ~a = ~0 or ~b = ~0. If neither vector is zero, then equality
holds if and only if cos θ = ±1. Now cos θ = 1 if and only if
θ = 0 and cos θ = −1 if and only if θ = π (recall that we chose

0 ≤ θ ≤ π). In either case there is a k ∈ R with ~b = k~a, where
k ≥ 0 if and only if θ = 0 and k < 0 if and only if θ = π .

Exercises 4.1:
For 1-6, find cos θ, where θ is the angle between ~a and ~b:

1. ~a = [1, 1] and ~b = [2, 1]

2. ~a = [−1, 1] and ~b = [6, 2]

3. ~a = [0, 3] and ~b = [−2, 1]

4. ~a = [5, 1] and ~b = [2, 1]

5. ~a = [1, 3] and ~b = [2, 6]
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6. ~a = [1,−2] and ~b = [2, 1]

7. Find the direction cosines for [3, 4].

8. Find the direction cosines for [12,−5].

9. Find the direction cosines for [1, 1].

10. Find the direction cosines for [−3, 4].

11. Find the cosines of the angles of the triangle with verticesA = (−3,−2),
B = (5, 1) and C = (2, 4).

12. Show that the diagonals of a rhombus are perpendicular by showing
that if ‖~a‖ = ‖~b‖, then ~a+~b ⊥ ~a−~b.

13. Find c so that [3,−4] and [c, 1] are perpendicular.

14. Find b so that [b, 2] ⊥ [3, 4].

15. Find k so that [1, 3]− k[2, 4] is perpendicular to [2, 4].

16. Find k so that [1,−2]− k[3, 1] is perpendicular to [3, 1].

17. Prove part 4 of Proposition 4.1.2.

18. Prove part 5 of Proposition 4.1.2.

19. Use the Cauchy-Schwarz inequality to prove that

‖~a+~b‖2 ≤ (‖~a‖+ ‖~b‖)2.

Hint:‖~v‖2 = ~v · ~v

4.2 Orthogonal Projection

The dot product was introduced to allow us to find the component of a vector
~a in the direction of another vector ~b 6= ~0. In this section we will see how
the relationship with the dot product can arise from consideration of this
problem using trigonometry, calculus, or geometry and linear algebra. Our
problem is

Find k so that the length of ~a− k~b is minimized.
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Solution 1—using calculus: The length of ~a − k~b is a function of k.
Because it involves a radical it is easier to minimize the square of the length,
so we’ll do that.

f(k) = ‖~a− k~b‖2

= (a1 − kb1)2 + (a2 − kb2)2

= a2
1 − 2k a1b1 + k2 b21 + a2

2 − 2k a2b2 + k2 b22
= a2

1 + a2
2 − 2(a1b1 + a2b2) k + (b21 + b22) k

2

= ‖~a‖2 − 2~a ·~b k + ‖~b‖2 k2

To minimize this we find k such that f ′(k) = 0. Now

f ′(k) = −2~a ·~b+ 2‖~b‖2k

so we conclude that

k =
~a ·~b
‖~b‖2

=
~a ·~b
~b ·~b

is the only critical point. Now

f ′′(k) = 2‖~b‖2 > 0

so this gives a minimum as desired.

Solution 2—using trigonometry: Here what we can find is the length
of the projection of ~a onto ~b. A picture will help:

��
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��*
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A
A
AK

~a

θ

k~b

~b

~a− k~b

Using the definition of cos(θ), it becomes clear from the picture that we

want ‖k ~b‖ to be ‖~a‖ cos(θ). Now from the geometric description of the dot
product

cos(θ) =
~a ·~b
‖~a‖ ‖~b‖

.
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Now ‖k ~b‖ = |k| ‖~b‖ so this means we want

k =
‖~a‖ cos(θ)

‖~b‖

= ‖~a‖ ~a ·~b
‖~a‖ ‖~b‖2

=
~a ·~b
~b ·~b

Solution 3—using geometry and linear algebra: We know from ge-
ometry that the shortest distance from a point (the endpoint of ~a) to a line

(the one determined by the origin and ~b) is found by dropping a perpen-
dicular to the line from the point and measuring its length. So we want to
write

~a = k~b+ h~b⊥

where ~b⊥ is some vector perpendicular to ~b. Thus ~b · ~b⊥ = 0. We can use
properties of the dot product to find k:

~b · ~a = ~b · (k~b+ h~b⊥)

= k~b ·~b+ h~b ·~b⊥

= k~b ·~b+ 0

Thus

k =
~a ·~b
~b ·~b

as in the other derivations.
These calculations lead us to the following definition:

Definition 4.2.1 The projection of ~a onto ~b is the vector

−−→
proj~b (~a) =

~a ·~b
~b ·~b

~b.

Because the ideas involved in projections are useful in settings where the
word “perpendicular” might have other connotations the term “orthogonal”
is used in inner product spaces.
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Definition 4.2.2 Vectors ~a and ~b are said to be orthogonal if ~a ·~b = 0.

Notice that with this definition the zero vector ~0 is orthogonal to any
vector.

Example: Finding a projection

Find the vector in the direction of [1, 2] closest to [−3, 5].
Using the ideas in this section it is clear we want the projection

of [−3, 5] onto [1, 2]. This is

−−→
proj[1,2]([−3, 5]) =

[−3, 5] · [1, 2]

[1, 2] · [1, 2]
[1, 2] =

7

5
[1, 2] = [

7

5
,
14

5
].

♦

Exercises 4.2:
For problems 1-6, find the vector

−−→
proj~u (~v) in the direction of ~u closest to ~v.

1. ~u = [1, 2] and ~v = [3, 4]

2. ~u = [−1, 4] and ~v = [3,−2]

3. ~u = [5,−2] and ~v = [1, 1]

4. ~u = [1, 4] and ~v = [−1, 2]

5. ~u = [−2,−1] and ~v = [2, 3]

6. ~u = [−3, 2] and ~v = [1, 1]

7–12 For each of the pairs of vectors in exercises 1–6 write ~v as the sum of a
vector parallel to ~u and a vector perpendicular to ~u.

13. Let ~v and ~w be two fixed, non-zero, nonparallel vectors in R2. Let ~a
be an arbitrary vector.

(a) Find scalars h and k so that ~a = h~v + k ~w.

(b) Show that if ~v and ~w are perpendicular there is a nice form for h
and k in terms of dot products.
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4.3 Summary and Preview

In this part of the book we have discussed the properties of vectors in the
plane, concentrating first on those properties which do not involve angles and
then introducing dot products to recover angles and length. We defined linear
transformations and showed how to get the matrix for a linear transformation
with respect to a choice of basis. We saw how particular choices of basis
might give nicer forms for the matrix and further information about the
linear transformation. We saw how the dynamics of iteration is related to
the eigenvalues of the linear transformation. Because we were working in R2

none of the technique was particularly difficult or involved. Most calculations
needed little more than solving a system of two equations in two unknowns
or solving a quadratic equation.

In the chapters which follow we will generalize these ideas to vector spaces
over the reals or over other fields. (For much of the theory it is more useful
to work over the complex numbers because polynomials always have enough
roots in the complex numbers; for applications we sometimes want to work
over finite fields; we can avoid some problems more properly considered in a
numerical analysis course if we work in the rational numbers when possible.)
We will start by looking at lots of examples. Because these examples are a
bit more involved than R2 we will need more systematic methods for solving
the systems of equations which result. These systematic methods give rise
to an algorithm for reducing a matrix to what is called echelon form which
we will use for just about everything.

A first course on linear algebra focuses on vector spaces and linear trans-
formations, systems of linear equations, matrices, and some of the things
you can do with them. The methods have wide applicability and the ideas
lead to varied generalizations making them a key to modern mathematics.
No subject in the undergraduate curriculum is more central to the further
development of mathematics, both pure and applied, algebraic, analytic, ge-
ometric, or combinatorial.



Chapter 5

Vector Spaces and Linear
Transformations

5.1 Vector Spaces: Definitions and Examples

5.1.1 Definitions of fields and vector spaces

The example of vectors in the plane which we looked at in Chapter 1 is
only one example of a large collection of similarly behaved systems. In el-
ementary functions courses we study addition and scalar multiplication of
functions from the reals to the reals and find the same properties that we
enumerated in Proposition 1.4. In calculus we used these operations to break
the problem of finding derivatives and indefinite integrals into manageable
pieces, noting that differentiable functions and continuous functions were
closed under addition and multiplication by constants. Whenever mathe-
maticians find several examples of similar behavior in different settings, they
look for a more abstract formulation which has the examples as special cases.
If the abstraction gives a notion which is easy to work with and which gives
useful information about the examples it becomes a mathematical object in
its own right. Linear algebra is the study of such an abstraction.

Let us first concentrate on the properties of the scalars. In Chapter 1 we
summarized the algebraic properties of the real numbers that we would be
using. The relevant properties are those that make the real numbers a field.
They include the fact that there are two operations on the reals, addition
and multiplication, which satisfy eleven axioms (listed below) which will be
familiar because of their heavy use in high school algebra. In most of this

93
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book we will be working with vector spaces over the reals, though in some
cases it makes more sense to work over other fields. (We often want to solve
systems of equations over the rationals; eigenvalue problems are most easily
solved over the complex numbers, and coding theory uses vector spaces over
finite fields. We will consider these examples in section 2.3.)

Definition 5.1.1 A field is a set F equipped with two binary operations
+ : F × F → F and × : F × F → F satisfying the following axioms for all
a, b, and c ∈ F :

Closure: a+ b ∈ F a× b ∈ F
Associativity: (a+ b) + c = a+ (b+ c) (a× b)× c = a× (b× c)
Commutativity: a+ b = b+ a a× b = b× a
Identity: ∃0∈F∀a(a+ 0 = a) ∃1∈F∀a(a× 1 = a)
Inverses: ∀a∈F∃−a(−a+ a = 0) ∀a6=0∃ 1

a
∈F (a× 1

a
= 1)

Distributive: a× (b+ c) = (a× b) + (a× c)

In this definition we have used some useful shorthand notation from sym-
bolic logic: ∀ reads as “for all” and ∃ reads as “there exists”. Thus the
expression for inverses, ∀a∈F∃−a(−a + a = 0), reads “for every a ∈ F there
is an element −a such that −a + a = 0”. Similarly, ∀a6=0∃ 1

a
∈F (a × 1

a
= 1)

translates as “for every a ∈ F which is not 0, there is an element 1
a

in F such
that a× 1

a
= 1.”

The examples of fields we will use in this course are the set of real num-
bers with the usual addition and multiplication, the set of complex numbers
with the usual addition and multiplication, the rationals with the usual op-
erations, and the integers with addition and multiplication mod 2. The field
axioms summarize the properties of numbers used in high school algebra;
when working in a field nothing untoward happens.

There are some immediate consequences of these axioms which we will
want to use later which we have not made part of the definition. They deal
with the uniqueness of the identities and inverses. We will prove these results
in rather general form so that they will apply later in other situations:

Proposition 5.1.1 If a commutative operation has an identity then that
identity is unique.

Proof:
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Suppose that the operation ∗ has two identity elements, e1
and e2. Then consider e1 ∗ e2. By the commutative law

e1 ∗ e2 = e2 ∗ e1.

Since e2 is an identity

e1 ∗ e2 = e1

and since e1 is an identity

e2 ∗ e1 = e2.

thus e1 = e2.

If e is a (two sided) identity element for ∗ then whenever l ∗ r = e we say
that l is the left inverse of r and r is the right inverse of l. The designation of
left and right only matters if the operation is not commutative (and we will
see some later in the course which are not) so in the case of field operations
the following proposition tells us that inverses are unique.

Proposition 5.1.2 If ∗ is an associative operation with identity e and a has
both a right inverse r and a left inverse l, then r = l.

Proof:

We are given that a ∗ r = e and l ∗ a = e. Let us evaluate
l ∗ (a ∗ r) in two different ways:

l = l ∗ e = l ∗ (a ∗ r) = (l ∗ a) ∗ r = e ∗ r = r.

This shows that l = r.

In the R2 there is a second set (the vectors) which has two operations.
We can add vectors and we can multiply a scalar and a vector. For the time
being we will ignore the additional structure that the dot product gives, so
we will not be talking about length, angles, or projections at this point. In
order to talk about abstract vector spaces we need to say what properties we
want the operations to have. The properties of R2 summarized in Definition
1.1.5 give us the axioms we want.
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Definition 5.1.2 A vector space over a field F (whose elements are called
scalars) is a set V (whose elements are called vectors) which has two oper-
ations: + : V × V → V and scalar multiplication F × V → V (usually
indicated by juxtaposition) which are required to satisfy the following axioms

for all vectors ~a,~b,~c, and scalars h and k:

Closure: both ~a+~b and k~a are vectors

Commutativity of + : ~a+~b = ~b+ ~a

Associativity of + : (~a+~b) + ~c = ~a+ (~b+ ~c)

Identity for + : There is a unique vector ~0 with ~0 + ~a = ~a for all ~a.

Inverses for + : For each ~a there is a unique − ~a so that ~a+−~a = ~0
Absorption: h(k~a) = (hk)~a
Distributivity: (h+ k)~a = (h~a) + (k~a)

h(~a+~b) = (h~a) + (h~b)
Identity for scalars: 1~a = ~a

As soon as you have a new definition two things cry out to be done at
once: find several examples, and determine some of the consequences. We
will start by proving some of the properties which could have been included
as axioms but weren’t so as to keep the list manageable.

Proposition 5.1.3 In any vector space 0~a = ~0.

Proof:

We know that 0 + 1 = 1, so (0 + 1)~a = 1~a. By the distributive
law (0 + 1)~a = (0~a) + (1~a). Identity for scalars gives 1~a = ~a in
both places so (0~a) + ~a = ~a. Now add −~a to both sides and use
the associative law and the properties of inverse and identities to
get (0~a) = ~0.

Proposition 5.1.4 In any vector space −1~a = −~a.

Proof:

Recall that the inverse axiom says that−~a is the unique vector
with ~a+−~a = ~0. All we have to show is that ~a+(−1~a) = ~0. Now
~a = 1~a by the identity axiom for scalars, so we can reduce the
problem to showing that (1~a) + (−1~a) = ~0. But by distributivity
(1~a) + (−1~a) = (1 + (−1))~a. This in turn is equal to 0~a, which
by Proposition 5.1.3 is ~0.
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Next we will explore a wide variety of examples of vector spaces over the
reals. Our object is to show the scope of the definition and give a hint as to
its utility.

5.1.2 Rn

Example: R3

The set R3 is the set of ordered triples of real numbers. The
sum is defined by [a1, a2, a3]+ [b1, b2, b3] = [a1 + b1, a2 + b2, a3 + b3]
and the scalar product is given by k[a1, a2, a3] = [ka1, ka2, ka3].
Commutativity of + follows from three applications of commuta-
tivity of addition for real numbers. Similarly associativity of +
follows from three applications of associativity of addition for the
reals. The identity is the vector [0, 0, 0]. Its properties follow from
the fact that 0 is the identity for addition of real numbers. The
inverse of [a1, a2, a3] is [−a1,−a2,−a3]. Its properties follow from
those of the inverse for addition in the reals. Absorption becomes
three applications of the associative law for multiplication. Write
it out so you can see it. The two distributive laws both follow
from three applications of the distributive law for real numbers.
Identity for scalars follows from three applications of the identity
for multiplication of reals. All that seems to be happening here is
that each axiom of a vector space follows from three applications
of the similar axiom for the reals. ♦

Example: Rn

It is clear that the argument used to show that R3 (and for
that matter R2) did not depend in any essential way on the fact
that we took triples of real numbers. If we use n-tuples of real
numbers [a1, ..., an] and define addition and scalar multiplication
componentwise, then proving that the axioms of a vector space
hold will be a tedious matter of applying the similar axioms for
the reals n times. Having noticed the pattern, we claim to have
proved the result by describing how we would go about proving
it for any particular n.
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It turns out that this is a very typical example of a vector
space over the reals. Some of our later examples are merely Rn

in disguise. ♦

5.1.3 Polynomial spaces

Example: R[x]3 Polynomials of degree 3 or less

For example consider polynomials of degree three or less in one
variable x with coefficients in the reals. A typical such polynomial
has the form ax3+bx2+cx+d, where any (or all) of the coefficients
a, b, c, or d may be 0. It is clear that we may identify such a
polynomial with the quadruple [a, b, c, d] of its coefficients in order
of decreasing powers of x. Addition of polynomials corresponds
exactly to addition of vectors in R4 and multiplication of a vector
by a real number corresponds to multiplication of a polynomial by
a real number. Thus this example is just R4 in disguise. We know
that R4 is a vector space over the reals so the set of polynomials
of degree three or less is too. ♦

Example: R[x] All polynomials with real coefficients

Why stop at degree three? We know how to add two poly-
nomials of different degrees– just put in 0 as the coefficient of
higher powers of x in the polynomial of lower degree and treat it
as a polynomial of higher degree. Note that this way of thinking
about polynomial addition makes it clear that for any particular
polynomials a(x), b(x), and c(x) we can verify the axioms of a
vector space by working in the set of polynomials of degree less
than or equal to the largest of the three degrees. The zero poly-
nomial is the identity. While we have used what we know about
Rn to see that the set of all polynomials of one variable with real
coefficients forms a vector space, it is clear that in some sense
this is a “bigger” space than any of the Rn’s. It is an example of
an infinite dimensional vector space. The mind boggles only if it
tries to view this situation geometrically. ♦
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Example: R[x, y] Polynomials in two variables

Why stop with one variable? We know from algebra how to
add polynomials in two (or more) variables and how to multiply
them by constants. The behavior is very like the polynomials in
one variable. In particular, they form a vector space over the
reals. ♦

5.1.4 Sequences and function spaces

Example: RN Sequences of real numbers

An example of a vector space encountered in calculus is the
set of all sequences of real numbers. Recall that a sequence may
be thought of as a function from the natural numbers to the
reals: we usually write them as (an), where an is describes the
nth term of the sequence. We are not concerned with convergence
here, only with addition of sequences (done term by term) and
multiplication of sequences by constants. It is clear that these
operations give us sequences back again. The zero sequence is
the identity. Use of the properties of the real numbers on each of
the terms gives us the rest of the axioms. ♦

A more general class of examples arises from the following theorem.

Theorem 5.1.5 If S is any set, then the set of all functions from S to R is
a vector space over R. The vector space operations are the sum (f + g)(x) =
f(x) + g(x), and the scalar product (kf)(x) = kf(x). We will write this
vector space as RS.

Proof:

We need to verify the axioms in Definition 5.1.2. The closure
axioms follow directly from the definition of the operations on
functions and the closure axioms for the real numbers. We know
that commutativity for + is true because two functions are equal
if they always have the same value and

(f + g)(x) = f(x) + g(x)

= g(x) + f(x) by commutativity of + in R
= (g + f)(x)
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Similarly associativity of + for functions from S to R follows from
associativity of + for R:

(f + (g + h))(x) = f(x) + (g + h)(x)

= f(x) + (g(x) + h(x))

= (f(x) + g(x)) + h(x)

= (f + g)(x) + h(x)

= ((f + g) + h)(x).

The identity is the constant function with value 0. The inverse of
a function f is the function −f with value at x given by −f(x).
Since f(x) + −f(x) = 0 for all x, this gives the inverse. The
absorption law follows from associativity for multiplication in R:

h(kf)(x) = h(kf(x)) = (hk)f(x) = ((hk)f)(x).

The two distributive laws follow from the distributive law for R:

(h+ k)f(x) = hf(x) + kf(x) = (hf + kf)(x)

and

h(f + g)(x) = h(f(x) + g(x)) = (hf(x) + hg(x)) = (hf + hg)(x).

Identity for scalars follows from the fact that 1 is the identity for
multiplication of real numbers.

This gives us new ways to look at some of our earlier examples: R3 can be
thought of as the space of all functions from the set {1, 2, 3} to R; sequences
can be thought of as functions from the natural numbers N to R. We can
also get new examples by taking the set of functions from R to R (that is all
functions, we will see in the next section how to restrict this to continuous
functions, integrable functions, and differentiable functions).

5.1.5 Matrices form a vector space

Example: Matrices
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Another very important example of a vector space which can
be thought of as a function space is the space of m× n matrices.
A matrix is a rectangular array of numbers. If we have an m ×
n matrix then there are m rows each with n entries which are
arranged in neat columns. For example 1 2 3 4

2 2 2 2
3 3 3 3


is a 3× 4 matrix. When we refer to a general matrix we usually
write something like M = [[mij]], indicating that the entry in the
ith row and jth column is mij. This saves much space in writing
things down and gives us a clear idea how to see that the set of
m× n matrices is a vector space. This would be pictured as

m11 . . . m1k . . . m1n
...

...
...

mi1 . . . mik . . . min
...

...
...

mj1 . . . mjk . . . mjn
...

...
...

mm1 . . . mmk . . . mmn


Since we need two numbers to locate an entry in a matrix,

we can think of an m × n matrix as a function from the set of
pairs of numbers (i, j) to R, where i runs from 1 to m and j runs
from 1 to n. The domain in this function space is written as
{1, ...,m} × {1, . . . , n}, a Cartesian product of sets.

The definition of the operations given in Theorem 5.1.5 boils
down to adding matrices by adding coordinatewise. Similarly,
multiplication by a scalar multiplies all of the entries in the matrix
by that scalar. ♦

We can make one further step in generalizing Theorem 5.1.5 by noticing
that the codomain of the functions need not be R but can also be any vector
space over R:

Theorem 5.1.6 : If S is any set and V is a vector space over a field F ,
then the set of all functions from S to V is a vector space over F .
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The proof is just like the proof of Theorem 5.1.5 but uses the properties
of V as a vector space where the properties of R were used in 5.1.5.

Exercises 5.1:

1. Show that the set of all formal power series in one variable with real
coefficients is a vector space over R. A formal power series is an ex-
pression of the form

∞∑
k=0

akx
k

There is no consideration of convergence. You add them term by term
and also multiply by scalars term by term.

2. In computer science one often has occasion to use arrays of more than
two dimensions. Spreadsheets sometimes have pages as well as rows
and columns. Show that the set of all 3× 4× 2 arrays of real numbers
is a vector space over R.

3. Show that the set of all polynomials with real coefficients and with only
even powers of x appearing forms a vector space over R.

4. Rational functions are those of the form p(x)
q(x)

with p(x) and q(x) poly-

nomials with no common factors (a slightly different definition than
is used in some calculus courses). Multiplication by scalars and ad-
dition are defined exactly as for rational numbers, with the insistence
that common factors in numerator and denominator must be canceled.
Does this form a vector space over R?

5. Quadratic forms in x and y are expressions of the form Ax2+Bxy+Cy2.
Show that quadratic forms in x and y are a vector space over R.

6. Consider the set of sequences of real numbers with only finitely many
non-zero members. Show how to make this into a vector space over R.

7. Show that the space consisting only of the zero vector is a vector space.

8. Why can’t the empty set be a vector space?
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9. Show that R is a vector space over the reals. (See how the axioms for
a vector space follow from those for a field.)

10. Show that R is a vector space over Q (the rational numbers) but not
vice versa.

11. Show that C is a vector space over R.

12. Show that {[x, y, x+ 3y]} is a vector space over R.

13. Show that R2 with the usual addition but with the modified scalar
multiplication k ∗ [x, y] = [kx,−ky] is not a vector space.

14. Show that R2 with the usual addition but with the modified scalar
multiplication k ∗ [x, y] = [k2x, k2y] is not a vector space.

15. Show that R2 with the usual addition but with the modified scalar
multiplication k ∗ [x, y] = [0, 0] is not a vector space.

16. Consider the following attempt to make [0, 1) into a vector space:

If u, v ∈ [0, 1) and k ∈ R then let u⊕ v be the fractional part of u+ v
and k · v be the fractional part of kv.

Which axioms for a vector space are satisfied and which are not?

17. Suppose we let u, v ∈ [0, 1] and k ∈ R and define u⊕ v = min(1, u+ v)
and k · v = max(min(1, kv), 0). Which axioms for a vector space are
satisfied and which are not?

5.2 Linear Transformations

5.2.1 Definitions

Linear algebra is only partly the study of vector spaces; indeed, the spaces are
mostly of interest as the domains and codomains of maps. The appropriate
kind of maps between vector spaces are those which preserve addition and
scalar multiplication. They are called linear transformations. In later chap-
ters we will see that linear transformations are closely related to matrices.
Much of the power of linear algebra results from the interplay between con-
crete manipulation of matrices and the properties of linear transformations
which give meaning to the manipulations.
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Definition 5.2.1 A function L : V → W is a linear transformation if L(~v1+
~v2) = L(~v1)+L(~v2) and L(k~v) = kL(~v). The domain of L is V; the codomain
is W.

The properties of vector spaces make certain properties of linear trans-
formations immediate. Since these properties make it easy to identify when
maps are not linear transformations we start with them, and then give ex-
amples.

Proposition 5.2.1 Any linear transformation must take ~0 to ~0.

Proof:

L(~0) = L(0~a) = 0L(~a) = ~0.

Proposition 5.2.2 Any linear transformation must preserve inverses.

Proof:

L(−~a) = L(−1~a) = −1L(~a) = −L(~a).

Next let us consider some examples of linear transformations between
vector spaces. In order to be sure that we have made a reasonable definition
we need to show that there are interesting examples of linear transformations.

5.2.2 Linear transformations from Rn to Rm

Example: The function f : R3 → R2 taking [x, y, z] to [x+ y, z − 2x] is
a linear transformation.

To see this we check that it preserves both addition and scalar
multiplication:

f([x1, y1, z1] + [x2, y2, z2]) = f([x1 + x2, y1 + y2, z1 + z2])

= [(x1 + x2) + (y1 + y2), (z1 + z2)− 2(x1 + x2)]

= [(x1 + y1) + (x2 + y2), (z1 − 2x1) + (z2 − 2x2)]

= f([x1, y1, z1]) + f([x2, y2, z2])

and

f(k[x, y, z]) = f([kx, ky, kz])

= [kx+ ky, kz − 2kx]

= k[x+ y, z − 2x]

= kf([x, y, z])
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♦

Example: Projections

This example takes R3 to R2 by the map p taking [x, y, z] to
[x, y]. Again we must check that p preserves sums and scalar
products.

p([x1, y1, z1] + [x2, y2, z2]) = p([x1 + x2, y1 + y2, z1 + z2])

= [(x1 + x2), (y1 + y2)]

= [x1, y1] + [x2, y2]

= p([x1, y1, z1]) + p([x2, y2, z2])

and

p(k[x, y, z]) = p([kx, ky, kz])

= [kx, ky]

= k[x, y]

= kf([x, y, z])

♦

In Chapter 1 we studied many examples of linear transformations from R2

to itself. Recall that linear transformations can stretch the plane in either
direction, rotate the plane, or do a combination of stretches and rotation.

Example: Multiplication by a matrix

When we worked with linear transformations from R2 to itself
we found that it was often convenient to give the definition in
terms of multiplication of a vector by a matrix. Suppose that
the linear transformation from R4 to R3 takes [w, x, y, z] to [3w+
4x+ y − z, x− y + 2z, 3w − 4y + z], we can write this as

 3 4 1 −1
0 1 −1 2
3 0 −4 1



w
x
y
z

 =

 3w + 4x+ y − z
x− y + 2z

3w − 4y + z

 .
♦
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In general, left multiplication by an m× n matrix gives a linear transfor-
mation from Rn to Rm using the following definition:

Definition 5.2.2 If A = [[aij]] is an m× n matrix then
a11 . . . a1k . . . a1n
...

...
...

ai1 . . . aik . . . ain
...

...
...

am1 . . . amk . . . amn


 v1

...
vn

 =


a11v1 + a12v2 + . . .+ a1nvn

...
ai1v1 + . . .+ ainvn

...
am1v1 . . . amnvn



=



∑n
j=1 a1jvj

...∑n
j=1 aijvj

...∑n
j=1 amjvj

 .

Proposition 5.2.3 Multiplication on the left by an m × n matrix A gives
a linear transformation from Rn (thought of as columns) to Rm (again as
columns).

Proof:

We need to show that this operation preserves both addition
and multiplication by scalars.

a11 . . . a1k . . . a1n
...

...
...

ai1 . . . aik . . . ain
...

...
...

am1 . . . amk . . . amn


 v1 + w1

...
vn + wn



=



∑n
j=1 a1j(vj + wj)

...∑n
j=1 aij(vj + wj)

...∑n
j=1 amj(vj + wj)

 =



∑n
j=1 a1jvj

...∑n
j=1 aijvj

...∑n
j=1 amjvj

+



∑n
j=1 a1jwj

...∑n
j=1 aijwj

...∑n
j=1 amjwj


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=


a11 . . . a1k . . . a1n
...

...
...

ai1 . . . aik . . . ain
...

...
...

am1 . . . amk . . . amn


 v1

...
vn

+


a11 . . . a1k . . . a1n
...

...
...

ai1 . . . aik . . . ain
...

...
...

am1 . . . amk . . . amn


 w1

...
wn


And similarly for multiplication by scalars:
a11 . . . a1k . . . a1n
...

...
...

ai1 . . . aik . . . ain
...

...
...

am1 . . . amk . . . amn


 kv1

...
kvn

 =



∑n
j=1 a1jkvj

...∑n
j=1 aijkvj

...∑n
j=1 amjkvj



=


k
∑n

j=1 a1jvj
...

k
∑n

j=1 aijvj
...

k
∑n

j=1 amjvj



= k



∑n
j=1 a1jvj

...∑n
j=1 aijvj

...∑n
j=1 amjvj



5.2.3 Linear transformations on polynomial spaces

Example: Differentiation of polynomials:

We know from basic calculus that the derivative of a polyno-
mial is a polynomial, so the process of taking the first derivative
is a function from the set of polynomials in x with real coefficients
to itself. We observed in the last section that the set of polynomi-
als is a vector space, which we called R[x]. Differentiation gives a
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function D : R[x]→ R[x]. Now for polynomials ~a and ~b we know

that D(~a+~b) = D(~a) + D(~b) and for any k ∈ R, D(k~a) = kD(~a).
Thus D is a linear transformation. ♦

Example: Evaluation at a point

If we take the vector space RS and an element s ∈ S we get
a linear transformation Es : RS → R which takes a function f
to its value at s, f(s). This is linear because of the way that we
define addition and scalar multiplication of functions:

Es(f + g) = (f + g)(s) = f(s) + g(s) = Es(f) + Es(g)

and
Es(kf) = (kf)(s) = k(f(s)) = kEs(f)

♦

Example: Definite integral of polynomials

We can define a function A from R[x] to R by

A(p(x)) =

∫ 1

0

p(x)dx.

It is an easy exercise in calculus to show that this is a linear
transformation:

a(p(x) + q(x)) =

∫ 1

0

p(x) + q(x) dx

=

∫ 1

0

p(x) dx+

∫ 1

0

q(x) dx

= A(p(x)) + A(q(x))

and

A(kp(x)) =

∫ 1

0

k p(x) dx

= k

∫ 1

0

p(x) dx

= kA(p(x))
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There was nothing special about the bounds 0 and 1.
♦

Example: Integration of formal power series

When we study series representation of functions we see a
theorem which states that inside the radius of convergence we can
integrate power series term by term; with formal power series we
do not have to worry about convergence, so we can define

L(
∞∑
k=0

akx
k) =

∞∑
k=1

ak−1

k
xk.

Notice that we have chosen to make the constant term 0. This
is necessary so that integration term by term preserves the zero
vector. Term by term differentiation also gives a linear transfor-
mation. ♦

Exercises 5.2:

1. Show that the function L from R2 to R taking [x, y] to 3x − 4y is a
linear transformation.

2. Show that the projection map P from R3 to R2 taking [x, y, z] to [x, y]
is a linear transformation.

3. Show that the inclusion J : R → R2 taking x to [x, 0] is a linear
transformation. Would this have been true if x went to [x, 1] instead?
What about [x, 2x]?

4. Show that the function f : R[x]→ R[x] which takes a polynomial p(x)
to p(x2) is a linear transformation. What about the map taking p(x)
to p(3x+ 2)?

5. In Chapter 1 we saw how to multiply a 2×2 matrix by a column vector.
Define the map M : {2×2 matrices } → R2 which multiplies the matrix

by the column vector

[
1
2

]
. Show this is a linear transformation.
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For each of the maps in problems 6–11 either prove that the map is
linear by checking the definition or give an example to show how it fails
to be linear.

6. f : R2 → R2 with f [x, y] = [3x+ 2y, x+ y + 1]

7. g : R3 → R with g[x, y, z] = [x+ y − 2z]

8. h : R[x]→ R with h(p) = p(1)

9. k : R[x]→ R[x] with k(p) = p(x+ 1)

10. p : R2 → R3 with p[x, y] = [0, x+ y, x− y]

11. m : R2 → R3 with m[x, y] = [1, x+ y, x− y]

12. Recall that the equation for a line in R3 can be written in the form
(x, y, z) = (x0, y0, z0) + t(d1, d2, d3) where (x0, y0, z0) is a point on the
line and (d1, d2, d3) is a direction vector. Suppose that T : R3 → R3

is a linear transformation. Prove that the image under T of a line is a
line or a point.

13. Show that if L : V → W is linear and L(~a) and L(~b) both equal ~0 then

L(~a+~b) and L(k~a) are ~0 too.

14. Prove that if L : V → W is linear then L(~a−~b) = L(~a)− L(~b).

15. Show that L : V → W is 1-1 if ~0 is the only vector with L(~a) = ~0.

(Hint: if L~a = L~b consider L(~a−~b).)

16. Prove that L is linear if and only if L(x~a+ y~b) = xL(~a) + yL(~b) for all

scalars x and y and vectors ~a and ~b.

17. (Project Problem) There is a calculus of finite differences which closely
parallels the integral and differential calculus. It is based on four op-
erations on sequences:

Forward difference 4 : RN → RN with 4(a)(n) = a(n+ 1)− a(n)
Shift σ : RN → RN with σ(a)(n) = a(n+ 1)
Partial sums S : RN → RN with S(a)(n) =

∑n
k=0 a(k)

Sum of first m+1 Sm : RN → R with Sm(a) =
∑m

k=0 a(k)
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(a) Show that all of these operators are linear transformations.

(b) Then prove that
(4 ◦ S)(a) = σ(a)

and
(Sm ◦ 4)(a) = a(m+ 1)− a(0)

for any sequence a, the analogs of the fundamental theorem of
calculus.

5.3 Vector spaces over Z2 and C
Our next examples are over somewhat less familiar fields. We will start with
the complex numbers.

5.3.1 C
The complex numbers are obtained from the reals by formally adding i, the
square root of −1. This is done to guarantee that the equation x2 +1 = 0 has
two roots (i and −i). In order to make the complex numbers a field we need
to add many more points than just i and −i, however. The general form of
a complex number is a + bi, where a and b are real numbers. The number
a is called the real part of a + bi and the number bi is called the imaginary
part. Two complex numbers a + bi and c + di are equal if a = c and b = d.
We define the sum by

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

and the product of two complex numbers by

(a+ bi)(c+ di) = ac+ bci+ adi+ bd(i2)

multiplying the same way we multiply polynomials. Since i2 = −1 this
simplifies to

(a+ bi)(c+ di) = (ac− bd) + (bc+ ad)i

It takes a bit of checking to see that this gives a commutative and associative
multiplication and that the distributive law holds. The calculations involved
are left to the exercises. The multiplicative identity is 1+0i. To find inverses
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we use the fact that every complex number a+ bi has a conjugate (a+ bi)∗ =
a− bi with the property that (a+ bi)(a− bi) = a2 + b2, a real number. If we
think of the multiplicative inverse of a + bi as 1

a+bi
and then multiply both

top and bottom by a − bi, then we get the expression a
a2+b2

− b
a2+b2

i for the
inverse of a+ bi. With these definitions the complex numbers form a field.

Complex numbers are used extensively in electrical engineering in the
study of waves. In that setting vector spaces of functions of a complex
variable are the most natural place to work.

Example: CR

The space of all complex valued functions of a real variable is
a vector space over C. ♦

Example: Waves

The set of functions of the form

f(t) =
n∑
k=1

cke
iωkt

where ck ∈ C consists of the functions you can get by superposi-
tion of simple waves. It also forms a vector space over C.

♦

The other place that complex vector spaces are used is in eigenvalue
problems. The most useful property of the complex numbers is that any
polynomial of degree n has n roots over the complex numbers (this is called
algebraic closure and the fact that the complex numbers are algebraically
closed is called the fundamental theorem of algebra). The vector spaces
involved in eigenvalue problems are ones of the form Cn. As in the case of
Rn, the axioms of a vector space over C follow directly from n applications
of the field axioms for C.

5.3.2 Z2

The field of integers modulo 2, Z2, is particularly easy to work with and has
close ties to computations using digital circuitry. The easy way to think of
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Z2 is as a set {0, 1} with operations defined by the tables

+ 0 1
0 0 1
1 1 0

and

× 0 1
0 0 0
1 0 1

This is one of the few examples where one can reasonably verify a set of ax-
ioms by checking all of the possible cases. For instance, to verify associativity
of addition we calculate eight sums both ways:

a b c a + b b + c (a+b)+c a+(b+c)
0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 1 1 1
0 1 1 1 0 0 0
1 0 0 1 0 1 1
1 0 1 1 1 0 0
1 1 0 0 1 0 0
1 1 1 0 0 1 1

These operations have close ties to logic (× is and, + is exclusive or) and
have simple circuits which compute them.

As with the reals and the complex numbers, we can form a vector space
of ordered n-tuples of elements of Z2. The vectors correspond exactly to the
bit patterns in a digital signal.

Exercises 5.3:

1. Prove that the multiplication of complex numbers is associative.

2. A Laurent series in z expanded around a point c ∈ C is a series of the
form

∞∑
k=−m

ak(z − c)k

Show that Laurent series form a vector space over C.

3. Show complex conjugation ((a+b i)∗ = (a−b i)) preserves both addition
and multiplication.
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4. Recalling the examples of vector spaces over the reals, give two more
examples of vector spaces over the complex numbers.

5. Show that any vector space over C can also be thought of as a vector
space over R.

6. Show that a linear transformation L : V → W between complex vector
spaces is also linear if the vector spaces are thought of as being over R.

7. Prove the distributive law for Z2.

8. We noted that Z2 has operations with logical meaning: + is exclusive
or and × is and. Show how to express the other logical connectives
given in the following table using +, ×, and constants 0 and 1.

a b ¬a a ∨ b a→ b a↔ b a|b a ↓ b
0 0 1 0 1 1 1 1
0 1 1 1 1 0 1 0
1 0 0 1 0 0 1 0
1 1 0 1 1 1 0 0



Chapter 6

Subspaces

Our examples of vector spaces in the last chapter provide the starting place
for building vector spaces, but a much larger class of examples results from
considering subsets of known vector spaces which are themselves vector spaces.

6.1 Definition and Examples

Example: A plane in R3

If we consider the subset W of R3 in which the third compo-
nent is always 0,

W = {~a ∈ R3 |~a = [a1, a2, 0]}

we observe that we have a subset of R3 which is essentially the
same as R2. Since we know that R2 is a vector space, W is a
subset of R3 which is itself a vector space. We shall call W a
subspace of R3. ♦

The general definition follows.

Definition 6.1.1 A subset W of a vector space V is a subspace of V if and
only if the vectors in W satisfy all the axioms for a vector space with respect
to the same operations of addition and multiplication by a scalar as used for
V. When W is a subspace of V we write W ≤ V.

115
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It is immediately obvious that V is itself always a subspace of V , and,
at the other extreme, it is almost as obvious that {~0} is a subspace of V .
Thus, we always have {~0} ≤ V and V ≤ V . We refer to these as the trivial
subspaces.

For a nontrivial subspace we consider the subset W of R2 with the prop-
erty that the sum of the two components is 0: W = {[a1, a2] | a1 + a2 = 0}.
Then W ≤ R2. The proof of this assertion requires checking that all ten
axioms of Definition 5.1.2 hold for vectors in W .

As a start we look at the two closure axioms. If ~a = [a1, a2] ∈ W,
~b = [b1, b2] ∈ W , and k ∈ R then

~a+~b = [a1 + b1, a2 + b2]

and
a1 + b1 + a2 + b2 = (a1 + a2) + (b1 + b2) = 0 + 0 = 0,

since ~a,~b ∈ W . Also,
k~a = k[a1, a2] = [ka1ka2],

and
ka1 + ka2 = k(a1 + a2) = k0 = 0.

Only eight more axioms to go! But in some sense the remaining axioms
don’t require any work, since we already know that they hold for vectors all
vectors in R2, the only parts which could fail for the more restrictive collection
W are the identity and inverse axioms (which require that specific vectors
exist). In fact these cause no difficulty either, as the following theorem shows:

Theorem 6.1.1 A nonempty subset W of a vector space V is a subspace if
and only if W satisfies the two closure axioms.

Proof:

The “if” part of the assertion is immediate, for if W is a
subspace then all the axioms must be satisfied; thus, in particular,
the two closure axioms must hold.

To show the “only if” part, we must verify the validity of all
ten axioms of a vector space for vectors in W . Our hypothesis is
that the closure axioms hold. Also, since we are working with a
subset of a vector space V and since commutativity, associativ-
ity, the two distributive laws, absorption, and identity for scalar
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multiplication are valid for all vectors in V and all scalars in R,
we know that, in particular, they must be valid for vectors in W .
Thus it remains only to show that ~0 ∈ W and that along with
every ~a ∈ W the inverse −~a is also in W . But these both follow
easily from the hypothesized closure under scalar multiples: if
~a ∈ W (and such exists because W is nonempty), then

~0 = 0~a ∈ W

and
−~a = (−1)~a ∈ W.

We now consider a few other examples of subspaces.

Example: A plane in space

As an extension of our first example, let W ⊆ R2 be defined
by

W = {[a1, a2] | k1a1 + k2a2 = 0}
where k1 and k2 are arbitrary real numbers fixed in advance. We
assert that the subset W is a subspace of R2. All we need to do is
prove that closure holds for both operations: let ~a = [a1, a2],~b =

[b1, b2] ∈ W , c ∈ R, then ~a+~b = [a1 + b1, a2 + b2] has

k1(a1 + b1) + k2(a2 + b2) = (k1a1 + k2a2) + (k1b1 + k2b2)

= 0 + 0 = 0.

Thus the sum is in W . Similarly we can take a scalar product
c~a = [ca1, ca2] where ~a ∈ W. Then

k1(ca1) + k2(ca2) = c(k1a1 + k2a2) = c0 = 0.

Thus ~a+~b ∈ W and c~a ∈ W , and W is indeed a subspace of R2.
♦

A comment is in order about the geometric interpretation of these exam-
ples. In each case V is simply the Euclidean plane. In the first the subspace

W = {[x, y] |x+ y = 0};
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in other words, W is the line through the origin with equation y = −x. For
the second we generalized this to

W = {[x, y] | k1x+ k2y = 0}

where k1 and k2 are any real numbers chosen in advance. This again gives
a line through the origin (e.g., if k1 = 2 and k2 = −1, we have y = 2x). In
general, letting k1 and k2 take on all possible values in R, not both zero, we get
all the straight lines through the origin (the x-axis appears as k1 = 0, k2 = 1).
If k1 = k2 = 0, then W = V one of the trivial subspaces.

We note in passing that a line which does not pass through the origin
cannot be a subspace, since any subspace must contain the zero vector.

Example: Polynomials of degree ≤ n

Let V = R[x], the vector space of all polynomials in one vari-
able with real coefficients, and consider R[x]n , the set of poly-
nomials of degree at most n. Now the sum of two polynomials,
each of degree at most n, is a polynomial of degree at most n.
Also, the product of a number k ∈ R and a polynomial of degree
m ≤ n is either the 0 polynomial (if c = 0; recall that the zero
polynomial is considered to be of degree less than any n) or a
polynomial of degree m ≤ n (if k 6= 0). Thus R[x]n ≤ R[x]. ♦

Notice that, for this example, the verification of the closure axioms de-
pends upon knowledge of properties of polynomial functions. Similarly, in
our next example we must draw on facts about continuous functions.

Example: Continuous functions from R to R form a subspace of RR:

In calculus we prove two limit theorems which are relevant to
this example: that the limit of a sum of two functions is the sum
of the limits, and that the limit of a constant times a function is
the constant times the limit. These limit theorems tell us that
the sum of continuous functions is again a continuous function
and that a constant times a continuous function is a continuous
function. ♦



6.1. DEFINITION AND EXAMPLES 119

Example: Differentiable functions from R to R form a subspace of
RR:

Also in calculus we consider the more restrictive class of dif-
ferentiable functions from R to R. One of the first theorems we
prove is that the derivative of a sum is the sum of the deriva-
tives, so the set of differentiable functions is closed under addi-
tion. Shortly thereafter (usually in the same lecture) we prove
that a constant times a differentiable function is differentiable
and indeed the derivative of kf is k times the derivative of f .
Thus we have closure, so we have a subspace. ♦

Example: Spaces of linear transformations

The set of linear transformations from V to W , written as
Hom(V ,W), is a subspace of WV The map which takes every-
thing to ~0 is linear, so Hom(V ,W) is not empty. To show closure
we need to show that the sum of two linear transformations is lin-
ear and that a constant times a linear transformation is a linear
transformation. Both of these are straightforward: if L1 : V → W
and L2 : V → W are linear then

(L1 + L2)(~a+~b) = L1(~a+~b) + L2(~a+~b)

= L1(~a+ L1(~b) + L2(~a) + L2(~b)

= (L1 + L2)(~a) + (L1 + L2)(~b)

and

(L1 + L2)(k~a) = L1(k~a) + L2(k~a)

= kL1(~a) + kL2(~a)

= k(L1 + L2)(~a)

This shows that L1 + L2 is linear.
To see that rL1 is linear involves a similar calculation:

(rL1)(~a+~b) = r(L1(~a+~b))

= r(L1(~a) + L1(~b))

= rL1(~a) + rL1(~b)

and
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(rL1)(k~a) = r(L1(k~a))

= r(kL1(~a)

= (rk)L(~a

= k((rL1)(~a))

♦

The special case Hom(V ,R) is called the dual space of V and is written
V∗.

6.1.1 Images and kernels of linear transformations

If L : V → W is a linear transformation, then the set of all vectors in the
codomain (W) which are values of L at elements of V forms a subspace ofW .
This example is important enough to warrant formal inclusion as a definition
and a theorem:

Definition 6.1.2 If L : V → W is a linear transformation then the set
Im(L) = {~w ∈ W |There is a ~v ∈ V such that ~w = L(~v)}.

Theorem 6.1.2 If L : V → W is a linear transformation then the set Im(L)
is a subspace of W.

Proof:

We need to show that Im(L) is closed under both sums and
scalar products. Now if ~w1 and ~w2 are in Im(L then there are
vectors ~v1 and ~v2 in V with ~w1 = L(~v1) and ~w2 = L(~v2) so

~w1 + ~w2 = L(~v1) + L(~v2)

= L(~v1 + ~v2)

so ~w1 + ~w2 ∈ Im(L). Similarly Im(L) is closed under scalar multi-
ples because linear transformations preserve scalar multiplication.

The other important subspace associated with a linear transformation is
its kernel:
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Definition 6.1.3 If L : V → W is a linear transformation then the set of
all vectors in V which are taken to ~0 by L is called the kernel of L and is
written Ker(L).

Theorem 6.1.3 If L : V → W is a linear transformation then Ker(L) is a
subspace of V.

Proof:

Since L(~0) = ~0, we know that the kernel is not empty. Thus
to show it is a subspace all we need to do is show that it is closed
under sums and scalar multiples. Now if ~v1 and ~v2 are in Ker(L)
then

L(~v1 + ~v2) = L(~v1) + L(~v2) = ~0 +~0 = ~0

so ~v1 + ~v2 ∈ Ker(L) as well. To see that k~v1 ∈ Ker(L) we note
that

L(k~v1) = kL(~v1) = k~0 = ~0

as needed.

Important examples of kernels are given by the sets of solutions to various
kinds of linear problems.

Example: Solutions to a single homogeneous linear equation ax +
by + cz = 0

By a homogeneous linear equation we mean a linear equation
in which the constant term is 0. The set of solutions to such an
equation can be thought of as the kernel of the linear transfor-
mation L : R3 → R taking [x, y, z] to ax + by + cz. It is easy to
check that this map is a linear transformation and that the kernel
is precisely the set of solutions to the linear equation. ♦

Example: Solutions to a pair of simultaneous homogeneous equa-
tions in three variables:
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For concreteness let us consider the solutions to

x+ y − z = 0

x− 2y + 3z = 0.

We would like to use the same definitions of addition and scalar
multiplication that we used for R3, since after all the solutions
are ordered triples. We need to check to see that the sum of two
solutions, say [a, b, c] and [d, e, f ], is again a solution. Thus we
assume that

a+ b− c = 0

a− 2b+ 3c = 0

e+ f − g = 0

e− 2f + 3g = 0

Adding the equations gives

(a+ e) + (b+ f)− (c+ g) = 0

(a+ e)− 2(b+ f) + 3(c+ g) = 0

so the sum gives another solution. Similarly if we multiply each
term of the equations by k we get

k(a+ b− c) = k0

k(a− 2b+ 3c) = k0

ka+ kb− kc = 0

ka− 2kb+ 3kc = 0

so multiplying a solution by a constant gives another solution.
Thus we get a subspace of R3.

We can recognize this as an example of a kernel of a linear
transformation if we observe that the function taking R3 to R2 by
taking [x, y, z] to [x+y−z, x−2y+3z] is a linear transformation.
The set of vectors taken to [0, 0] is precisely the solution to the
system of homogeneous equations. ♦
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Example: Solution to homogeneous linear differential equations

The most important application of the fact that differentiable
functions form a vector space comes in the attempt to describe
the set of all solutions of a homogeneous (i.e. constant term = 0)
linear differential equation. As an example consider the solutions
of the equation dy = y dx, or y′ − y = 0. If f is a solution then

f ′(x)− f(x) = 0.

If f is a solution and k is a constant then

(kf)′(x)− kf(x) = kf ′(x)− kf(x) = k0 = 0

so kf is again a solution. Similarly if both f and g are solutions
then

f ′(x)− f(x) = 0

g′(x)− g(x) = 0

(f + g)′(x)− (f + g)(x) = f ′(x) + g′(x)− f(x)− g(x)

= f ′(x)− f(x) + g′(x)− g(x)

= 0

Thus the sum and scalar product of solutions are again solutions.
This gives a subspace of the differentiable functions from R to
itself.

This example too can be thought of as the kernel of a linear
transformation from differentiable functions to functions: take f
to f ′ − f . ♦

6.1.2 Some further linear transformations

With the addition of these subspaces to our vocabulary of vector spaces we
can now identify a few more examples of linear transformations:

Example: A definite integral

The set C[0, 1] of all continuous functions from the closed unit
interval [0, 1] to the reals is a vector space. The map L : C[0, 1]→
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R which takes a function f to the definite integral
∫ 1

0
f(x)dx is a

linear transformation. This summarizes two handy lemmas from
calculus: ∫ 1

0

(f + g)(x)dx =

∫ 1

0

f(x)dx+

∫ 1

0

g(x)dx

and ∫ 1

0

kf(x)dx = k

∫ 1

0

f(x)dx

for k a real number. ♦

Example: Inclusions of subspaces

If S is a subspace of the vector space V , then the map from
S to V taking a vector to itself, called the inclusion map, is a
linear transformation because the definition of the operations is
the same in S as it is in V . ♦

Exercises 6.1:

1. Determine whether the subset A of the vector space V is a subspace.
If not, why not?

(a) V = R2, A = {[a, b] | a+ 2b = 0}
(b) V = R2, A = {[a, b] | a+ 2b = 1}
(c) V = R3, A = {[x, y, z] | 2x+ 3y − 5z = 0}
(d) V = R3, A = {[x, y, z] | 2x+ 3y − 5z = 4}
(e) V = R[x]3 (polynomials of degree at most 3), A = {p | p(1) = 0}
(f) V = R[x]3, A = {p(x) | the coefficient of x2 is 0}
(g) V = differentiable functions from R to R, A = {f | f ′(x) = 0}
(h) V = differentiable functions from R to R, A = {f | f ′(x) − (x −

1)f(x) = 0}
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2. Consider R2 as a vector space. Which of the following curves have
graphs which are subspaces?

(a) y = 2x

(b) y = 2x+ 1

(c) y = x2

(d) x2 + y2 = 0

(e) x2 + y2 = 25

(f) x = 0

3. Consider R3 as a vector space. Which of the following are subspaces:

(a) The z-axis

(b) the xy-plane

(c) the plane z = 1

(d) the sphere x2 + y2 + z2 = 4

(e) the line x = 1 + t, y = 2t, z = t− 4

4. Prove that if W ≤ V and U ≤ W , then U ≤ V .

5. Let V be a vector space, W and U subspaces of V . Prove that if U is
a subset of W , then U is a subspace of W .

6. Describe the kernel of the following linear transformations:

(a) L : R2 → R with L([x, y]) = 2x− 3y

(b) differentiation of polynomials

(c) L : R3 → R4 with L([x, y, z]) = [x+y, y−z, x−2y+z, 3x−2y+z]

7. Show that the set of all functions from R to R which have derivative
at 0 equal to 0 is a vector space. Would the same be true if we asked
for derivative at 0 equal to 1?

8. Show that the set of all functions which have second derivative equal
to the zero function is a vector space.

9. Show that the set of polynomials of degree exactly 3 is not a vector
space.
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10. Show that the set of periodic functions with period p forms a subspace
of RR. Recall that f is periodic with period p if f(x+ p) = f(x) for all
x ∈ R.

11. (Based on problem 17 of section 5.2) Find the image and the kernel of
each of the operators 4 : RN → RN, σ : RN → RN, S : RN → RN, and
Sm : RN → R.

12. (Project Problem) In this problem you will show that V can naturally
be thought of as isomorphic to a subspace of V∗∗.

(a) Show that for each ~a ∈ V the function “evaluate at ~a ” denoted
by E~a which takes a linear transformation L to its value at ~a,
L(~a) ∈ R, is in V∗∗.

(b) Show that the function E : V → V∗∗ taking ~a to E~a is linear.

(c) Show that the function E is one to one: if E~a = E~b then ~a = ~b.

6.2 Subspaces spanned by a set of vectors

We have seen that the trivial subspaces of V , {~0} and V , constitute the
extreme cases of subspaces of a vector space V , the smallest and the largest,
respectively. In our next example we consider what might be referred to as
a smallest non-trivial subspace.

Example: The subspace spanned by a single vector:

Let ~a 6= ~0 be a fixed but arbitrary vector of V , let Span({~a}) =

{~b |~b = k~a, k ∈ R}. Then Span({~a}) ≤ V . The proof is straight-
forward. If

~b1 = k1~a,
~b2 = k2~a

then

~b1 +~b2 = k1~a+ k2~a

= (k1 + k2)~a
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So sums of elements of Span({~a}) are in Span({~a}). Similarly we
can show that Span({~a}) is closed under scalar multiplication:

c~b1 = c(k1~a)

= (ck1)~a ∈ Span({~a}).

Thus Span({~a}) is a subspace of V .
As a particular instance, suppose V = R2, the Euclidean

plane, and ~a = [a1, a2] 6= [0, 0]. Then Span({~a}) = {k~a | k ∈ R}
is simply the straight line through 0 and the point (a1, a2). Thus
every point in the plane determines a subspace of R2, these sub-
spaces being, for points other than the origin, the line through
the origin and the point. It is clear from this remark that two
points on the same line through the origin will determine the
same subspace. ♦

The subspace illustrated in the preceding example is a particular case of a
more general concept. As we saw, we could generate a subspace by taking all
scalar multiples of a fixed nonzero vector. Why not try the same technique
using more than one vector?

Definition 6.2.1 Let A be a nonempty subset of vectors in V. A linear
combination of vectors in A is a vector ~b of the form

~b = c1~a1 + . . .+ cm~am,

where c1, . . . ., cm are scalars and ~a1, . . . .,~am ∈ A. (Note that A can be an
infinite subset of V, but the vectors used in a linear combination are a finite
subset of A.)

As an illustration, consider the following example:

Example: A linear combination in R3

Let V = R3, A = {~a1 = [1, 3,−1],~a2 = [2, 0, 3]}. Taking
c1 = 2 and c2 = 3 we find that

~b = c1~a1 + c2~a2

= 2[1, 3,−1] + 3[2, 0, 3]

= [2, 6,−2] + [6, 0, 9]

= [8, 6, 7]

is a linear combination of ~a1 and ~a2. ♦
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Notice that if ~a is in A then ~a is itself a linear combination of vectors in
A, by writing ~a = 1~a.

Example: A set spanning R3

Let V = R3, A = {~e1 = [1, 0, 0], ~e2 = [0, 1, 0], ~e3 = [0, 0, 1]}.
Then every vector in R3 is a linear combination of vectors in A,
since if ~a = [a1, a2, a3] then ~a = a1~e1 + a2~e2 + a3~e3. ♦

Definition 6.2.2 Let S be a subset of V. If S is not empty then the span of
S, written Span(S), is the set of all linear combinations of vectors in S. If
S is empty Span(S) is the vector space {~0}.

Example: Finding the span of a set

Let V be R3, A = {[1, 3,−1], [2, 0, 3]}. Then Span(A) is

{~b |~b = c1[1, 3,−1] + c2[2, 0, 3]}

= {~b |~b = [c1, 3c1,−c1] + [2c2, 0, 3c2]}

= {~b |~b = [c1 + 2c2, 3c1,−c1 + 3c2]}
♦

A careful look at these examples leads us to conjecture that the span of
a set might be a subspace of V . Before we can prove this assertion we must
attend to a minor technical detail. Suppose A is a non-empty subset of V
and suppose ~b is a linear combination of ~a1,~a2, and ~c a linear combination of
~a2,~a3,~a4, where ~a1, . . . ,~a4 ∈ A:

~b = k1~a1 + k2~a2

~c = h2~a2 + h3~a3 + h4~a4.

Using zeroes as coefficients, where appropriate, we can then write

~b = k1~a1 + k2~a2 + 0~a3 + 0~a4

~c = 0~a1 + h2~a2 + h3~a3 + h4~a4

Since any linear combination from A involves at most a finite subset of
A, we can always use a similar device in writing vectors in the span of A.
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Proposition 6.2.1 Let A be a subset of V. Then the span of A is a subspace
of V.

Proof:

If A is empty, then by definition Span(A) = {~0}, a trivial
subspace of V .

If A is nonempty, use the remark preceding the statement of
the proposition to show closure. Let ~u,~v ∈ Span(A), c ∈ R; then
we can write for some positive integer m,

~u = k1~a1 + . . .+ km~am

~v = h1~a1 + . . .+ hm~am.

Consequently,

~u+ ~v = (k1~a1 + . . .+ km~am) + (h1~a1 + . . .+ hm~am)

= (k1 + h1)~a1 + . . .+ (km + hm)~am ∈ Span(A),

and

c~u = c(k1~a1 + . . .+ km~am)

= (ck1)~a1 + . . .+ (ckm)~am ∈ Span(A).

Thus Span(A) ≤ V .

This result gives us a way of creating or generating subspaces of a vector
space. For this reason the span of a subset A, Span(A), is also referred to
as the subspace generated by A. If W = Span(A) then we say that A is a
generating set for W .

Example: A plane through the origin is the span of a set of two
vectors.

For example if A = {[1, 3,−1], [2, 0, 3]} ⊂ R3, then Span(A)
is exactly the plane through the origin and the points (1,3,-1),
(2,0,3). ♦

Each matrix gives rise to two significant subspaces:
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Definition 6.2.3 If M is a m× n matrix then the row space of M is the
subspace of Rn spanned by the row vectors of M.

Definition 6.2.4 If M is a m× n matrix then the column space of M is
the subspace of Rm spanned by the column vectors of M.

Example: Row and column spaces

For the matrix  1 0 2 1
0 1 1 1
2 1 5 3


the row space is spanned by {[1, 0, 2, 1], [0, 1, 1, 1], [2, 1, 5, 3]}. Now
[2, 1, 5, 3] = 2[1, 0, 2, 1]+[0, 1, 1, 1] so we can actually get the whole
row space by looking at the span of the first two rows. The row
space is Span({[1, 0, 2, 1], [0, 1, 1, 1]}).

The column space is spanned by
 1

0
2

 ,
 0

1
1

 ,
 2

1
5

 ,
 1

1
3

 .

It is easy to see that the last two vectors on this list can be
obtained as linear combinations of the first two:

2

 1
0
2

+

 0
1
1

 =

 2
1
5


and  1

0
2

+

 0
1
1

 =

 1
1
3


Notice that the row space and the column space both needed the
same number of vectors in a minimal spanning set. ♦

The subspace generated by a set of vectors is the smallest subspace which
contains those vectors: Suppose A ⊆ V and W is a subspace of V which
contains A. Then Span(A) ≤ W . Thus, any subspace which contains the
vectors in A must be at least as big as Span(A).



6.2. SUBSPACES SPANNED BY A SET OF VECTORS 131

Proposition 6.2.2 If A ⊆ W ≤ V then Span(A) ≤ W.

Proof:

To show this we let ~b ∈ Span(A). Then

~b = k1~a1 + . . .+ km~am,~a1 . . . ,~am ∈ A.

Since A ⊆ W and W is a subspace, it follows that ~b ∈ W . Thus
every vector in Span(A) is also in W .

A little reflection about the span of a set of vectors should produce some
questions which deserve consideration. We turn to a few of these. The first
has to do with economy or efficiency. To illustrate the point we have in mind,
consider the case where A = {~a1,~a2} but ~a2 = c~a1 for some c ∈ R. Then, if
~b ∈ Span(A), ~b = k1~a1 + k2~a2, we see that we can write

~b = k1~a1 + k2(c~a1) = (k1 + ck2)~a1 ∈ Span({~a1}).

We have that Span(A) = Span({~a1}). In other words, the inclusion of ~a2 in
A is unnecessary as far as the generation of Span(A) is concerned.

More generally, we can assert the following.

Proposition 6.2.3 Let A = {~a1, . . . ,~am} ⊆ V. Suppose that some vector in
A, say ~am, is a linear combination of the others, ~am = c1~a1 + . . .+cm−1~am−1.
If A1 = {~a1 . . . ,~am−1}, then Span(A1) = Span(A).

The proof is left as an exercise.

Notice that it is always the case that A ⊆ Span(A). Could it ever happen
that A = Span(A)? Obviously, since Span(A) is a subspace of V , a necessary
condition for this equality to hold is that A itself be a subspace. As it
happens, this condition is also sufficient.

Proposition 6.2.4 Let A ⊆ V. Then Span(A) = A if and only if A is a
subspace of V.

Proof:
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If Span(A) = A, we must show that A is a subspace. But
this is trivial, since Span(A) is a subspace and Span(A) = A.
On the other hand, suppose A is a subspace. We always have
A ⊆ Span(A). We also have A ⊆ A, and in this case A is a
subspace of V . Thus, Span(A) ≤ A. Consequently, A = Span(A).

Exercises 6.2:

1. Find the subspace of R3 spanned by the following sets of vectors:

(a) {[1, 2, 3], [1, 2, 4]}
(b) {[3,−2, 1], [3, 2, 1], [−3, 2, 1]}
(c) {[1, 1, 2], [−1, 0, 3], [1, 2, 7]}

2. In R[x]3

(a) is x+ 1 in the subspace Span({x2 − 1, x2 + x+ 2, 3})
(b) is x2 + 2x+ 1 in Span({1, x, x2 − 1})
(c) find a spanning set for the whole space (bonus if you find an

elegant, efficient solution).

3. Prove Proposition 6.2.3.

4. Describe the row space and the column space of the following matrices:

(a)

 2 1 4 3
0 1 2 3
1 1 3 3



(b)


1 0
2 1
0 3
2 2


(c)

 1 2 3
4 5 6
7 8 9





6.2. SUBSPACES SPANNED BY A SET OF VECTORS 133

5. Let S ⊆ RN be the set of strictly increasing sequences (that is ak+1 > ak
for all k). What is Span(S)?

6. Let S ⊆ RR be the set of strictly increasing functions (that is f(x1) >
f(x2) whenever x1 > x2). What is Span(S)?

7. Let S ⊆ RN be the set of eventually constant sequences. What is
Span(S)?

8. Is Span(S ∩ T ) = Span(S) ∩ Span(T )? Give either a proof or a coun-
terexample.

9. Is Span(S ∪ T ) = Span(S) ∪ Span(T )? Give either a proof or a coun-
terexample.

10. Prove that if S is a spanning set for V and S ⊆ T then T is also a
spanning set for V .

11. Show that if S is a set of vectors in V , ~v ∈ V , and there are two different
linear combinations of vectors in S giving ~v, then there are two different
linear combinations of vectors in S giving ~0.

12. (Project Problem) The brick function associated with the interval [a, b)
is

β[a,b) =

{
1 if a ≤ x < b
0 otherwise

We aim to describe the subspace S of RR spanned by the brick func-
tions.

(a) Show that if f ∈ S then f has bounded support. (The support of
a function is the set of all x where f(x) 6= 0.)

(b) What can you say about the range of a function in S?

(c) It is clear that ∫ ∞
−∞

β[a,b)(x) dx = b− a.

Use this and the linearity of the integral to define∫ ∞
−∞

f(x) dx

for any f in S.
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6.3 Error Correcting Codes

A useful application of vectors over Z2 is the theory of error correcting codes.
When a stream of binary signals is sent along a transmission line, or when
a bit pattern is retrieved from a computer memory, occasional errors will
occur. If the communication line is not too noisy, or the memory chip is
only suffering from transient disruption, the errors should be relatively in-
frequent, mostly happening singly, rather than in bursts. Early computers
shut down when such an error occurred, leading to much frustration among
early computer users. In 1948 Richard W. Hamming started the theory of
error correcting codes by adding checksums to the message. The idea was to
break the message into patterns of four bits and then intersperse new bits so
that of seven bits sent the sums of the positions 1,3,5, and 7 add up to 0, as
do the sums of bits 2,3,6 and 7 and the sum of bits 4,5,6, and 7. the check
bits are put in positions 1,2, and 4. The resulting code is easy to decode:
the message is in bits 3,5,6, and 7. It has enough checking that, by means of
some linear algebra over Z2, if a single bit out of the seven is transmitted in
error, it can be detected and corrected.

We can think of this process as in terms of linear transformations on
vector spaces over Z2. The four bit words are precisely the members of the
vector space Z4

2. Encoding is done by the linear transformation C : Z4
2 → Z7

2

which takes a message word to a codeword by

[m1,m2,m3,m4] 7→ [m1+m2+m4,m1+m3+m4,m1,m2+m3+m4,m2,m3,m4]

Its image gives the subspace of Z7
2 consisting of the code words. Decoding

uses the linear transformation D : Z7
2 → Z4

2 with

D([c1, c2, c3, c4, c5, c6, c7]) = [c3, c5, c6, c7]

Notice that DC = idZ4
2

An essential feature of the Hamming (7,4) code thus described is that the
subspace of code words can also be described as a kernel. The code words
can be described as the set of 7-tuples [a1, a2, a3, a4, a5, a6, a7] in Z7

2 with

a1 + a3 + a5 + a7 = 0

a2 + a3 + a6 + a7 = 0

a4 + a5 + a6 + a7 = 0
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This is just the solutions to a homogeneous system of linear equations in
Z2. It can be thought of as the set of vectors that the linear transformation
S : Z7

2 → Z3
2, called the syndrome, with

S ([a1, a2, a3, a4, a5, a6, a7]) = [a4+a5+a6+a7, a2+a3+a6+a7, a1+a3+a5+a7]

takes to [0, 0, 0].
The particular choice of equations is a clever one (it was patented in

1951 along with the circuitry to do the coding and decoding) which allows
us to identify where a single error in transmission has occurred with a small
amount of calculation. Transmitted codewords are elements of Z7

2 and since
the syndrome is a linear transformation we can see what the effect of an error
in a single bit would be by looking at seven possible single bit error patterns:

Bit pattern Syndrome
1000000 [0, 0, 1]
0100000 [0, 1, 0]
0010000 [0, 1, 1]
0001000 [1, 0, 0]
0000100 [1, 0, 1]
0000010 [1, 1, 0]
0000001 [1, 1, 1]

If an error has occurred in bit 5 of the transmitted codeword, for instance,
then S of the result will be [1, 0, 1], the binary representation of 5. If the
single error is in bit 6, then S will give [1, 1, 0], the binary representation for
6.

Example: Using Hamming code

Suppose we encode the message “HELP” by first converting
the characters to ASCII code, written in binary,

HELP→ [1001000][1000101][1001100][1010000]

Then break this up into 4-bit words instead of the seven bits that
the ASCII code uses:

[1001][0001][0001][0110][0110][0101][0000])
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Next apply C to each of these words to get

[0011001][1101001][1101001][1100110][110110][0100101][0000000]

Now the point of an error correcting code is to correct errors, so
lets add the following bit stream to get errors in transmission in
the bits where the 1’s occur:

errors = [0001000][0100000][0010000][1100000]

[0000001][0010000][0001000]

Notice that except for one cluster each of these error patterns
only has one error in a transmitted 7-bit word. If we add this
error, then the received message is:

[0010001][1001001][1111001][0000110][1100111][0110101][0001000]

Applying S tells us which bits to change to correct for the errors:

[100][010][011][011][111][011][100]

Notice that this identifies the single errors correctly, but does not
correct the double error in the fourth transmitted word. Our
corrected received words would then be

[0011001][1101001][1101001][0010110][1100110][0100101][0000000]

Extracting bits 3,5,6, and 7 of each of these words gives

[1001][0001][0001][1110][0110][0101][0000].

Regrouping into seven bit words gives

[1001000][1000111][1001100][1010000]

which can be converted back to the character string “HGLP”.
Notice that we have one character incorrectly transmitted as a
result of the burst of errors in the transmission. ♦

Exercises 6.3:
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1. Show that the code words for the Hamming (7,4) code all differ from
each other in at least 3 bits.

2. The following bit streams were received by a communications device.
It is known that the Hamming (7,4) code was used and that there was
noise on the line. Correct the errors. Then give the decoded string.

(a) 0011010001111101010111100110

(b) 1010101010101010101010101010

(c) 1000000110000011100001111000

3. Hamming also developed an (8,4) code by taking a 4 bit message and
adjoining 4 more bits so that the sums of the 1,2, and 5 bits, the 3,4,
and 6 bits, the 1,3, and 7 bits, and the 2,4, and 8 bits all give 0. Show
that the code words for this code form a vector space over Z2. Can you
see how to use this scheme to correct a single error in any bit?

6.4 Sums and Intersections of Subspaces

We have seen how to create subspaces of a vector space using the span of
a set of vectors. Given subspaces, say W1 ≤ V ,W2 ≤ V , can we produce
new subspaces from these? In Set theory we used intersection and union
to produce new subsets from old; will they work for subspaces as well? If,
perhaps naively, we try these operations on subspaces, we find that one of
them “works” and the other one does not. As an illustration of the successful
case, let V = R3,W1 = the xy-plane and W2 = the zx-plane. Then W1 ∩
W2 is simply the x-axis, a line through the origin, hence a subspace ( here
W1 ∩W2 = Span({[1, 0, 0]})).

Proposition 6.4.1 Let W1,W2 ≤ V. Then W1 ∩W2 ≤ V.

Proof:

All we need to do is show that the two closure axioms hold
for W1 ∩ W2. If ~a,~b ∈ W1 ∩ W2, c ∈ R, then by definition of
intersection, ~a and ~b ∈ W1 and ~a and ~b ∈ W2; since W1 and W2

are subspaces,
~a+~b ∈ W1,
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~a+~b ∈ W2,

and
c~a ∈ W1 and c~a ∈ W2.

Thus,
~a+~b ∈ W1 ∩W2

and
c~a ∈ W1 ∩W2.

We remark that W1 ∩ W2 6= ∅, since the vector ~0 is in every subspace
and thus must always be in W1 ∩ W2. However, in some cases, it may
be that W1 ∩ W2 = {~0}. For example, if V = R2, the only nontrivial
subspaces are the lines through the origin, and the intersection of two distinct
subspaces is precisely the origin. To indicate other possibilities, we note that
the nontrivial subspaces of R3 are the lines through the origin and the planes
through the origin. Clearly, the intersection of two distinct lines or of a
plane and a line not in the plane will be just the origin; the intersection of
two distinct planes, as indicated above, will be the line of intersection.

In order to see what might happen with the union of two subspaces,
consider V = R2, W1 = x-axis,W2 = y-axis. Then ~e1 = [1, 0] ∈ W1, ~e2 =
[0, 1] ∈ W2, but ~e1 + ~e2 = [1, 1] 6∈ W1 ∪W2, this last being the set of vectors
on either x-axis or y-axis. But this example of how things go wrong gives a
suggestion for getting round the difficulty: we must, at the very least, include
in our new set the sum of any two vectors in the given subspaces. As it turns
out, that is all we need do.

Definition 6.4.1 Let W1 and W2 be subspaces of V, then the sum W1 +W2

is the set of all vectors which can be written as the sum of a vector in W1

and a vector in W2: W1 +W2 = {~a ∈ V | ~a = ~b1 +~b2,~b1 ∈ W1,~b2 ∈ W2}.

Example:

As an example consider V = R2, W1 = {[a1, 0] | a1 ∈ R},
W2 = {[0, a2] | a2 ∈ R}, i.e., W1 is the x-axis and W2 the y-axis
in the Euclidean plane. Then a vector in W1 +W2 is the sum of
a vector in W1 and a vector in W2; thus ~a ∈ W1 +W2 is of the
form ~a = [a1, 0] + [0, a2] = [a1, a2]. Clearly W1 +W2 = V = R2.
♦
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Example:

Similarly, it is easy to see that if V = R3,W1 = {[a1, a2, 0] | a1, a2 ∈
R},W2 = {[0, 0, a3] | a3 ∈ R}, then W1 +W2 = R3 = V . ♦

These examples show that, just asW1∩W2 may turn out to be the trivial
subspace {~0}, so might it happen thatW1 +W2 is the trivial subspace V . We
now have a way of creating a new (“bigger”) subspace from two subspaces.

Proposition 6.4.2 If W1,W2 ≤ V, then W1 +W2 ≤ V (the sum of two
subspaces is again a subspace).

Proof:

We must verify thatW1+W2 is closed with respect to addition
and scalar multiplication. Suppose ~a and ~b ∈ W1 +W2, c ∈ R.
Then

~a = ~a1 + ~a2 with ~a1 ∈ W1 and ~a2 ∈ W2

~b = ~b1 +~b2 with ~b1 ∈ W1 and ~b2 ∈ W2,

~a+~b = (~a1 + ~a2) + (~b1 +~b2)

= (~a1 +~b1) + (~a2 +~b2) ∈ W1 +W2

c~a = c(~a1 + ~a2)

= c~a1 + c~a2 ∈ W1 +W2,

since W1 and W2 are subspaces and thus satisfy the closure ax-
ioms.

Notice, by the way, that we always have, for W1 and W2 subspaces of V ,

W1 ∩W2 ≤ W1

W1 ∩W2 ≤ W2

W1 ≤ W1 +W2

W2 ≤ W1 +W2

It is also true–and very easy to show–that W1 ∩W2 is the largest subspace
common to both W1 and W2 and that W1 +W2 is the smallest subspace
which contains both W1 and W2.

When two subspaces have the smallest possible intersection and have sum
giving all of V we have a particularly nice situation:
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Definition 6.4.2 Let V be a vector space and let U and W be subspaces of
V which satisfy

V = U +W and U ∩W = {~0},

then V is said to be the direct sum of U and W; this relation is indicated
by writing

V = U ⊕W .

Example:

In V = R3 if we take U =the xy-plane and W = any line
through the origin not contained in the xy-plane, then V = U⊕W .
♦

Decomposing spaces as direct sums of subspaces on which a linear trans-
formation has a nice form is an important part of advanced linear algebra.

Exercises 6.4:

For problems 1-10 given the subspaces U and W of V ,describe the sub-
spaces U +W and U ∩W :

1. V = R3, U = {[a1, 0, 0] | a1 ∈ R} and W = {[0, a2, 0] | a2R}

2. V = R3, U = {[a1, a2, 0] | a1 and a2 ∈ R} and W = {[0, 0, a3] | a3 ∈ R}

3. V = R3, U = {[a1, a2, 0 | a1 and a2 ∈ R} andW = {[0, a3, a4] | a3 and a4 ∈
R}

4. V = R3, U = {[a1, a2, a3] | a1+a2+a3 = 0} andW = {[0, 0, a4] | a4 ∈ R}

5. V = R3, U = {[a1, a2, a3] | a1+a2+a3 = 0} andW = {[a4, a5, a6] | 2a4−
a5 + a6 = 0}

6. V = R[x], U = R[x]3 and W = { polynomials involving only even
powers}.

7. V = R[x], U = {p|p(−x) = p(x)} and W = {p|p(−x) = −p(x)}
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8. V = R[x], U = {p|p(1) = 0} and W = {p|p′(1) = 0}

9. V = RN, U = {a|a2n+1 = −a2n} and W = {b|bn = b02
n}

10. V = RN, U = {a|a converges to 0} and W = {a|
∞∑
k=0

ak converges}

11. Let U andW be subspaces of V . Is it ever true that U∪W is a subspace
of V?

12. Prove that if a subspace U contains both subspaces W1 and W2 then
it must contain W1 +W2.
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Chapter 7

Systems of Linear Equations

In Chapter 6 and in later chapters circumstances come up in which we needed
to find the solution (or the general form for all solutions) of a system of linear
equations. For small systems, say three equations in three unknowns, most
students can muddle through with ad hoc methods. Many applications and
much of our work with spaces more complicated than R3 will require a more
efficient and systematic approach. In this chapter we will work with Gaussian
elimination with backsolving, a computationally efficient algorithm which has
the advantage of having clear goals at each step. This algorithm will arise
later in the course for other uses. It is easy to program on a computer, though
somewhat sensitive to round off error when floating point arithmetic is used.
The algorithms in this chapter can be carried out using arithmetic in any
field we choose. To avoid problems with round off error we will usually work
over Q, though R, C, and Z2 also work the same way.

7.1 Gaussian Elimination with Backsolving

Let us start by considering a system of three equations in three unknowns.
As an example we will use :

x+ 3y + z = 3

−2x− 4y + 2z = 12

3x+ 8y + 2z = 5.

It is unlikely that the solution to this system will be obtained easily by
inspection. We will use the first equation to eliminate x from the other two

143
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equations. This could be done by substituting x = 3− 3y − z into the other
equations but that would make work in simplification. Instead we will use
the fact that both sides of an equality can be multiplied by the same number
without changing the validity of the equality and the fact that “equals added
to equals yield equals” to eliminate x from the later equations. We start by
adding 2 times the first equation to the second:

2(x+ 3y + z = 3) is 2x+ 6y + 2z = 6
add to −2x− 4y + 2z = 12
to get 2y + 4z = 18

which then replaces the second equation. We can then rewrite the system as:

x+ 3y + z = 3

2y + 4z = 18

3x+ 8y + 2z = 5.

If we now add −3 times the first equation to the third we can eliminate x
from that equation as well without changing the triples (x, y, z) which satisfy
the system. This gives

x+ 3y + z = 3

2y + 4z = 18

−y − z = −4.

We can multiply both sides of the second equation by 1
2

to get a more con-
venient form for using the second to eliminate y:

x+ 3y + z = 3

y + 2z = 9

−y − z = −4.

Adding the second equation to the third gives:

x+ 3y + z = 3

y + 2z = 9

z = 5.

We can now substitute 5 in for z in the second equation and solve for y to
get y = −1, and then use the values for both y and z to get x = 1 from the
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first equation. These operations can be accomplished by adding −2 times
the third row to the second and then adding −1 times the third row and −3
times the (new) second row to the first.

As described this is a cumbersome, though organized, procedure. It is
made less cumbersome by using matrices to let position of numbers keep
track of the variables and the equal sign. A matrix is a rectangular array of
numbers. For the time being we are using matrices much as they are used
for storage in computer science. The system of equations

x+ 3y + z = 3

−2x− 4y + 2z = 12

3x+ 8y + 2z = 5

can be recaptured from the matrix of coefficients 1 3 1
−2 −4 2
3 8 2


and the matrix of constants  3

12
5

 .
It is most convenient to write this as one matrix 1 3 1 3

−2 −4 3 12
3 8 2 5


called the augmented matrix corresponding to the system. This may be
thought of as the system with all of the variables and the equal signs erased.

The operations used on the system of equations will be replaced with
operations on a matrix called elementary row operations. There are three
types of elementary row operations. Since we will be using them repeatedly
we will give a shorthand notation for specifying what you do to get from one
matrix to the next.
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Interchange rows i and j:

a11 . . . a1k . . . a1n
...

...
...

ai1 . . . aik . . . ain
...

...
...

aj1 . . . ajk . . . ajn
...

...
...

am1 . . . amk . . . amn


Ri ↔ Rj

;



a11 . . . a1k . . . a1n
...

...
...

aj1 . . . ajk . . . ajn
...

...
...

ai1 . . . aik . . . ain
...

...
...

am1 . . . amk . . . amn



Multiply row i by r (where r 6= 0)
a11 . . . a1k . . . a1n
...

...
...

ai1 . . . aik . . . ain
...

...
...

am1 . . . amk . . . amn


rRi

;


a11 . . . a1k . . . a1n
...

...
...

rai1 . . . raik . . . rain
...

...
...

am1 . . . amk . . . amn



Add r times row i to row j (row i is unchanged)

a11 . . . a1k . . . a1n
...

...
...

ai1 . . . aik . . . ain
...

...
...

aj1 . . . ajk . . . ajn
...

...
...

am1 . . . amk . . . amn


Rj + rRi

;



a11 . . . a1k . . . a1n
...

...
...

ai1 . . . aik . . . ain
...

...
...

aj1 + rai1 . . . ajk + raik . . . ajn + rain
...

...
...

am1 . . . amk . . . amn


The strategy used is as follows: first, switch rows if necessary to get a

non-zero entry in the first row, first column position. Next divide the first
row by the 1,1-entry to make that entry 1. Then use the operation of adding
a multiple of the first row to the later rows to get zeros in the first column



7.1. GAUSSIAN ELIMINATION WITH BACKSOLVING 147

below the first entry. In our example this goes as follows: 1 3 1 3
−2 −4 2 12
3 8 2 5

 R2 + 2R1

;

 1 3 1 3
0 2 4 18
3 8 2 5


R3 − 3R1

;

 1 3 1 3
0 2 4 18
0 −1 −1 14

 .
Next we repeat this procedure using the second row to eliminate all entries
in the second column below it. This continues until the matrix of coefficients
has 1 as the first nonzero entry in each row a 1 and all entries below that l
in the same column are 0. In our example we continue as follows: 1 3 1 3

0 2 4 18
0 −1 −1 −4

 1
2
R2

;

 1 3 1 3
0 1 2 9
0 −1 −1 −4


R3 +R2

;

 1 3 1 3
0 1 2 9
0 0 1 5


Next we get zeros above the ones using the same operations and working our
way back from right to left. This means that at each step we are working with
a row with the minimum possible number of nonzero entries, thus minimizing
the arithmetic. 1 3 1 3

0 1 2 9
0 0 1 5

 R1 −R3

R2 − 2R3

;

 1 3 0 −2
0 1 0 −1
0 0 1 5


R1 − 3R2

;

 1 0 0 1
0 1 0 −1
0 0 1 5


Putting the variables and the equal sign back in we have

x = 1

y = −1

z = 5.



148 CHAPTER 7. SYSTEMS OF LINEAR EQUATIONS

Example: Solving a system

Find the solutions to

x+ 2y + z = 2

2x+ 6y − z = −15

−x+ 2y + 4z = 15

The augmented matrix is 1 2 1 2
2 6 −1 −15
−1 2 4 15


Our algorithm gives 1 2 1 2

2 6 −1 −15
−1 2 4 15

 R2 − 2R1

R3 +R1

;

 1 2 1 2
0 2 −3 −19
0 4 5 17


1
2
R2

;

 1 2 1 2
0 1 −3

2
−19

2

0 4 5 17

 R3 − 4R2

;

 1 2 1 2
0 1 −3

2
−19

2

0 0 11 55


1
11
R3

;

 1 2 1 2
0 1 −3

2
−19

2

0 0 1 5

 R1 −R3

R2 + 3
2
R3

; 1 2 0 −3
0 1 0 −2
0 0 1 5

 R1 − 2R2

;

 1 0 0 1
0 1 0 −2
0 0 1 5


While this example isn’t too bad, it does show how fractions can
creep into and back out of the work. ♦

Example: A system over Z2

Solve the system

x1 + x3 + x4 = 1

x1 + x2 + x3 + x4 = 0

x2 + x3 + x4 = 1

x1 + x2 + x3 = 0
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Applying the Gaussian elimination algorithm using arithmetic in
Z2 gives

1 0 1 1 1
1 1 1 1 0
0 1 1 1 1
1 1 1 0 0

 R2 +R1

R4 +R1

;


1 0 1 1 1
0 1 0 0 1
0 1 1 1 1
0 1 0 1 1


R3 +R2

R4 +R2

;


1 0 1 1 1
0 1 0 0 1
0 0 1 1 0
0 0 0 1 0


R1 +R4

R3 +R4

;


1 0 1 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0


R1 +R3

;


1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0


Thus

x1 = 1

x2 = 1

x3 = 0

x4 = 0

♦

So far we have pretended that all systems have solutions. What happens
to the algorithm if we try it on one which does not?

Example: A system with no solutions

Find the solutions (if any) of

x+ y = 2

x+ y = 3
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These are two parallel lines, so we know that there are no solu-
tions. Let us follow our algorithm until we reach a point where
this lack of solutions becomes apparent.[

1 1 2
1 1 3

]
R2 −R1

;

[
1 1 2
0 0 1

]
at which point we are stuck. If we put the variables and the equal
sign back in we get

x+ y = 2

0x+ 0y = 1.

The second equation tells us something we know to be false, so
whatever values we put in for x and y we cannot get simultaneous
solutions. Anytime we get a row with all zero entries except for
the last column and with a nonzero entry there we know that the
system of equations has no solutions. Such systems are called
inconsistent. ♦

Example: A system with many solutions

We can also get systems which have many solutions instead
of one. As an example let us consider what our algorithm does
for the system

x+ y + z = 3

x+ 2y − z = 4

2x+ 3y = 7

Setting up the matrix and applying the algorithm gives: 1 1 1 3
1 2 −1 4
2 3 0 7

 R2 −R1

R3 − 2R1

;

 1 1 1 3
0 1 −2 1
0 1 −2 1


R1 −R2

R3 −R2

;

 1 0 3 2
0 1 −2 1
0 0 0 0


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At this point we can put the variables and equal signs back
in to get

x+ 3z = 2

y − 2z = 1

The variable z can assume any value we wish, but once it is chosen
x and y are determined. Since one of the equations gives us no
new information, such systems are called redundant. ♦

Given any system of equations, even one with different numbers of equa-
tions and unknowns, we can apply elementary row operations according to
our algorithm to reduce the matrix of coefficients to what is called row-
reduced echelon form:

Definition 7.1.1 A matrix is in row-reduced echelon form if and only
if

1. The first nonzero entry in each row is a 1

2. The first nonzero entry in a row appears to the right of the first nonzero
entry in the row above it

3. All other entries in the column of that first nonzero entry in the row
are 0.

4. All rows with only 0 entries are at the bottom.

Example: The following matrices are in row-reduced echelon form:


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 1 0 0 0 2

0 1 0 0 56
0 0 1 2 3

4


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
1 0 0 0 2
0 1 0 0 56
0 0 1 2 3

4

0 0 0 0 0




1 0 0 0 0 0 4
0 1 2 0 0 0 5
0 0 0 1 0 0 2
0 0 0 0 1 −1 π


♦

Example: The following matrices are not in row-reduced echelon
form

 0 1 0
1 0 0
0 0 1


 1 3 0 0 0

0 0 1 1 4
0 0 1 0 1




1 0 0 0 2
0 1 0 0 56
0 0 0 0 0
0 0 1 2 3

4


 1 0 0

0 1 1
1 0 0


♦

The approach used in solving systems of equations using elementary row
operations also works for reducing a matrix to row reduced echelon form. Our
strategy is to use interchange and division of rows to get the first nonzero
entry in a row to be a 1 and to make that entry as far to the left as possible.
We then use addition of a multiple of that row to rows below it to get zeros
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below it in the column. Then move on to the next row and repeat the process,
being careful not to mess up previous work by interchanging with rows above
the current one. Once we have all of the first nonzero entries equal to 1 and
all the entries below them 0, we work backwards from right to left to get the
zeros above the first nonzero entries in each row. Often we can avoid use of
fractions by judicious use of row exchange instead of dividing to get the 1 as
the first entry in a row.

To solve any system of equations: form the augmented matrix, reduce it
to echelon form, and put the variables and equal signs back in. The result will
be a description of the solutions. As we have described it this process is called
Gaussian elimination with backsolving. A formal description in pseudocode
is given in Figure 7.1. It is the best algorithm for systems not known to
have nice structure (like lots of zero entries for instance). There are other
algorithms which are better for very large systems with many coefficients
zero. Such systems do occur, for instance, in modeling secondary oil recovery:
many systems of 50,000 equations with 50,000 unknowns must be solved. The
work involved is considerable.

While use of elementary row operations makes sense and is not difficult,
it does get tedious for large problems. We can repackage the operations into
a macro called pivot to combine several steps into one action. In obtaining
the row reduced echelon form we look at the first non-zero entry in a row,
divide that row by that entry, and then use addition of multiples of that row
to other rows to get 0’s in the rest of the column.

Definition 7.1.2 If M is a matrix with mij 6= 0 then the pivot on the ij

position of M is the sequence of row operations
1

mij

Ri then Rk −mkjRi for

all k 6= i. It results in a new matrix with a 1 in the ij position and 0 in the
rest of the jth column.

Example: A pivot operation

If

M =


2 1 3 4
2 4 2 6
1 2 4 3
1 1 −1 2


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Suppose that A is the matrix obtained by augmenting the coefficient matrix
with the column of constants.

Clearing below the diagonal
Set R=1
Set C=1
While (R < Number of Rows) and (C ≤ Number of Columns of coefficient matrix) Do

If A(R,C) 6= 0
Then Do

Multiply row R by 1/A(R,C) (to get 1 in leading position of row R)
For i= R+1 to Number of Rows (to clear entries below the (R,C) position)

Add -A(i,C) times row R to row i
Next i
Increment R by adding 1
Increment C by adding 1

Else Do (search for next row and column to use)
Set NewRow=R+1
Do until (NewRow > Number of Rows) or (A(NewRow,C)6= 0)

Increment NewRow by adding 1
If (NewRow > Number of Rows)

Then Increment C by adding 1
Else Swap rows R and NewRow

End If
End Else

End If
End While

Backsolving
If (R = Number of Rows) then Multiply row R by 1/A(R,C)
While (R > 0) Do

Set C = 1
While (A(i,C) = 0) increment C (Find first nonzero entry in row R)
For i=1 to R-1 (clear entries above that nonzero entry)

Add -A(i,C) times row R to row i
Next i
Decrement R by subtracting 1

End While

Figure 7.1: Gaussian Elimination with Backsolving
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then performing a pivot on the 2,3 position leads to the matrix
−1 −5 0 −5
1 2 1 3
−3 −6 0 −21
2 3 0 8

 .
It is the same as the sequence of elementary row operations

2 1 3 4
2 4 2 6
1 2 4 3
1 1 −1 2

 1
2
R2

;


2 1 3 4
1 2 1 3
1 2 4 3
1 1 −1 2


R1 − 3R2

R3 − 4R2

R4 +R2

;


−1 −5 0 −5
1 2 1 3
−3 −6 0 −21
2 3 0 8


♦

For solving systems of equations we have been using the Gaussian elim-
ination with backsolving algorithm. A closely related algorithm, the Gauss-
Jordan elimination algorithm, makes all of the entries above and below the
diagonal zero. This algorithm has only one phase, and it takes a little more
arithmetic, but has a more compact description if we use the pivot opera-
tion. We give the Gauss-Jordan algorithm for row reduction in a more formal
pseudocode in Figure 7.2

Example: Gauss-Jordan Row Reduction

Let us use this algorithm to reduce the matrix 2 4 6 8 10
2 3 4 1 1
4 6 8 5 5


to row reduced echelon form. We will indicate a pivot on position
i,j by P (i, j). 2 4 6 8 10

2 3 4 1 1
4 6 8 5 5

 P (1, 1)
;

 1 2 3 4 5
0 −1 −2 −7 −9
0 −2 −4 −11 −15


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Set Row=1
Set Column=1
While (Row ≤ Number of Rows) and (Column ≤ Number of Columns) Do

If A(Row,Column)6= 0
Then do

Pivot on position (Row,Column) in A
Increment Row by adding 1
Increment Column by adding 1

Else do
Set NewRow=Row+1
Do until (NewRow > Number of Rows) or (A(NewRow,Column)6= 0)

Increment NewRow by adding 1
If (NewRow > Number of Rows)

Then Increment Column by adding 1
Else Swap rows Row and NewRow

End If
End Else

End If
End While

Figure 7.2: Gauss-Jordan Algorithm for Row Reduction Using Pivot
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P (2, 2)
;

 1 0 −1 −10 −13
0 1 2 7 9
0 0 0 3 3


P (3, 4)

;

 1 0 −1 0 −3
0 1 2 0 2
0 0 0 1 1


♦

7.1.1 Operation Counts

One way to measure the efficiency of the algorithm for solving a system of
equations is to count the number of multiplications which it needs to solve a
system. When we do this we assume that no special structure shows up in the
process of the algorithm and that no unnecessary operations are performed.
Let us count how many multiplications are needed to solve a system of n
equations in n unknowns using Gaussian elimination with backsolving.

Getting the 1 on the diagonal in the ith row requires a multiplication in
each position after the ith, so n+ 1− i multiplications.

Once we have the 1 on the diagonal we will, in general, need to use the
row operation adding a multiple of the ith row to each of the n− i rows below
it to make the entries below the diagonal 0. There are n+1−i entries in each
row whose value we need to calculate (we don’t worry about the zeros at the
beginning or about the ith column since we know what those values will be
without calculating them). This makes (n− i)(n + 1− i) multiplications to
get the zeros below the diagonal in the ith column.

Backsolving requires one multiplication for each row above the diagonal
entry being used. So it involves n − i + 1 multiplications for each of the
columns i = 2 to i = n.

For the whole algorithm we need

n∑
i=1

n+ 1− i =
n(n+ 1)

2

multiplications to get all of the 1’s on the diagonals,

n−1∑
i=1

(n− i)(n+ 1− i) =
n−1∑
k=1

k2 + k =
(n− 1)n(2n− 2)

6
+

(n− 1)n

2
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multiplications to get the zeros below the diagonal, and

n∑
i=2

(n− i+ 1) =
n−1∑
i=1

i =
(n− 1)n

2

multiplications for the backsolving. All together this gives (after simplifying)

n3

3
+ n2 − n

3

multiplications for the Gaussian elimination with backsolving algorithm.
An analysis like the one above gives

n3

2
+
n2

2

multiplications for the solution of a system of equations using the Gauss-
Jordan algorithm.

Some students may be familiar with solution of equations using determi-
nants (Cramer’s rule). The reason we do not study this method in this course
is made clear by the following table showing the number of multiplications
needed to solve an n by n system of equations:

n Gauss Gauss-Jordan Cramer
2 6 6 6
3 12 18 36
4 36 40 200
5 65 75 1230

Exercises 7.1:
For problems 1–10 solve the following systems of linear equations. If the
system is inconsistent, say so. If the system has multiple solutions, describe
the general form for a solution.

1.

x1 + x2 − x3 = 3

2x1 − x2 + 3x3 = 0

−x1 − 2x2 + x3 = −5
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2.

x1 − 2x2 + x3 = 0

2x1 − x2 + x3 = 3

x1 + 2x2 + x3 = 7

3.

2x1 + x2 + x3 = 2

3x1 + 2x2 − x3 = 1

4x2 + x3 = 5

4.

x1 + x2 + x3 = 6

x2 + x3 + x4 = 2

x3 + x4 + x5 = 1

x1 − x5 = 2

2x2 + 2x4 = 4

5.

−x1 + x2 + 3x3 + 2x4 = −7

−6x1 + 3x2 + 8x3 + 2x4 = −24

−2x1 + x2 + 3x3 + x4 = −9

6.

2x1 + x2 + 5x3 = 1

x1 + 2x2 + 5x3 = 0

x1 + x2 + 5x3 = 1

−x1 + 2x2 + 2x3 = −1

7.

2x1 + x2 + x3 = 6

2x1 + x2 = 9

3x1 + x2 + x3 = 8
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8.

2x1 + 8x2 − x3 = 6

−4x1 − 8x2 + 3x3 = −5

4x1 + 4x2 − 2x3 = 3

9.

2x1 + x2 + x3 = 10

3x1 − x2 + 2x3 = −9

x1 − x2 + x3 = −9

10.

5x1 + 2x2 + x3 = −4

2x1 + x2 + x3 = −5

4x1 + 2x2 + x3 = −7

For problems 11–16, how do you interpret these final results of the Gaus-
sian elimination algorithm:

11.

 1 0 2 3
0 1 1 4
0 0 0 0



12.

 1 0 2 3
0 1 1 4
0 0 0 1


13.

[
1 2 3 4
0 0 0 4

]

14.

 1 0 1 0 1
0 1 0 0 3
0 0 0 1 6



15.

 1 0 0 0 1
0 1 0 0 3
0 0 0 0 6


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16.


1 0 1 1 1
0 1 0 2 3
0 0 0 0 0
0 0 0 0 0


For problems 17–20, reduce to row-reduced echelon form:

17.

 0 1 1
2 4 6
3 1 0



18.

 1 0 3 4
2 4 1 3
0 1 1 1



19.

 0 0 1
0 1 0
1 0 0



20.

 1 3 0 0 0
0 1 2 0 0
0 0 1 1 4


21. Find the solution in C if any exists:

x1 + (3 + i)x2 + x3 = i

ix2 + 2x2 − (1− 2i)x3 = 1

X1 + x2 + 3x3 = (2− i)

22. Find the solution in Z2 if any exists:

x1 + x2 + x4 + x5 = 1

x1 + x3 + x5 = 0

x2 + x3 + x4 = 0

x1 + x3 + x4 = 1

x3 + x4 + x5 = 0



162 CHAPTER 7. SYSTEMS OF LINEAR EQUATIONS

7.2 Spanning Sets Revisited

At this point it becomes much easier to answer some of the questions raised
in Chapter 6. One such question is whether or not a specific vector is an
element of the subspace spanned by a set of vectors.

Example: Is [1, 1, 1] in the subspace spanned by [1, 2, 3] and [3, 2, 1]?

To answer this we ask if there are numbers x and y with
[1, 1, 1] = x[1, 2, 3] + y[3, 2, 1]. This gives a system of three equa-
tions in two unknowns:

x+ 3y = 1

2x+ 2y = 1

3x+ y = 1

Solving this we find 1 3 1
2 2 1
3 1 1

 R2 − 2R1

R3 − 3R1

;

 1 3 1
0 −4 −1
0 −8 −2

 1
4
R2

;

 1 3 1
0 1 1

4

0 −8 −2

 R3 + 8R2

;

 1 3 1
0 1 1

4

0 0 0


R1 − 3R2

;

 1 0 1
4

0 1 1
4

0 0 0


This shows [1, 1, 1] = 1

4
[1, 2, 3]+1

4
[3, 2, 1] so [1, 1, 1] ∈ Span({[1, 2, 3], [3, 2, 1]}).

♦

Example: Is [1, 1, 1] in the subspace spanned by [0, 1, 2] and [2, 1, 1]?

Again, we ask for x and y with x[0, 1, 2] + y[2, 1, 1] = [1, 1, 1]
or

0x+ 2y = 1

x+ y = 1

2x+ y = 1
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While it is clear by inspection that this system has no solutions
we can use our algorithm to get 0 2 1

1 1 1
2 1 1

 R1 ↔ R2

;

 1 1 1
0 2 1
2 1 1


R3 − 2R1

;

 1 1 1
0 2 1
0 −1 −1

 1
2
R2

;

 1 1 1
0 1 1

2

0 −1 −1

 R3 +R2

;

 1 1 1
0 1 1

2

0 0 −1
2


At this point we can tell that the system has no solutions.

Thus [1, 1, 1] is not in the subspace spanned by [0, 1, 2] and [2, 1, 1].
♦

Homogeneous systems (those where all of the constant terms are 0) have a
particularly nice theory.

Proposition 7.2.1 The solutions to a homogeneous system of equations in
n unknowns form a subspace of Rn.

Proof:

The solutions to a single homogeneous equation

a1x1 + a2x2 + ...+ anxn = 0

can be thought of as elements of the kernel of the linear transfor-
mation taking [x1, ..., xn] to a1x1 + ...+ anxn. Thus the set of all
solutions to a single homogeneous equation forms a subspace of
Rn. The set of solutions to a system of homogeneous equations is
the intersection of the sets of solutions of the equations taken in-
dividually. Thus the set of solutions to a system of homogeneous
linear equations is the intersection of subspaces, and thus is itself
a subspace.
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Since the zero vector will always give a solution to a homogeneous system
of equations we will be interested in knowing when there are other, nontrivial,
solutions.

Theorem 7.2.2 A homogeneous system of linear equations with more un-
knowns than equations always has a nontrivial solution.

Proof:

When we apply Gaussian elimination with backsolving to the
augmented matrix we end up clearing at most as many columns as
there are equations since we use a different row each time we clear
a column, and there are only as many rows as there are equations.
This means that our final answer has a column corresponding to
a variable which can be chosen freely. Hence we can choose that
variable to be nonzero.

Example: A homogeneous system with nontrivial solutions

The system

x+ y + z + w = 0

x+ y + 2z + 3w = 0

has nontrivial solutions:
We start by applying the Gaussian Elimination with back-

solving algorithm:[
1 1 1 1 0
1 1 2 3 0

]
R2 −R1

;

[
1 1 1 1 0
0 0 1 2 0

]

R1 −R2

;

[
1 1 0 −1 0
0 0 1 2 0

]
Since we have cleared only the columns corresponding to the vari-
ables x and z in this case, both y and w can be chosen arbitrar-
ily. Letting y = 1 and w = 1, we get x = w − y = 0 and
z = −2w = −2. Thus (0, 1,−2, 1) is a nontrivial solution. ♦
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Exercises 7.2:
For problems 1–10, is the vector ~a in the subspace of V spanned by S?

1. ~a = [1, 2, 3], S = {[1, 1, 3], [−2, 1,−3]}, V = R3

2. ~a = [1, 1, 1], S = {[0, 1, 2], [1, 2, 1], [1, 3, 3]} , V = R3

3. ~a = [6, 5, 6], S = {[1, 2, 4], [0, 1, 2], [1, 1, 1]}, V = R3

4. ~a = [6, 2, 3, 1], S = {[1, 2, 3, 4], [0, 1, 2, 3], [0, 0, 1, 2]}, V = R4

5. ~a = [1, 0, 1, 0], S = {[1, 1, 1, 1], [1,−1,−1, 1], [1, 1,−1,−1]}, V = R4

6. ~a = [1, 0, 1, 2], S = {[1, 1, 1, 1], [1,−1,−1, 1], [1, 1,−1,−1]}, V = R4

7. ~a = [0, 1, 0, 1], S = {[1, 1, 0, 0], [1, 0, 1, 0], [0, 0, 1, 1]}, V = R4

8. ~a = 3x3 + 4x2 + x− 2, S = {x+ 1, x2 + 1, x3 + 1} , V = R[x]

9. ~a = x4 + x2 − 1, S = {1, x, x2 + x+ 1, x4 + x3 + 1, x3 + 1} , V = R[x]

10. ~a = sin(x), S = {cos(x), x2, ex}, V = RR

7.3 Applications of Systems of Linear Equa-

tions

In the last section we saw a situation in which systems of linear equations
arises in linear algebra. Many practical problems involve systems of linear
equations. Now that we have an efficient means to solve such systems prob-
lems giving rise to systems of many equations in many unknowns are more
tractable.

7.3.1 Fitting a curve through points using the method
of undetermined coefficients:

Find the equation of the circle passing through the three points (2,3), (1,4),
and (5,6). We know that the equation of a circle has the form

x2 + y2 + Ax+By + C = 0
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We need to find A, B, and C.
Since (2,3) is to be on the circle

22 + 32 + 2A+ 3B + C = 0.

Since (1,4) is to be on the circle

12 + 42 + 1A+ 4B + C = 0.

Since (5,6) is to be on the circle

52 + 62 + 5A+ 6B + C = 0.

This gives the system

2A+ 3B + C = −13

A+ 4B + C = −17

5A+ 6B + C = −61.

This is solved as follows: 2 3 1 −13
1 4 1 −17
5 6 1 −61

 R1 ↔ R2

;

 1 4 1 −17
2 3 1 −13
5 6 1 −61

 R2 − 2R1

R3 − 5R1

;

 1 4 1 −17
0 −5 −1 21
0 −14 −4 24

 −1
5
R2

;

 1 4 1 −17
0 1 1

5
−21

5

0 −14 −4 24

 R3 + 14R2

;

 1 4 1 −17
0 1 1

5
−21

5

0 0 −6
5
−174

5

 −5
6
R3

;

 1 4 1 −17
0 1 1

5
−21

5

0 0 1 29

 R1 −R3

R2 − 1
5
R3

; 1 4 0 −46
0 1 0 −10
0 0 1 29

 R1 − 4R2

;

 1 0 0 −6
0 1 0 −10
0 0 1 29


so A = −6, B = −10, and C = 29.

This same technique can be used to fit a polynomial of degree n to a set
of n + 1 points. It can also be used to fit surfaces through points in space,
provided that the general form of the surface is known.
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7.3.2 Deriving the error for Simpson’s rule:

In finding formulas to approximate integrals numerically one approach is to
specify the points to be used and find coefficients so that the resulting formula
gives the exact answer for appropriate powers of x. For Simpson’s rule we
use the points (−h, f(−h)), (0, f(0)) and (h, f(h)) and ask that the result
be accurate for polynomials of degree 3 or less. If we postulate a formula of
the form ∫ h

−h
f(x)dx = Af(−h) +Bf(0) + Cf(h) +Df iv(z)

where −h < z < h then we can find A, B, C, and D by making different
choices for f and using the precision of the formula:∫ h

−h 1dx = 2h = A+B + C using f(x) = 1∫ h
−h xdx = 0 = A(−h) + C(h) using f(x) = x∫ h
−h x

2dx = 2
3
h3 = Ah2 + Ch2 using f(x) = x2∫ h

−h x
3dx = 0 = A(−h)3 + Ch3 using f(x) = x3∫ h

−h x
4dx = 2

5
h5 = Ah4 + Ch4 +D4! using f(x) = x4

This gives the system of equations

A+B + C = 2h

−hA+ hC = 0

h2A+ h2C =
2

3
h3

−h3A+ h3C = 0

h4A+ h4C + 24D =
2

5
h5.

The second and fourth equations give exactly the same information so
this system is redundant.

Solving it gives
1 1 1 0 2h
−h 0 h 0 0
h2 0 h2 0 2

3
h3

−h3 0 h3 0 0
h4 0 h4 24 2

5
h5


R2 + hR1

R3 − h2R1

R4 + h3R1

R5 − h4R1

;


1 1 1 0 2h
0 h 2h 0 2h2

0 −h2 0 0 −4
3
h3

0 h3 2h3 0 2h4

0 −h4 0 24 −8
5
h5





168 CHAPTER 7. SYSTEMS OF LINEAR EQUATIONS

;


1 1 1 0 2h
0 1 2 0 2h
0 0 2h2 0 2

3
h3

0 0 0 0 0
0 0 2h4 24 2

5
h5

 ;


1 1 1 0 2h
0 1 2 0 2h
0 0 1 0 h

3

0 0 0 0 0
0 0 0 24 − 4

15
h5



;


1 0 0 0 h3

0 1 0 0 4
3
h

0 0 1 0 h
3

0 0 0 1 −h5

90

0 0 0 0 0


This shows that∫ h

−h
f(x)dx =

h

3
(f(−h) + 4f(0) + f(h))− h5

90
f iv(z)

for some z ∈ (−h, h).

7.3.3 Random Walks:

In the game of matching pennies two players each flip a coin. If both come up
heads or both come up tails, the first player wins both. If they don’t match
the second player wins both. If the first player starts with 2 cents and the
second starts with 3 cents what is the probability that the first player gets 5
cents before the second player does? After one toss the game will change to
(1 cents,4 cents) with probability .5 and to (3 cents,2 cents) with probability
.5. If we let Pi be the probability of the first player winning if he starts with i
cents this tells us that Pi = .5Pi−1 + .5Pi+1. Combining this with the obvious
cases P0 = 0 and P5 = 1 we get a system of 6 equations in 6 unknowns:

P0 = 0
−1

2
P0 +P1 −1

2
P2 = 0

−1
2
P1 +P2 −1

2
P3 = 0

−1
2
P2 +P3 −1

2
P4 = 0

−1
2
P3 +P4 −1

2
P5 = 0
P5 = 1
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This is not difficult to solve because there are so many zero entries:
1 0 0 0 0 0 0
−1

2
1 −1

2
0 0 0 0

0 −1
2

1 −1
2

0 0 0
0 0 −1

2
1 −1

2
0 0

0 0 0 −1
2

1 −1
2

0
0 0 0 0 0 1 1

 ;


1 0 0 0 0 0 0
0 1 0 0 0 0 1

5

0 0 1 0 0 0 2
5

0 0 0 1 0 0 3
5

0 0 0 0 1 0 4
5

0 0 0 0 0 1 1


Thus the probability that the first player wins if he starts out with 2 cents
is 2

5
.
This same kind of model can be used to approximate temperature dis-

tributions and diffusion of gases or liquids. The systems of equations which
result are often very large but tend to have many entries equal to zero and
have the nonzero entries clustered in a band near the diagonal. This ex-
tra structure greatly reduces the amount of arithmetic needed to solve the
system.

7.3.4 Partial Fractions

In technique of integration we develop a general method for dealing with
integrals of rational functions. First we factor the denominator into a product
of linear and irreducible quadratic factors. Then we use partial fractions
to reduce the problem to dealing with fractions whose denominators involve
powers of a single linear or quadratic factor. The resulting problems are then
integrated using u-substitution or trigonometric substitutions. In a calculus
course we often restrict the problem to one using denominators which are
products of distinct linear factors because the systems of linear equations
which result are easy to solve without special technique.

Now that we have powerful methods for solving big systems of linear
equations we can tackle the more difficult systems that result when the de-
nominator involves repeated factors.
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As an example let us consider the problem of breaking

2x5 + 13x4 + 35x3 + 43x2 + 35x+ 16

(x+ 2)2(x2 + x+ 1)2

into a sum of simpler fractions. First notice that the degree of the denom-
inator is 6, so the degree of the most general possible numerator will be 5
and there will be 6 pieces of information contained in the coefficients. Thus
we expect to have a system of six equations in six unknowns. The standard
way to break up this fraction is as

A

x+ 2
+

B

(x+ 2)2
+

Cx+D

x2 + x+ 1
+

Ex+ F

(x2 + x+ 1)2

which has six unknowns (A,B,C,D,E, and F). Adding fractions in this ex-
pression gives a fraction with numerator

(2A+B + 4D + 4F ) + (5A+ 2B + 4C + 8D + 4E + 4F )x+
(8A+ 3B + 8C + 9D + 4E + F )x2 + (7A+ 2B + 9C + 5D + E)x3+
(4A+B + 5C +D)x4 + (A+ C)x5

and denominator (x+ 2)2(x2 + x+ 1)2. Now this fraction will be equal to
our original fraction if the polynomials in the numerator are equal. This
happens if the constant term and the coefficients of x, x2, x3, x4, and x5 are
equal. This gives us the system of equations

2A+B + 4D + 4F = 16

5A+ 2B + 4C + 8D + 4E + 4F = 35

8A+ 3B + 8C + 9D + 4E + F = 43

7A+ 2B + 9C + 5D + E = 35

4A+B + 5C +D = 13

A+ C = 2

Solving this system is done by row reducing the matrix
2 1 0 4 0 4 16
5 2 4 8 4 4 35
8 3 8 9 4 1 43
7 2 9 5 1 0 35
4 1 5 1 0 0 13
1 0 1 0 0 0 2


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to get 
1 0 0 0 0 0 −1
0 1 0 0 0 0 −2
0 0 1 0 0 0 3
0 0 0 1 0 0 4
0 0 0 0 1 0 −1
0 0 0 0 0 1 1


so

2x5 + 13x4 + 35x3 + 43x2 + 35x+ 16

(x+ 2)2(x2 + x+ 1)2
=
−1

x+ 2
+
−2

(x+ 2)2
+

3x+ 4

x2 + x+ 1
+
−1x+ 1

(x2 + x+ 1)2

Exercises 7.3:
Several of these problems involve large systems; use of a symbolic computer
algebra system is recommended.

1. Show that a polynomial of degree 3 with at least 4 distinct roots must
be the zero polynomial.

2. The trapezoid rule for approximating
∫ h

0
f(x) dx gives the exact answer

for polynomials of degree less than or equal to 1. The error term is a
multiple of f ′′(z) for some z ∈ (0, h). Use this information to derive
the trapezoid rule with its error term.

3. Simpson’s 3/8 rule approximates integrals using∫ 3h

0

f(x) dx = a1f(0) + a2f(h) + a3f(2h) + a4f(3h) + cf iv(ξ)

where ξ ∈ (0, 3h). It gives exact answers for polynomials of degree 3
or less. Find the coefficients ai and the coefficient for the error c.

4. Find the equation of the circle through the points (1,2), (3,4), (10,1).

5. Find the polynomial of degree 3 through the points (0,0),(1,0),(2,4),
and (3,0).

6. A plane in R3 has an equation of the form Ax+By+C = z. Find the
equation of the plane through the points (1, 2, 3), (2, 1, 3), (1,−3,−5).
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7. In the model of matching pennies, suppose that the participants are
betting on an unfair event, so that the probability that the first player’s
fortune goes from i to i − 1 is 1

4
instead of 1

2
and the probability that

it goes from i to i+ 1 is 3
4
. Rework the example for this random walk

with drift assuming that there are a total of 5 pennies at stake.

8. (Computer problem) A slot machine is designed so that it pays 3 times
your bet with probability 1

4
and nothing with probability 3

4
. You have

$5 and decide to bet until you either have $15 or nothing. Which
strategy gives you a better chance of avoiding going broke: betting the
whole $5 at once, or betting in $1 increments until you either reach $15
or go broke?

9. Give a partial fractions expansion for

−2 + x− 4x2 − x3 + 2x5

(x− 1)2(x2 + 1)2

10. Give a partial fractions expansion for

254 + 96x+ 51x2 + 65x3 − 10x4 + 14x5 − 2x6 + x7

(x− 2)2(x2 + 5)3



Chapter 8

Linear Independence and Bases

In Chapter 6 we discussed the subspace determined by the set of all linear
combinations of a set A of vectors, the linear span of A. Turning it around, we
called A a spanning set for the subspace Span(A). If A contains an element
~a which is a linear combination of other elements of A then Span(A \ {~a} =
Span(A). In this chapter we want to consider the idea of an efficient or
minimal spanning set for a vector space; we call such a set a basis. A basis
will give us a convenient handle with which we can “get hold” of a vector
space. First, however, we must introduce several new ideas.

8.1 Linear Independence

Let V be a vector space and suppose we have a set A = {~a1, . . . ,~an} of vectors
in V . We consider the possibility that a linear combination of the vectors in
A could equal the zero vector:

c1~a1 + . . .+ cn~an = ~0.

Obviously this can always be done by taking all the scalars to be zero:
c1 = . . . = cn = 0. In some cases this is the only way the equation will
hold, but in others it is possible to obtain ~0 as a linear combination of the
vectors in A by using some nonzero scalars. (As trivial examples of these
two possibilities, let A = {~a} where ~a 6= ~0, then c~a = ~0 only if c = 0. Next
let A = {~a1,~a2}, where ~a2 = −~a1; then 1~a1 + 1~a2 = 1~a1 + 1(−~a1) = ~0.)
The distinction between these two possibilities turns out to be of paramount
importance.

173
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Definition 8.1.1 A set A of vectors in V is linearly dependent if and
only if ~0 can be written as a linear combination of vectors in A in which
there are nonzero coefficients. A is linearly independent if whenever a
linear combination of elements of A has c1~a1 + . . . + cn~an = ~0 all of the
coefficients must be 0 ( we have c1 = c2 = . . . = cn = 0).

Example: A linearly independent set

Let A = {[1, 0, 0], [0, 1, 0], [0, 0, 1]} ⊆ R3. Then c1[1, 0, 0] +
c2[0, 1, 0] + c3[0, 0, 1] = [c1, c2, c3], and thus c1[1, 0, 0] + c2[0, 1, 0] +
c3[0, 0, 1] = [0, 0, 0] if and only if c1 = c2 = c3 = 0. Thus A is
independent (we shall frequently omit the adverb “linearly”). ♦

Example: A dependent set

Let A = {~a1,~a2} ⊆ V , where ~a2 = k~a1, k 6= 0. Then

k~a1 + (−1)~a2 = k~a1 + (−1)k~a1

= k~a1 − k~a1

= 0,

and this set A is dependent. ♦

Example: Any set containing ~0 is dependent

Let A = {~0,~a1, . . . ,~an}. Then A is dependent, for

1~0 + 0~a1 + . . .+ 0~an = ~0.

In other words, any set which contains the zero vector is depen-
dent. (By way of contrast, as we have already seen, any set A
which contains exactly one vector is independent if that vector is
nonzero.) ♦

Example: Examples in R3
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Let V = R3, A = {[1, 2, 3], [2, 4, 6]}, B = {[1, 2, 3], [2, 1, 0]}.
Then A is dependent, since

2[1, 2, 3] + (−1)[2, 4, 6] = [2, 4, 6] + [−2,−4,−6] = ~0

but B is independent. For

c1[1, 2, 3] + c3[2, 1, 0] = [c1, 2c1, 3c1] + [2c3, c3, 0]

= [c1 + 2c3, 2c1 + c3, 3c1]

= [0, 0, 0]

can hold only if c1 = 0, and this implies that c3 = 0 also. ♦

Example:

Let V = R3, let A = {~a1 = [1, 2,−1],~a2 = [2, 0, 1],~a3 =
[−1, 1, 0],~a4 = [1, 6,−4]}. We consider first the subset A1 =
{~a1,~a2,~a3}. If

c1~a1 + c2~a2 + c3~a3 = 0,

then
[c1 + 2c2 − c3, 2c1 + 3c3,−c1 + c2] = [0, 0, 0],

or

c1 + 2c2 − c3 = 0

2c1 + 3c3 = 0

−c1 + c2 = 0.

It is easy to show, either by the methods of Chapter 7 or by
solving for c2 and c3 in terms of c1, that the only solution to this
homogeneous system is the trivial one. Thus A1 is an independent
subset. Next, however, consider A2 = {~a1,~a2,~a4}. If

c1~a1 + c2~a2 + c4~a4 = 0,

then we are led to the system

c1 + 2c2 + c4 = 0

2c1 + 6c4 = 0

−c1 + c2 − 4c4 = 0



176 CHAPTER 8. LINEAR INDEPENDENCE AND BASES

Using Gaussian elimination, we find that c1 = −3c4, c2 = c4,
and c4 is arbitrary; or, letting c4 = −1, the linear combination
3~a1 − ~a2 − ~a4 = 0. Thus the set A2 is dependent. ♦

Example: Independence in polynomial spaces

Let V = R[x]n, then the set A = {1, x, x2, . . . xn} is indepen-
dent. To investigate independence of A we need to see if there
are any non-trivial choices of ci so that

c0 + c1x+ c2x
2 + . . .+ cnx

n = 0,

where the right-hand side is the zero polynomial. The question
of independence does not present us with the problem of finding
the n roots of an algebraic equation, but of identifying the zero
polynomial as one which can be represented only by c0 = c1 =
. . . = cn = 0. Since the zero polynomial has all coefficients 0, the
set A is independent. ♦

Example: Any set of three vectors in R2 is dependent

Let A = {~a,~b,~c} ⊆ R2. Then A is linearly dependent, for, if

h~a+ k~b+ l~c = ~0,

then
h[a1, a2] + k[b1, b2] + l[c1, c2] = [0, 0],

or

a1h+ b1k + c1l = 0

a2h+ b2k + c2l = 0,

and this homogeneous system of two equations in three unknowns
will have nontrivial solutions. In a similar way, any set A =
{~a1, . . .~an,~an+1} ⊆ Rn can be shown to be dependent. ♦

Proposition 8.1.1 The empty set is linearly independent.

Proof:
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Since there is no way to write ~0 as a linear combination of
vectors in the empty set (there being no such vectors to work
with), it is vacuously true that every such linear combination has
any property we wish. In particular we can conclude that it must
be trivial.

We now look at a few alternative but equivalent ways of describing a
dependent set.

Proposition 8.1.2 A set A = {~a1, . . . ,~an} ⊆ V is dependent if and only if
some ~aj ∈ A is a linear combination of the other vectors in A.

Proof:

If A is dependent, then scalars c1, . . . cn can be found, not all
zero, such that

c1~a1 + . . .+ cn~an = ~0.

If cj 6= 0, then

cj~aj = −c1~a1 − . . .− cj−1~aj−1 − cj+1~aj+1 − . . .− cn~an

or,

~aj =
−c1
cj
~a1 − . . .+

−cj−1

cj
~aj−1 +

−cj+1

cj
~aj+1 + . . .+

−cn
cj
~an.

On the other hand, if

~aj = k1~a1 + . . .+ kj−1~aj−1 + kj+1~aj+1 + . . .+ kn~an,

then

k1~a1 + . . .+ kj−1~aj−1 + (−1)~aj + kj+1~aj−1 + . . .+ kn~an = ~0,

and, as −1 6= 0, A is dependent.

The next description is very similar to the preceding one, but its special form
will be useful later.

Proposition 8.1.3 An ordered set A = (~a1, . . . ,~an) of vectors in V is de-
pendent if and only if some ~aj ∈ A is a linear combination of the preceding
~ai.
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Proof:

If A is dependent, then, by definition there are scalars such
that

c1~a1 + . . .+ cn~an = ~0,

where the ci are not all zero. Let j be the largest integer such
that cj 6= 0 (thus cj+1 = . . . = cn = 0). Then c1~a1 + . . . + cj~aj =
~0, cj 6= 0, and we can write

~aj =
−c1
cj
~a1 + . . .+

−cj−1

cj
~aj−1.

Going the other way, if ~aj = k1~a1 + . . .+ kj−1~aj−1, then

k1~a1 + . . .+ kj−1~aj−1 + (−1)~aj + 0~aj+1 + . . .+ 0~an = 0,

and A is dependent.

Exercises 8.1:

For problems 1 through 13 Determine whether the following sets of vectors
are independent or dependent:

1. {[1, 0, 3], [3,−4, 3], [2, 9, 0]} in R3

2. {[1, 2, 3, 4], [2, 4, 6, 1], [3, 3, 1, 2], [−1, 2,−3, 1]} in R4

3. {[1, 1, 3], [3, 1, 2], [1, 5,−2], [1, 0, 3]} in R3

4. {x+ 3, x2 − x− 4,−x2 + 2} in R[x]3

5. {sinx, cosx, sin 2x} in C[0,2π]

6. {[4, 6,−2, 3], [2, 1, 3,−2], [1, 0, 1, 0]} in R4

7. {x+ 1, x− 1, x2 + x, x2 − 1, x3 + x2} in R[x]

8. {fk|fk(x) = 1 + kx, k ∈ N} in RR

9. {gk|gk(x) = xk, k ∈ N} in RR
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10. {[0, 1, 1, 1, 0, 1, 1], [1, 1, 0, 0, 1, 1, 0], [1, 0, 1, 0, 1, 0, 1], [1, 1, 0, 0, 0, 1, 1]} in
Z7

2.

11. {[0, 0, 1, 1, 0], [1, 1, 1, 0, 0], [1, 0, 1, 0, 1], [0, 1, 1, 1, 0], [0, 0, 0, 1, 1]} in Z5
2

12. {[1, i], [i, 1]} in C2

13. {[1 + i, 1− i], [2,−i]} in C2

14. Show that if {~a1, . . . ,~an} ⊂ U is linearly independent as a subset of U
and U is a subspace of V then if {~a1, . . . ,~an} ⊂ U is linearly independent
as a subset of V .

15. Show that:

(a) If A is dependent and A ⊆ B then B is dependent

(b) If B is independent and A ⊆ B then A is independent

16. Prove the following: if A = {~a1, . . . ,~am} ⊆ V , ~b 6∈ Span(A), and A is

linearly independent then A∗ = {~a1, . . . ,~am,~b} is linearly independent.

17. Show that if S1 and S2 are linearly independent sets of vectors and

Span(S1) ∩ Span(S2) = {~0}
then S1 ∪ S2 is linearly independent. Give an example to show that it
is not sufficient to have only S1 ∩ S2 = ∅.

18. An ascending chain of sets is a sequence Si with

S1 ⊆ S2 ⊆ · · · ⊆ Sn ⊆ · · ·
Prove that if each of the Si in an ascending chain is linearly independent
then so is

⋃
Si.

19. Prove that a subset of the columns in a matrix is linearly dependent if
and only if that same set of columns is dependent after any elementary
row operation has been performed.

20. Prove that if A is an m × n matrix with m ≥ n, then the columns of
A are linearly independent if and only if the row reduced echelon form
M of A has mii = 1 for all 1 ≤ i ≤ n.

21. Prove that the set of nonzero rows of a matrix in row reduced echelon
form is linearly independent.
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8.2 Bases

We are now in a position to define and elaborate on the idea of an economical
or efficient spanning set of vectors for a vector space V . The property we
need to add to that of a spanning set to make it efficient is independence.

Definition 8.2.1 A basis for a vector space V is a set B of vectors which
spans V and is linearly independent. The plural of basis is bases; we will
often be concerned with several at once.

Example: Bases

The following are bases:

1. V = R3, B = {[1, 0, 0], [0, 1, 0], [0, 0, 1]}, the standard basis

2. V = R3, B = {[1, 1,−1], [1, 0, 1], [0, 1, 1]}
3. V = R[x]n, B = {1, x, x2, . . . , xn}
4. V = R[x], B = {1, x, x2, . . . , xn, . . .}
5. V = Rn, B = {[1, 0, 0, . . . , 0], [0, 1, 0, . . . , 0], . . . , [0, 0, . . . , 0, 1]}.
6. V = {~0}, B = ∅

♦

Theorem 8.2.1 If B is a basis for a vector space V, then each vector ~v in V
can be written as a linear combination of elements of B in exactly one way.

Proof:

Since Span(B) = V we know that every vector can be writ-
ten in at least one way as a linear combination of elements of
B. What we really need to show is uniqueness. Suppose that ~v
can be written as a linear combination in two ways. Since only
a finite number of elements of B are involved in each linear com-
bination, we could list all elements of B that are used in both
linear combinations by using 0 as a coefficient as needed:

~v =
n∑
i=1

hi~bi

=
n∑
i=1

ki~bi
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Subtracting and combining terms gives

~0 =
n∑
i=1

(hi − ki)~bi.

Since the set B is linearly independent this tells us that hi−ki = 0
for every i. Thus our linear combinations giving ~v were not, in
fact, different after all.

Remark: Although by definition a basis is a set of vectors, which means
that the order of listing the vectors should not be relevant, it turns out that
we often do consider the order important. In other words, we will usually
assume that we are working with ordered bases.

If we have a finite ordered basis we can use it to think of any vector as a
column of numbers.

Definition 8.2.2 If B = (~b1,~bn) is an ordered basis for V, then the B-

coordinate representation of ~a = k1
~b1+. . .+kn~bn is the column vector

 k1
...
kn

.

Because column vectors are awkward within text, we often write this column
as [k1, . . . , k2]

t, where the t indicates transpose, an operation which turns rows
into columns.

Example: Finding B-coordinates

We noted above that B = ([1, 1,−1], [1, 0, 1], [0, 1, 1]) is an
ordered basis for R3. We can use it to find B-coordinates for the
vector [4, 5, 6] by solving the system of equations

1x+ 1y + 0z = 4

1x+ 0y + 1z = 5

−1x+ 1y + 1z = 6

Using row reduction on the augmented matrix for this we get 1 1 0 4
1 0 1 5
−1 1 1 6


;

 1 0 0 1
0 1 0 3
0 0 1 4


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so x = 1, y = 3, and z = 4. This tells us that the B-coordinates
of [4, 5, 6] give the column  1

3
4

 ,
the same as the rightmost column in the final matrix in the row
reduction. ♦

In our examples above, most of the bases were finite sets. This case
deserves special mention.

Definition 8.2.3 A vector space V is finite dimensional if and only if V
has a finite basis. If V is not finite dimensional it is infinite dimensional.

The basis given for R[x] above is not finite. A little reflection will suggest
that R[x] cannot have a finite basis. Thus R[x] is infinite dimensional. Re-
ferring again to our examples, we observe that both bases given for R3 have
3 vectors (and that, more generally, the basis for Rn has n vectors). Is this
coincidental? The answer is “No”: all bases for a given finite-dimensional
space must have the same number of vectors. But before we prove it we must
prove a related assertion.

Theorem 8.2.2 Let V be finite dimensional. Let B = {~b1, . . . ,~bn} span V,
let A = {~a1, . . . ,~am} be a linearly independent set. Then n ≥ m.

In other words, any spanning set of vectors must have at least as many vectors
as any independent set.

Proof:

The proof involves introducing, one at a time, the vectors in
A into the set B, but then removing, one at a time, a vector
from this new set. The desired result is obtained by some simple
counting. In the following two columns the properties listed at
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the top of each will hold at each stage, as you should verify.

dependent spans V
n+ 1 vectors n vectors

B1 = (~a1,~b1, . . . ,~bn) B1∗ = {~a1,~b1,~b2, . . . ,~bn−1}
B2 = (~a2,~a1,~b1, . . . ,~bn−1) B2∗ = {~a2,~a1,~b1,~b2, . . . ,~bn−2}

B3 = (~a3,~a2,~a1,~b1, . . . ,~bn−2) B3∗ = {~a3,~a2,~a1,~b1,~b2, . . . ,~bn−3}
...

...

Bm = (~am, . . . ,~a1,~b1, . . . ,~bn−m+1)

Explanation: Since B spans V every vector, hence, ~a1 must be
a linear combination of the vectors in B; thus B1 = {~a1} ∪ B is
linearly dependent. Clearly B1 has n + 1 vectors. Order B1 so
that a1 comes first. Now since B1 is dependent, some vector in
B1 is a linear combination of the preceding vectors. This vector
is clearly not ~a1; it is therefore one of the ~bi’s. We renumber,
if necessary, to make it ~bn. Then ~bn can be deleted from B1 to
give B1∗, a set of n vectors which spans V . We now obtain B2

by adding ~a2 to the beginning of B1∗. Then B2 is a set with
n + 1 vectors, dependent for the same reason B1 is dependent.
Again, as with B1, some vector must be a linear combination of
the preceding ones. This vector cannot be any of the ~ai, since
A is independent, and thus must be a ~bi. Again, we renumber if
necessary to make it ~bn−1 which can then be eliminated, to give
B2∗, a spanning set with n vectors. And so on.

How will the story end? Continue to

Bm = {~am, . . . ,~a2,~a1,~b1, . . . ,~bn−m+1}.

All m of the vectors in A have been introduced and m− 1 of the
~bi have been deleted. Will Bm still include any of the ~bi? It must,
for the sets Bi are always dependent, and the absence of all of
the ~bi would mean Bm = A, an independent set. Thus we must
have n−m+ 1 ≥ 1, or n−m ≥ 0, so n ≥ m.

Now we can easily prove the following fundamental result.

Corollary 8.2.3 If V is finite-dimensional then any two bases for V have
the same number of vectors.
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Proof:

Let B = {~b1, . . . ,~bm} and B′ = {~b′1, . . . ,~b′n} be bases. Then
since B is a spanning set and B′ is independent, we must have
m ≥ n. But, reversing the roles, B′ is a spanning set and B is
independent, so n ≥ m. It follows that m = n.

With the knowledge provided by this corollary we can make more precise
the concept of dimension for finite-dimensional vector spaces.

Definition 8.2.4 The dimension of a finite-dimensional vector space V is
the number of vectors in a basis for V. This will be denoted by dim(V).

Example: Dimension of some familiar spaces

We can now say that dim(R3) = 3, dim(Rn) = n, and dim(R[x]n) =
n+ 1. ♦

Corollary 8.2.4 If V is a vector space of dimension n then any set of n+ 1
or more vectors in V is dependent.

Proof:

If we had a set of n + 1 vectors which was independent then
we would have an independent set with more vectors in it than
there are in a basis, which is a spanning set. This is impossible
by the theorem, so any set of n + 1 (or more) vectors must be
dependent.

Exercises 8.2:

1. Is B = ([1, 0, 0], [1, 1, 0], [1, 2, 3]) an ordered basis for R3? If so, what
are the B-coordinates of [4, 5, 6]?

2. Is B = ([2,−1, 3], [0, 1, 4], [2, 0, 0]) an ordered basis for R3? If so, what
are the B-coordinates of [4, 5, 6]?



8.2. BASES 185

3. Is B = ([2,−1, 3], [0, 1,−4], [2, 0,−1], [1, 1, 1]) an ordered basis for R3?
If so, what are the B-coordinates of [4, 5, 6]?

4. Is B = ([1, 1, 3], [0, 1, 4]) an ordered basis for R3? If so, what are the
B-coordinates of [4, 5, 6]?

5. Is {1, x+ 1, x2 + 2x+ 1, x3 + 3x2 + 3x+ 1} a basis for R[x]3?

6. Is {x− 1, x+ 1, x2 + 2x+ 1, 3x2 + 3x+ 1, x3} a basis for R[x]3?

7. Is {x, x2 − 3x, 5x3 + 3x2 + 1} a basis for R[x]3?

8. Is {x, x2 + x+ 1, x+ 1} a basis for R[x]2?

9. Is {[1 + i, 0], [i, i]} a basis for C2?

10. Is {[1, 0, 1, 0, 1], [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [1, 1, 0, 1, 1], [1, 1, 1, 1, 1]} a ba-
sis for Z5

2?

11. Show that if V is a vector space over C of dimension n then it is a
vector space over R of dimension 2n.

12. Suppose that {~b1, . . . ,~bn} is a basis for Qn. Is it also a basis for Rn?

13. Bases for function spaces can be quite difficult to find. For example,
consider RN, the space of sequences of real numbers. We might try to
get a basis by taking {fi} where

fi(n) =

{
0 if i 6= n
1 if i = n

Show that this family of sequences is independent but that it does not
span the space of all sequences.

14. Show that if {~b1, . . . ,~bn} is a basis then

V = Span({~b1, . . . ,~bk})⊕ Span({~bk+1, . . . ,~bn})

(Recall that V =W⊕U if and only if V =W +U , and W ∩U = {~0}.)

15. Conversely, show that if V =W ⊕U and {~b1, . . . ,~bn} and {~c1, . . . ,~cm}
are bases for W and U , respectively, then {~b1, . . . ,~bn,~c1, . . . ,~cm} is a
basis for V .
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8.3 Finding Bases

There are essentially two different approaches to constructing a basis: start
small with an independent set and build up until you get a spanning set, or
start big with a spanning set and then reduce the size until you get indepen-
dence. Both approaches work. An important tool appeared as Exercise 4 of
Section 5.1. We repeat it here for easy reference.

Proposition 8.3.1 Let A = {~a1, . . . ,~an} be an independent set of vectors

in V and let ~b be a vector not in Span(A). Then A ∪ {~b} = {~a1, . . . ,~an,~b} is
independent.

This is our main tool for building up a basis by finding ever larger inde-
pendent sets. As an example suppose we want to extend the set {[2, 1]} to
a basis for R2. Since [2, 1] is not the zero vector, this is an independent set.
To enlarge it without losing independence we need to find another vector not
in Span({[2, 1]}), that is, not of the form [2c, c]. We choose [1,−1]. The set
{[2, 1], [1,−1]} will be independent. Since it has two elements and R2 has
dimension 2, it should be a basis. Does it span R2?

Suppose that ~b = [b1, b2] is any vector in R2. Can we find c1 and c2 such
that c1[2, 1] + c2[1,−1] = [b1, b2]? This amounts to finding a solution to the
system of equations

2c1 + c2 = b1

c1 − c2 = b2.

It is a routine matter to see that c1 = 1
3
(b1 + b2) and c2 = 1

3
(b − 1 − 2b2) is

the unique solution. Thus B is a basis.
This was almost too simple: R2 isn’t quite big enough; suppose we try

R3. Again we begin with a single vector, say [1, 1,−1]. We now want to find
a vector not in Span({[1, 1,−1]}). The vector [1, 0, 1] will do since it is not
a multiple of [1, 1,−1]. Thus the set A = {[1, 1,−1], [1, 0, 1]} is independent,
but it has only two vectors and we know that the dimension of R3 is three. We
must find a vector not in Span(A). The general form for a vector in Span(A)
is [c1 + c2, c1,−c1 + c2]. One way to find a vector which is not of this form is
to notice that the difference of the first and third components is 2c1, twice
the second component. The vector [2,−1, 2] does not have this property so
it is not in Span(A) and A∪ {[2,−1, 2]} is independent. It remains to verify
that {[1,−1, 1], [1, 0, 1], [2,−1, 2]} spans R3. Since we have an independent
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set of three vectors and we know that the dimension of the space is three, it
seems like this step shouldn’t be necessary. The next proposition shows that
it isn’t.

Proposition 8.3.2 If V is of dimension n and A = {~a1, . . . ,~an} is a linearly
independent set of n vectors, then A is a basis.

Proof:

We need to show that A spans V . Suppose that it doesn’t.
Then there is a vector ~v in V which is not in Span(A). This tells
us that A ∪ {~v} is a linearly independent set with n+1 elements.
Since V has dimension n it has a basis, and hence a spanning set,
with n elements. But any linearly independent set has no more
elements than any spanning set, so n + 1 ≤ n in our case. This
is false, so our assumption that A didn’t span V must have been
wrong.

Using this proposition we can formalize the procedure we used in the two
examples to describe how to extend any linearly independent set to a basis.

Theorem 8.3.3 If A is a linearly independent set of vectors in a finite di-
mensional vector space V, then there is a basis B with A ⊆ B.

Proof:

If A is not a basis then there is a vector in V which is not in
Span(A). Adjoining it to A gives us a linearly independent set.
We can continue this process until our linearly independent set
has dim(V) vectors. We then have a basis.

Another approach to building a basis is to start with a spanning set and
then remove vectors until we get a basis. As an example of this process
consider the set

C = {[1, 2, 3], [1, 0, 1], [2, 2, 4], [0, 1, 1], [0, 2, 3]}

in R3. To see that this is a spanning set for R3 notice that [1, 0, 0] = [1, 2, 3]−
[0, 2, 3], [0, 1, 0] = 3[0, 1, 1]− [0, 2, 3], and [0, 0, 1] = [0, 2, 3]−2[0, 1, 1]. The set
C, however, has five vectors in it and the dimension of the space is three. We
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need to remove two vectors. By Proposition 8.1.3, a set is dependent if and
only if some vector can be written as a linear combination of the previous
vectors. We check in succession: [1, 0, 1] is not a multiple of [1, 2, 3] so we
don’t need to remove it;

[2, 2, 4] = [1, 2, 3] + [1, 0, 1]

so we can remove [2, 2, 4] and not lose the spanning property. Next we see if
[0, 1, 1] is a linear combination of [1, 2, 3] and [1, 0, 1]. It is since

[0, 1, 1] =
1

2
([1, 2, 3]− [1, 0, 1]).

This leaves us with the spanning set

{[1, 2, 3], [1, 0, 1], [0, 2, 3]}.

If we then look to see if the system

x[1, 2, 3] + y[1, 0, 1] + z[0, 2, 3] = [0, 0, 0]

has any nontrivial solutions. The system becomes

x+ y = 0

2x+ 2z = 0

3x+ y + 3z = 0.

From the first two equations we conclude that x = −y = −z. Putting this
into the third we see that all three variables must be 0. Again it seems like
we shouldn’t have had to go to the trouble to show that we had a linearly
independent set, since we had a spanning set with dim(V) vectors.

Proposition 8.3.4 If V has dimension n and A is a spanning set with n
vectors, then A is a basis.

Proof:

We need to show that A is linearly independent. Suppose not,
then there is an element ~a of A which can be removed leaving
a spanning set with n − 1 elements. Now a basis is a linearly
independent set with n elements, and any spanning set has no
fewer elements than any linearly independent set. This tells us
that n − 1 > n, which is false, so A must have been linearly
independent.
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This tells us what we need to do to cut a spanning set down to a ba-
sis: remove elements which can be written as linear combinations of earlier
elements until we have dim(V) elements, at which point we are done.

Theorem 8.3.5 Any finite spanning set S in a finite dimensional vector
space V contains a basis.

Proof:

Suppose our spanning set S has m elements. Then m ≥
dim(V) since any spanning set has at least as many elements
as any linearly independent set. If m = dim(V) then we are done
by the previous proposition. If m > dim(V) then S must be
dependent, so one of its elements is a linear combination of the
others and can be removed to give a spanning set with m − 1
members. Continuing in this fashion we will eventually obtain a
spanning set contained in S which has dim(V) members. That
subset must be a basis.

A word of caution: these propositions require the hypothesis that dim(V) =
n. To show that dim(V) = n we need to exhibit a basis with n vectors.

Combining these theorems with some observations about row reduction
will give us a prescription for how to find bases for vector spaces of the form
Rn: to cut a finite spanning set S of vectors down to a linearly independent
set of vectors, first make a matrix using the set S as columns. Then reduce the
matrix to row reduced echelon form. This does not change the independence
of sets of columns, so the vectors in S which were put into columns which
contain the leading 1’s in each row will form a linearly independent set. Since
the S spans Rn, there will be no rows of 0’s in the row reduced echelon form,
thus there will be n rows with leading 1’s. Thus the independent set formed
by the subset of S consisting of vectors in the columns of the leading 1’s will
form a basis.

Example: Using row reduction to reduce a spanning set to a basis

We attempt to find a basis in the set

{[1, 2, 3], [1, 1, 4], [2, 3, 7], [−1, 1, 0], [0, 1, 2]} ⊂ R3.



190 CHAPTER 8. LINEAR INDEPENDENCE AND BASES

First form a matrix using these vectors as columns: 1 1 2 −1 0
2 1 3 1 1
3 4 7 0 2


then row reduce to get 1 0 1 0 0

0 1 1 0 1
2

0 0 0 1 1
2

 .
The leading 1’s are in columns 1,2,and 4 of the row reduced ech-
elon form, so vectors 1,2,and 4 form the basis. Thus the basis is
{[1, 2, 3], [1, 1, 4], [−1, 1, 0]}. ♦

If you start with a linearly independent set L you can extend to a basis
by using L for the starting columns and adding in a known basis for the last
n columns. Then cut down to a basis. Since this approach always builds the
linearly independent starting from the left, the basis will include the linearly
independent set we started with.

Example: Extend {[1, 2, 4, 7], [1,−2, 1,−3]} to a basis for R4.

We form the matrix
1 1 1 0 0 0
2 −2 0 1 0 0
4 1 0 0 1 0
7 −3 0 0 0 1


then row reduce to get

1 0 0 0 3
19

1
19

0 1 0 0 7
19

− 4
19

0 0 1 0 −10
19

3
19

0 0 0 1 8
19

−10
19

 ,
so the basis is in the first four columns of the original matrix.
Thus the basis is {[1, 2, 4, 7], [1,−2, 1,−3], [1, 0, 0, 0], [0, 1, 0, 0]}.♦
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We can use these theorems to give a prescription for finding the basis for
the sum of two subspaces: to find a basis for U + W take the union of a
basis for U and a basis for W and cut it down to a linearly independent set.
Finding a basis for the intersection of two subspaces is more difficult, though
the next theorem tells us how many basis vectors we need.

Theorem 8.3.6 If U and W are subspaces of a finite dimensional space V
then

dim(U +W) = dim(U) + dim(W)− dim(U ∩W).

Proof:

Start by finding a basis {~b1, . . . ,~bdim(U∩W)} for U ∩W . Next
add vectors ~c1, . . . ,~cdim(U)−dim(U∩W) to get a basis for U . Similarly

we can add vectors ~d1, . . . , ~ddim(W)−dim(U∩W) to get a basis for W .
Notice that the set

B = {~b1, . . . ,~bdim(U∩W),~c1, . . . ,~cdim(U)−dim(U∩W), ~d1, . . . ~ddim(W)−dim(U∩W)}

has dim(U) + dim(W) − dim(U ∩ W) members. We need only
show that it is a basis for U +W .

It is clear that B spans U +W : given ~u + ~w we can write
~u as a linear combination of the ~b’s and ~c’s and ~w as a linear
combination of the ~b’s and ~d’s. Adding these linear combinations
gives ~u+ ~w as a linear combination of elements of B.

Independence of B is also clear: since

{~b1, . . . ,~bdim(U∩W),~c1, . . . ,~cdim(U)−dim(U∩W)}

is independent,
{~d1, . . . ~ddimW−dim(U∩W)}

is independent, and none of the ~d’s are in U .

Example: Finding a basis for the sum of two subspaces

Let V = R[x]4, let U be the subspace of polynomials whose
value at 3 is 0, and let W be the subspace of polynomials whose
coefficients for even powers of x are all 0. The set {x4 − 81, x3 −
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27, x2 − 9, x − 3} is a basis for U and {x3, x} is a basis for W .
We obtain a spanning set for U +W by taking the union of these
bases. However, the set {x4 − 81, x3 − 27, x2 − 9, x − 3, x3, x} is
dependent (x = 1(x − 3) + 1

9
(x3 − 27) − 1

9
x3), so we do not yet

have a basis. If we remove x we do get an independent set. So
dim(U +W) = 5.

Now from the bases we have found we can see that dim(U) = 4
and dim(W) = 2, so the theorem tells us that

dim(U ∩W) = dim(U) + dim(W)− dim(U +W)

= 4 + 2− 5

= 1

Thus to find a basis for U ∩ W we need only find one non-zero
element. The polynomial x3 − 9x will do. ♦

One more observation is useful. For finite dimensional vector spaces over
a field the dimension really tells the whole story. The following theorem
shows why.

Theorem 8.3.7 If V and W are vector spaces of dimension n over a field F
then V and W are isomorphic; that is, there is a linear transformation from
V to W which has a linear inverse.

Proof:

Pick ordered bases for both spaces. Define a linear transfor-
mation by taking the ith basis vector in V to the ith basis vector in
W . Since any vector in V is a linear combination of basis vectors
this defines the linear transformation uniquely. The inverse is the
linear transformation which takes the ith basis vector ofW to the
ith basis vector of V .

In our discussion of bases we have limited ourselves to finite dimensional
vector spaces for the most part. Indeed, there is an interesting question left
hanging: does every vector space have a basis? The answer is yes, provided
your foundations of mathematics allow use of the axiom of choice. (See
Thomas J. Jech, The Axiom of Choice, North Holland, 1973, p. 12) This
is the first place in most student’s careers that the axiom of choice actually
matters. The proof is developed in problem 22 below.
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Exercises 8.3:

1. Extend {[3,−1]} to a basis for R2.

2. Extend {[1, 2,−1]} to a basis for R3.

3. Extend {x− 1} to a basis for R[x]2.

4. Extend {x− 1, x2 + 1} to a basis for R[x]3.

5. Extend {[1, 1,−1, 1], [2,−1, 0, 1]} to a basis for R4.

6. Cut the spanning set {[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]} down to a
basis for R3.

7. Cut the spanning set {[1,−2, 3], [−4, 5, 6], [7, 8,−9], [10,−11, 12]} down
to a basis for R3.

8. Cut the spanning set

{[1, 0, 4, 0], [−2, 1,−8, 0], [−5, 3,−20, 0], [−4, 0, 1, 2], [−10, 1,−6, 4], [−2, 0, 0, 1]}

down to a basis for R4.

9. Cut the spanning set {1, x+ 1, 2x+ 3, x2 + 1, x3 + x2, x3 + 2} down to
a basis for R[x]3.

10. Cut the spanning set {x3 + x2 + x + 1, x3 + 2x2 + x, x − 1, x2 + x +
1, x3 + x+ 1, 2x3 + x2 − 2} down to a basis for R[x]3.

11. Give bases for U +W and U ∩W : V = R3,
U = Span({[1, 1, 1], [0, 1, 2]}),
W = Span({[1, 2, 3], [1, 0, 1]})

12. Give bases for U +W and U ∩W : V = R5,
U = Span({[1, 1, 1, 1, 1], [0, 1, 2, 0, 1], [1, 2, 3, 1, 2]}),

W = the row space of


1 2 3 4 5
1 1 1 1 2
0 1 1 0 1
1 0 1 0 1


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13. Give bases for U +W and U ∩W : V = R5,
U = Span({[1, 1, 1, 1, 1], [0, 1, 2, 0, 1], [1, 2, 3, 1, 2]}),
W = the solution space of

1 2 3 4 5
1 1 1 1 2
0 1 1 0 1
1 0 1 0 1



x1

x2

x3

x4

x5

 =


0
0
0
0
0


14. Prove that a basis is a minimal spanning set.

15. Prove that a basis is a maximal linearly independent set.

16. Prove: if W < V and V is finite dimensional then dim(W) ≤ dim(V).
If equality holds then W = V .

17. Give examples to show that if W1 and W2 are both subspaces of a
vector space V of dimension n with dim(W1) = dim(W2) thenW1 need
not equal W2.

18. Show that the row space of M is the same as the row space of the
row-reduced echelon form of M.

19. Show that the non-zero rows of the row-reduced echelon form of M
form a basis for the row space.

20. Use the previous two problems to find bases for the row spaces of the
following matrices:

(a)

 1 2 3
4 5 6
7 8 9


(b)

 3 1 4
−1 1 1
4 4 10



(c)


1 4 3
2 1 1
1 1 1
1 4 5


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(d)


1 0 1
2 1 1
3 2 1
6 2 3


21. Use row reduction to find a basis for the space spanned by the set

S = {[2, 4, 6, 1], [3, 1, 1, 0], [1, 0, 1, 1], [0,−1,−6,−2], [1,−1, 3, 4]}

22. (Project Problem) A proof that every vector space has a basis: Zorn’s
Lemma states that if S is a nonempty family of sets in which every
chain S1 ⊆ S2 ⊆ . . . has an upper bound in S, then S has a maximal
element. Zorn’s Lemma is equivalent to the axiom of choice. Let S be
the set of linearly independent subsets of V .

(a) Show that S is always nonempty, no matter what V is.

(b) Show that any ascending chain S1 ⊆ S2 ⊆ . . . has an upper bound.

(c) Apply Zorn’s lemma. Why does this give you a basis for V?
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Chapter 9

Matrices for Linear
Transformations

In Chapter 8 we saw that the use of a basis made it possible to represent
all vectors in a vector space using only a few vectors. If we can show that a
linear transformation is completely determined by its value on basis vectors
we will have reduced considerably the amount of work needed to specify a
linear transformation. We can record the information in a matrix. This
chapter will show how to find the matrix for a linear transformation with
respect to choices of ordered basis for the domain and codomain. We will see
that operations on linear transformations carry over exactly to operations on
matrices

9.1 Using Bases to Get Matrices

When you learned how to differentiate polynomials your first step was to
learn that the derivative of xn is nxn−1. Then you used the linearity of
the differentiation operator and this fact to find the derivative of finite linear
combinations of xn’s. Now, {xn|n ∈ Z} is a basis for the space of polynomials,
so what you did was find out how the differentiation operator behaved on a
basis and then use linearity to extend the operator to the whole space.

The example of differentiation uses an infinite dimensional vector space.
For finite dimensional vector spaces this same property of linear transforma-
tions will allow us to represent linear transformations very concretely using
matrices.

197



198 CHAPTER 9. MATRICES FOR LINEAR TRANSFORMATIONS

Theorem 9.1.1 If L : V → W is a linear transformation and if {~bi|i ∈ I}
is a basis for V, and if L(~bi) is known for each ~bi, then L(~v) can be calculated
for any ~v ∈ V.

This is often stated as “a linear transformation is completely determined
by its action on a basis.”
Proof:

We need to find the value L(~v). To do so we use the fact that

{~bi|i ∈ I} is a basis for V to write ~v as a linear combination of
basis elements:

~v =
n∑
i=1

vi~bi.

Since L is linear

L(
n∑
i=1

vi~bi) =
n∑
i=1

L(vi~bi).

Now L preserves scalar multiplication so

L(~v) =
n∑
i=1

L(vi~bi) =
n∑
i=1

viL(~bi).

Since we know the values of L(~bi) this gives us the value of L(~v).

Example: A linear transformation on R2

Suppose L : R2 → R2 is linear and L[1, 0] = [2,−1] and
L[0, 1] = [3, 6]. To find L[x, y] we note that [x, y] = x[1, 0]+y[0, 1]
so

L[x, y] = xL[1, 0] + yL[0, 1]

= x[2,−1] + y[3, 6]

= [2x+ 3y,−x+ 6y].

♦
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In the particular case where both V and W are finite dimensional we
can use this theorem to obtain a particularly convenient representation for
L. Start by choosing an ordered basis B = (~b1, . . . ,~bn) for V (which thus
has dimension n) and an ordered basis C = (~c1, . . . ,~cm) for W (which thus
has dimension m). We know that L is completely determined by the values

L(~bi), i = 1 . . . n. Let us express these values in terms of the basis for W .

L(~b1) = l11~c1 + l21~c2 + . . .+ lm1~cm

L(~b2) = l12~c1 + l22~c2 + . . .+ lm2~cm
...

...

L(~bn) = l1n~c1 + l2n~c2 + . . .+ lmn~cm

This gives us a matrix L = [[lij]] which has as its jth column the C-coordinates
of the image of the jth basis vector. The knowledge of which ordered bases
we are using and the matrix L should allow us to calculate L(~v) for any ~v.

Definition 9.1.1 The matrix L for the linear transformation L : V → W
with respect to ordered bases B = (~b1, . . . ,~bn) for V and C = (~c1, . . . ,~cm) for
W has as its jth column the C-coordinates of the image of the jth basis vector
in B.

Example: A matrix using the standard bases

Suppose the linear map L takes [x, y, z] to [2x, y+ z], then us-
ing the ordered bases ([1, 0, 0], [0, 1, 0], [0, 0, 1]) for R3 and ([1, 0], [0, 1])
for R2 (the standard bases), we need to find

L([1, 0, 0]) = [2, 0] = 2[1, 0] + 0[0, 1]

L([0, 1, 0]) = [0, 1] = 0[1, 0] + 1[0, 1]

L([0, 0, 1]) = [0, 1] = 0[1, 0] + 1[0, 1]

Thus the matrix L is [
2 0 0
0 1 1

]
.

Notice that the number of rows is the same as the dimension of
the codomain R2 and the number of columns is the same as the
dimension of the domain R3. Once we have the matrix for L we
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should be able to use it to find the value of L at any vector in the
domain. Suppose we want to find L([2, 3, 4]). The theorem says
that we should write [2, 3, 4] in terms of the ordered basis for R3:
[2, 3, 4] = 2[1, 0, 0] + 3[0, 1, 0] + 4[0, 0, 1]. We then take the values
of L on the basis vectors to get

L([2, 3, 4]) = 2L([1, 0, 0]) + 3L([0, 1, 0]) + 4L([0, 0, 1])

= 2[2, 0] + 3[0, 1] + 4[0, 1]

= [4, 7].

♦

It is tedious to have to think this through each time so we define an
operation, multiplication of an m by n matrix and an n by 1 column vector.

Definition 9.1.2 The ith entry of M~xt (the t indicates transpose: use a
column instead of a row) is defined to be

M~xt =
n∑
j=1

mijxj.

Using this definition we observe that

[
2 0 0
0 1 1

] 2
3
4

 =

[
4
7

]

If we want L([1,−3, 2]) we calculate

[
2 0 0
0 1 1

] 1
−3
2

 =

[
2
−1

]
In the general case the matrix L for L : V → W with respect to ordered

bases B = (~b1, . . . ,~bn) for V and C = (~c1, . . . ,~cm) for W is the m× n matrix

whose jth column is the C-coordinate representation of L(~bj), that is, the

entry lij given by the coefficient of ~ci in the representation of L(~bj) in terms
of the basis C for W . Thus

L(~bj) = l1j~c1 + . . .+ lmj~cm.
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To find the C-coordinate representation of L(~a) we represent ~a in terms of
the basis B and calculate

~a =
n∑
i=1

ai~bi

L(~a) = L(
n∑
i=1

ai~bi)

=
n∑
i=1

L(ai~bi)

=
n∑
i=1

aiL(~bi)

=
n∑
i=1

ai(
m∑
j=1

lij~cj)

=
m∑
j=1

(
n∑
i=1

ailij

)
~cj

The last step reverses the order of summation, noting that in adding a rect-
angular array of numbers one can either add across rows and then down or
add down columns and then across. The result is precisely what we get if we
calculate L[a1, . . . , an]t using the rule for multiplication of a matrix times a
column vector. This is summarized in the following corollary.

Corollary 9.1.2 If L : V → W has matrix L with respect to the ordered
bases B = (~bi)i=1...n and C = (~ci)i=1...m, then the C-coordinates of L(

∑n
i=1 ai

~bi)
may be calculated by taking L[a1, . . . an]t.

Example: A matrix for differentiation

Let d : R[x]3 → R[x]2 be the differentiation operator for poly-
nomials of degree at most 3. The natural ordered basis for R[x]3
is (x3, x2, x, 1) and for R[x]2 we choose (x2, x, 1). The matrix for
d will be a 3 × 4 matrix whose i, j entry is the coefficient of the
ith basis vector in the image of the jth basis vector. As in the
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previous example we calculate

d(x3) = 3x2 + 0x+ 0

d(x2) = 0x2 + 2x+ 0

d(x) = 0x2 + 0x+ 1

d(1) = 0x2 + 0x+ 0

so that the matrix is  3 0 0 0
0 2 0 0
0 0 1 0


To use this to calculate the derivative of 3x3 + 2x2 − x + 1 we
note that this polynomial is represented by the column vector
[3, 2,−1, 1]t when we use the ordered basis (x3, x2, x, 1) and then
calculate  3 0 0 0

0 2 0 0
0 0 1 0




3
2
−1
1

 =

 9
4
−1


to get d(3x3 + 2x2 − x+ 1) = 9x2 + 4x− 1. ♦

We adopted the artificial way of writing the sums in calculating the image
of basis vectors so that the matrix representation would use multiplication on
the left. This makes L(~a) represented by L[a1, . . . , an]t, a parallel notation.
Since it is more common, we write our matrices on the left. Some texts
use multiplication on the right in their representations. This transposes
everything and makes matrix multiplications go in the same direction that
we usually write our diagrams, thus it eliminates some of the artificiality.
Analysts tend to use multiplication on the left (following the convention used
for function composition in calculus); some algebraists (particularly those
who work a lot with permutation groups) write the matrix on the right, so
that matrix multiplication will follow their diagrams. Students should be
careful when looking at other texts to be sure they know which convention
is being used.

Example: Leslie matrices
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Linear transformations are frequently used to model the growth
of populations whose population dynamics vary with age. The
population to be modeled is broken into age groups so that in
one time period of the model each individual advances from one
age group to the next. The population is then represented as
a vector [p1(t), p2(t), . . . , pn(t)] listing the population from the
youngest age group to the oldest. The change in the population
comes about through mortality and births. In each period some
of the individuals do not survive to the next census, the propor-
tion who do survive from age group i to age group i+ 1 is given
as a survival rate si. Thus pi+1(t+ 1) = sipi(t) for i ≥ 1.

To get p1(t+1) we need to consider births. Since the birthrate
also depends on age, we also get a rate bi giving the number of
live births per individual in the time period of an age class for
individuals in age class i. Then

p1(t+ 1) =
n∑
i=1

bipi(t).

Since birth rates are appropriate only for females, models of
this kind for human population usually model the female popula-
tion. The dynamics of the population are then given by a linear
transformation which has a matrix of the form

b1 b2 . . . bn−1 bn
s1 0 . . . 0 0
0 s2 . . . 0 0
...

. . .
...

0 0 . . . sn−1 0


with respect to the standard basis. As an example let us look at
an age structured model of the female population of the U.S.

The U.S. Bureau of the Census provides massive amounts of
data about the U.S. population in the Statistical Abstract of the
United States, published every five years. Much of its data groups
the population in five year age spreads. The data for females in
1992 for births and deaths comes from the 1995 edition; the other
columns are calculated:
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Age deaths 5 year births female birth 1994
per survival per rate for female

100,000 rate 1000 5 years population
0–4 889.0 .95555 0 0 9633

0-1 850
1-4 39.0

5–9 17.5 .999125 0 0 9201
10–14 17.5 .999125 1.4 .0035 9150
15–19 47.2 .99764 60.7 .15175 8580
20–24 47.2 .99764 114.6 .2865 9015
25–29 106.1 .994695 117.4 .2935 9558
30–34 106.1 .994695 80.2 .2005 11119
35–39 106.1 .994695 32.5 .08125 11040
40–44 106.1 .994695 5.9 .01475 9970
45–49 558.8 .97206 0.3 .00075 8498
From Tables 120 and 127 89 16

The survival rate was obtained by taking

100000− 5(deaths per 100000)

100000

and the female birth rate for 5 years used .0025(births per 1000)
to give female births per individual for a 5 year period. This
makes the somewhat inaccurate assumption that half the births
were female (the actual figures for 1992 were 16.9 male babies to
15.2 females).

This gives the following Leslie matrix L for the dynamics of
the U.S. female population:

0 0 .0035 .15175 .2865 .2935 .2005 .08125 .01475 .00075
.95555 0 0 0 0 0 0 0 0 0

0 .999125 0 0 0 0 0 0 0 0
0 0 .999125 0 0 0 0 0 0 0
0 0 0 .99764 0 0 0 0 0 0
0 0 0 0 .99764 0 0 0 0 0
0 0 0 0 0 .994695 0 0 0 0
0 0 0 0 0 0 .994695 0 0 0
0 0 0 0 0 0 0 .994695 0 0
0 0 0 0 0 0 0 0 .994695 0





9.1. USING BASES TO GET MATRICES 205

To predict the population in 1999 using these dynamics we
form L~P , where ~P is the column vector giving the 1994 popula-
tion. This gives

L~P =



10002
9205
9193
9142
8560
8994
9507
11060
10981
9917


♦

Exercises 9.1:
For problems 1–10 you are given a linear transformation, bases for the domain
and codomain, and a vector ~v ; give the matrix for each with respect to the
given bases and then use it to find the value of the linear transformation at
~v:

1. f : R2 → R2 with f [x, y] = [x+y, x−y] where the basis for the domain
is ([1, 0], [0, 1]) and for the codomain ([1, 0], [0, 1]) and ~v = [4, 7].

2. f : R2 → R2 where f [x, y] = [x+y, x−y] basis for domain: ([1, 0], [1, 1])
basis for codomain: ([1, 0], [0, 1]) and ~v = [4, 7].

3. f : R2 → R2 where f [x, y] = [x+y, x−y] basis for domain: ([1, 0], [1, 1])
basis for codomain: ([1, 0], [1, 1]) and ~v = [4, 7].

4. L : R4 → R3 where L[x, y, z, w] = [x, y, z + 3w]
basis for domain: ([1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1])
basis for codomain: ([1, 0, 0], [0, 1, 0], [0, 0, 1]) and ~v = [2, 1,−3, 4]

5. L : R4 → R3 where L[x, y, z, w] = [x, y, z + 3w]
basis for domain: ([1, 0, 0, 0], [1, 1, 0, 0], [1, 2, 3, 0], [0, 0, 0, 1])
basis for codomain: ([1, 0, 0], [1, 1, 0], [0, 1, 1]) and ~v = [2, 1,−3, 4]
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6. L : R4 → R3 where L[x, y, z, w] = [x, y, z + 3w]
basis for domain: ([1, 1, 1, 0], [1, 1, 0, 1], [1, 0, 1, 1], [0, 1, 1, 1])
basis for codomain: ([1, 1, 0], [1, 0, 1], [0, 1, 1]) and ~v = [2, 1,−3, 4]

7. L : R3 → R4 where L[x, y, z] = [x+ 2z, y − z, x+ y + z, x− y − z]
basis for domain: ([1, 0, 0], [0, 1, 0], [0, 0, 1])
basis for codomain: ([1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]) and ~v =
[1, 2, 3]

8. L : R3 → R4 where L[x, y, z] = [x+ 2z, y − z, x+ y + z, x− y − z]
basis for domain: ([1, 1, 1], [1, 1, 0], [1, 0, 1])
basis for codomain: ([1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 1, 0], [0, 0, 0, 2]) and ~v =
[1, 2, 3]

9. L : R3 → R4 where L[x, y, z] = [x+ 2z, y − z, x+ y + z, x− y − z]
basis for domain: ([1, 2, 1], [1, 1, 2], [1, 2, 1])
basis for codomain: ([1, 0,−1, 0], [0, 1, 0,−1], [0,−1, 1, 0], [−1, 0, 0, 2]) and
~v = [1, 2, 3]

10. s : R[x]3 → R[x]3 with s(p(x)) = p(x+3) basis for domain: (x3, x2, x, 1)
basis for codomain: (x3, x2, x, 1) and ~v = x3 + 3x2 − 2x+ 1

For problems 11–13, suppose that T is a linear transformation:

11. T : R3 → R2, T [1, 0, 0] = [3, 2], T [0, 1, 0] = [1, 4], T [0, 0, 1] = [0, 0].
What is T [1, 2, 3]?

12. T : R→R3, T [1] = [6,−1, 4]. What is T [s]?

13. T : R4 → R2, T ([1, 1, 1, 1]) = [1, 2], T [0, 1, 1, 1] = [2, 2], T [0, 0, 1, 1] =
[3, 6], T [0, 0, 0, 1] = [0,−3]; what is T [1, 2, 3, 4]?

14. The maps L : R2 → R2 taking [x, y] to [3x, x − 2y] and S : R2 → R3

taking [x, y] to [x, x+ y, 2x+ 2y] are linear.

(a) Write down the matrices for L and S with respect to the ordered
bases ([1, 0], [0, 1]) for R2 and ([1, 0, 0], [0, 1, 0], [0, 0, 1]) for R3.

(b) SL : R2 → R3 is a map found by first doing L and then doing S .
Check that it is linear.

(c) Write down the matrix for SL. Can you see how it is related to
the matrices for S and L?
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15. (Project Problem) Using the data in the example on Leslie matrices

(a) What is the predicted age structured population of in 2004?

(b) What is happening to the total population of women in this model
over the years 1994–2014?

(c) The bulge in the population in age groups 30–39 in 1994 is the the
remnant of the post war baby boom. How does the distribution of
ages change as this bulge works its way through the population?

(d) How could you improve the accuracy of the predictions made by
this model of the U.S. population ?

9.2 Operations on Matrices and Linear Trans-

formations

In the last section we saw how choices of ordered bases for the domain and
codomain of a linear transformation allowed us to represent it by a matrix.
That representation depended on knowing that the action of a linear trans-
formation on a basis is all that we need to know to calculate its action on
any vector. We found that we could make the description more concrete by
defining the multiplication of a matrix times a column vector, an operation
which then became the prototype for linear transformations. In this section
and the next we will look at other operations involving linear transformations
and operations on matrices. Again the choice of ordered bases will give us the
means to relate linear transformations and matrices. This makes it possible
to prove theorems about matrices easily by proving theorems about linear
transformations and makes it possible to manipulate linear transformations
concretely in terms of matrices.

The first thing that we need to do is notice that we can add linear trans-
formations and multiply by scalars and get new linear transformations.

Theorem 9.2.1 For any vector spaces V and W, the set of all linear trans-
formations from V to W, written Hom(V ,W), is a vector space.

Proof:

First we note that the set of all functions from V toW is a vec-
tor space with (F +G)(~v) = F (~v)+G(~v) and (kF )(~v) = k(F (~v))
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giving the operations and all of the axioms for a vector space fol-
lowing directly from the axioms forW . We will show that the set
of linear transformations forms a subspace of the space of all func-
tions from V toW . To do so we need only show that Hom(V ,W)
is not empty and that it is closed under the operations addition
and multiplication by a scalar (that is, that the sum of two linear
transformations is a linear transformation and that a constant
times a linear transformation is a linear transformation). That
Hom(V ,W) is nonempty is easy: the constant map with value ~0
is linear, so it is in Hom(V ,W). To see that the sum of linear
maps is again linear let F : V → W and G : V → W be linear.
Then

(F + G)(~v1 + ~v2) = F (~v1 + ~v2) + G(~v1 + ~v2)

= F (~v1) + F (~v2) + G(~v1) + G(~v2)

by the linearity of F and G . But this in turn equals F (~v1) +
G(~v1) + F (~v2) + G(~v2) by commutativity. Thus

(F + G)(~v1 + ~v2) = (F + G)(~v1) + (F + G)(~v2).

Similarly

(F + G)(k~v) = F (k~v) + G(k~v) = kF (~v) + kG(~v) = k(F + G)(~v).

A similar pair of calculations shows that if r is a scalar and F :
V → W is linear then so is rF :

(rF )(~v1+~v2) = r(F (~v1+~v2)) = r(F (~v1)+F (~v2)) = rF (~v1)+rF (~v2)

and

(rF )(k~v) = r(F (k~v)) = r(kF (~v)) = (rk)F (r) = k(rF )(~v).

In the last section we saw how to establish a correspondence between
matrices and linear transformations by making use of ordered bases. We
now want to show that this correspondence respects the vector space oper-
ations. Recall that matrices form a vector space using addition and scalar
multiplication componentwise.
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Theorem 9.2.2 If F : V → W and G : V → W are linear transformations
and (~b1 . . .~bn) and (~c1 . . .~cm) are ordered bases for V and W, respectively,
then the matrix corresponding to F + G with respect to the given bases is the
sum of the matrix corresponding to F and the matrix corresponding to G.

Proof:

We get the jth column of the matrix A corresponding to F +G
by writing

(F + G)(~bj) =
m∑
i=1

aij~ci.

Now

F (~bj) =
m∑
i=1

fij~ci and G(~bj) =
m∑
i=1

gij~ci

tell us how to get the ith column of the matrices corresponding
to F and G . Adding gives

(F + G)(~bj) =
m∑
i=1

fij~ci +
m∑
i=1

gij~ci

=
m∑
i=1

(fij + gij)~ci.

Now a vector can be written only one way in terms of a given
basis so the fact that

m∑
i=1

aij~ci =
m∑
i=1

(fij + gij)~ci

tells us that aij = fij + gij . Thus the matrix for a sum is the
sum of the matrices.

Theorem 9.2.3 If F : V → W is linear and (~b1 . . .~bn) and (~c1 . . .~cm) are
ordered bases for V and W then the matrix for rF with respect to the given
bases is r times the matrix for F with respect to the given bases.

Proof:
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Again recall that the ith column of the matrix A corresponding
to rF is obtained by writing

rF (~bi) =
m∑
i=1

aij~ci.

But

(rF )(~bi) = r(F (~bi))

= r

m∑
i=1

fij~cj

=
m∑
i=1

rfij~cj.

Thus aij = rfij.

Linear transformations have another way that they can be combined:
composition. For example if f : R2 → R3 takes [x, y] to [x, x + y, y] and
s : R3 → R takes [x, y, z] to x+ y − 2z then

(s ◦ f)([x, y]) = s(f [x, y])

= s [x, x+ y, y]

= [x+ x+ y − 2y]

= 2x− y

defines a linear transformation from R2 to R. The general case is given in
the next proposition:

Proposition 9.2.4 If f : V → W and g :W → U are linear transformations
then so is g ◦ f : V → U .

Proof:

We need to show that

(g ◦ f )(~v1 + ~v2) = (g ◦ f )(~v1) + (g ◦ f )(~v2)

and that
(g ◦ f )(k~v) = k(g ◦ f )(~v).
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Both are easy:

(g ◦ f )(~v1 + ~v2) = g(f (~v1 + ~v2))

= g(f (~v1) + f (~v2))

= g(f (~v1)) + g(f (~v2))

= (g ◦ f )(~v1) + (g ◦ f ))(~v2)

and

(g ◦ f )(k~v) = g(f (k~v))

= g(kf (~v))

= kg(f (~v))

= k(g ◦ f )(~v).

To find the matrix analogue to composition for linear transformations we
need to recall some of the details of how we got the matrix for a linear trans-
formation. Suppose f : V → W and g : W → U are linear transformations
and (~b1 . . .~bn), (~c1 . . .~cm) , and (~d1 . . . ~dp) are ordered bases for V , W and U ,

respectively. Then the matrix for f with respect to the bases (~b1 . . .~bn) and
(~c1 . . .~cm) has m rows and n columns with each column given by finding

f (~bj) =
m∑
i=1

Fij(~ci).

To find f (~v) we write ~v as a column vector using its representation in terms of

the basis (~b1 . . .~bn) and then multiply on the left by the matrix F. This gives
a hint how to define the operation on matrices corresponding to composition:
simply multiply each column of the matrix corresponding to f by the matrix
corresponding to g , written on the left.

Definition 9.2.1 The product GF of an m×n matrix F and a p×m matrix
G is the p× n matrix with ij entry given by

m∑
k=1

gikfkj.
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In order for multiplication of two matrices to be defined the number of
columns of the first must equal the number of rows of the second.

G F = GF
p×m m× n p× n

The answer has the same number of rows as the first and the same number
of columns as the second.

Example:

 1 2
3 4
5 6

[ −1 0 1
0 1 1

]
=

 −1 2 3
−3 4 7
−5 6 11


♦

Example:

[
1 0 1
2 −1 3

] 1 1
0 2
3 1

 =

[
4 2
11 3

]
♦

Example:

[
1 1
0 1

] [
1 2
3 4

]
=

[
4 6
3 4

]
[

1 2
3 4

] [
1 1
0 1

]
=

[
1 3
3 7

]
Notice that these two results are not equal: matrix multiplication
is not commutative. ♦

We have carefully defined matrix multiplication so that the next theorem
will be true.



9.2. OPERATIONS ON MATRICES AND TRANSFORMATIONS 213

Theorem 9.2.5 If f : V → W and g : W → U are linear transformations,
(~b1 . . .~bm) an ordered basis for V, (~c1 . . .~cn) an ordered basis for W, and

(~d1 . . . ~dp) an ordered basis for U , then the matrix for g ◦ f with respect to

the bases (~b1 . . .~bm) and (~d1 . . . ~dp) is the product of the matrix for g with

respect to the bases (~c1 . . .~cn) and (~d1 . . . ~dp) and the matrix for f with respect

to the bases (~b1 . . .~bm) and (~c1 . . .~cn).

Proof:

We need to calculate the value of (g ◦ f )~bj. We know that

f (~bj) =
n∑
i=1

fij~ci

by the way the matrix F = (fij) for f with respect to the bases

(~b1 . . .~bm) and (~c1 . . .~cn) is defined. To find (g◦f )(~bj) we calculate

(g ◦ f )(~bj) = g(f (~bj)

= g(
n∑
i=1

fij~ci)

=
n∑
i=1

fijg(~ci)

=
n∑
i=1

fij

(
p∑

k=1

gki~dk

)
using linearity and the definition of the matrix for g . Continuing
we get

g ◦ f (~bi) =
n∑
i=1

(
p∑

k=1

fijgki~dk

)

=

p∑
k=1

(
n∑
i=1

fijgki

)
~dk

So

(g ◦ f)kj =
n∑
i=1

fijgki =
n∑
i=1

gkifij

is the kj entry in the product GF.
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After a bit of practice matrix multiplication is not too difficult an oper-
ation to remember and calculate. The definition, however, is very awkward
to work with for proving properties of matrix multiplication. For instance:

Proposition 9.2.6 For m× n matrices A and B, and p×m matrix C we
get

C(A + B) = CA + CB,

the distributive law for matrix multiplication over matrix addition.

Proof:

We calculate both sides:

(C(A + B))ij =
m∑
k=1

cik(akj + bkj)

=
m∑
k=1

(cikakj + cikbkj)

=
m∑
k=1

cikakj +
m∑
k=1

cikbkj

= (CA + CB)ij

This isn’t too bad, provided you are very comfortable with the manipu-
lation of sums. Associativity, however, is horrendous:

Proposition 9.2.7 For matrices A of size m × n, B of size n × p, and C
of size p× q we get A(BC) = (AB)C.

Proof:

We need to show

A(BC)ij = (AB)Cij

that is, that

n∑
k=1

aik(BC)kj =
n∑
k=1

aik

p∑
h=1

bkhchj
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is equal to

p∑
h=1

(AB)ihchj =

p∑
h=1

(
n∑
k=1

aikbkh)chj.

This is a matter of applying generalized distributivity in the reals
to get:

n∑
k=1

aik(BC)kj =
n∑
k=1

aik

p∑
h=1

bkhchj

=
n∑
k=1

p∑
h=1

aik(bkhchj)

then apply associativity:

=
n∑
k=1

p∑
h=1

(aikbkh)chj.

If we then reverse the order of summation we get

=

p∑
h=1

n∑
k=1

((aikbkh)chj).

Again we apply generalized distributivity for the reals to get

=

p∑
h=1

(
n∑
k=1

aikbkh)chj,

as needed.

This proof is correct, but rather ugly and unenlightening. A much more
elegant proof is based on the fact that the correspondence between linear
transformations and matrices works for composition too. Associativity of
composition is easy to prove:

Proposition 9.2.8 Composition of linear maps is associative: if f : V →
W, g :W → U and h : U → X are all linear then the linear transformations
h ◦ (g ◦ f ) and (h ◦ g) ◦ f are equal.
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Proof:

Function composition is always associative. All we need to do
is check that both ways of composing always give the same result:

(h ◦ (g ◦ f ))(~v) = h(g(f (~v)))

= (h ◦ g)(f (~v))

= ((h ◦ g) ◦ f )(~v).

Corollary 9.2.9 Matrix multiplication is associative.

Proof:

Matrix multiplication represents composition of linear trans-
formations. Since composition is associative, matrix multiplica-
tion must also be.

These theorems contain the core of linear algebra: Operations on matrices
can be understood in terms of operations on the linear transformations they
represent, and operations on linear transformations can be made concrete
and calculated using matrices. Choice of bases for domain and codomain
determines an isomorphism of algebras between linear transformations and
matrices: sums and scalar multiples are preserved and reflected, so the vector
space of linear transformations is isomorphic to the vector space of matrices
and matrix multiplication captures the composition operation exactly as well.

Exercises 9.2:

1. Let F : R2 → R3 take [x, y] to [x + y, y − x, 3y] and G take [x, y] to
[−2y, 3x+ y, 6x].

(a) write the matrices for F and G with respect to the standard bases

(b) write expressions for (F + G)([x, y]) and 3G([x, y]).

(c) check that the matrix for the sum is the same as the sum of the
matrices for the two linear transformations and that the matrix
for the scalar product is the same as 3 times the matrix for G .
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2. Repeat exercise 1 using the linear transformations F : R5 → R2 and G
given by F ([v, w, x, y, z]) = [x+y+z, v−w+2x] and G([v, w, x, y, z]) =
[2w + y, 3x].

3. If

A =

 1 2 3 2
0 1 1 4
4 1 6 7

 B =


1 2
0 1
3 1
0 4

 and C =


0 1
1 0
2 1
5 3


find AB, AC, B + C, A(B + C) and AB + AC.

4. If

A =

[
1 2 3
1 4 1

]
B =

 1 3
1 1
4 2

 and C =

[
1 2 0 3
1 0 1 2

]
find AB, BC, A(BC), and (AB)C.

5. Quadratic forms in the variables x and y can be written using a matrix
by taking

[x, y]M

[
x
y

]
See what you get using the matrices

(a) M =

[
1 2
3 4

]
(b) M =

[
1 −1
0 −1

]
(c) M =

[
1 −1/2
−1/2 1

]
A symmetric matrix is one there aij = aji for all i, j. Find a
symmetric matrix to represent the forms

(d) 2x2 − 4xy + y2

(e) 2x2 + 3y2 + 4z2 + 2xy − 5yz + 16xz

6. The n× n square matrix In with 1’s in the positions with both indices
the same and 0’s elsewhere is called an identity matrix. Prove that
for any n ×m matrix A, IA = A and that for any m × n matrix B,
BI = B.
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7. Give examples to show that AB can be defined when BA is not and
that even if both are defined they need not be of the same shape.

8. Find a matrix A which is not composed entirely of zeros but which has
A2 all zeros.

9. Prove that composition distributes over sums for linear transforma-
tions: that is, if f is a linear transformation from V to W and g and h
are linear transformations from U to V then f ◦(g+h) = (f ◦g)+(f ◦h).

10. Use the previous exercise to give a conceptual proof of the distributive
law for matrix multiplication over matrix addition.



Chapter 10

Inverses and Rank

10.1 Inverses of Linear Transformations and

Matrices

Since a linear transformation L : V → W is a function, it makes sense to ask
when it has an inverse under composition and what properties that inverse
might have.

Definition 10.1.1 A linear transformation L : V → W is called invertable if
there is another linear transformation L−1 :W → V such that L ◦L−1 = idW
and L−1 ◦ L = idV . In such a case L−1 is called the inverse of L.

We know from our study of inverse functions in precalculus and calculus
that a function f has an inverse if and only if it is one-to-one (whenever
f(x) = f(x′) we have x = x′) and onto (the range of f is the same as the
codomain of f). Our next theorem shows that the existence of an inverse
as a function is sufficient to prove the existence of an inverse as a linear
transformation:

Theorem 10.1.1 If a linear transformation L : V → W has an inverse as
a function, then that inverse is a linear transformation.

Proof:

We need to show that L−1 preserves scalar product and sums.
Now L−1(r ~w) is the unique member of V which maps to r ~w under

219
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L. If we let ~v = L−1(~w), then

L(r~v) = L(rL−1(~w))

= rL(L−1 ~w)

= r ~w.

But this shows that L−1(r ~w) must have been rL−1(~w). A similar
argument works for sums and is left as an exercise.

As usual, we want to see how the matrix with respect to given ordered
bases for a linear transformation is related to the matrix with respect to the
same ordered bases for its inverse. Not surprisingly the matrix for the inverse
is the inverse (with respect to matrix multiplication) of the matrix for the
linear transformation. Once we have an algorithm for finding the inverse of
a matrix this will tell us how to find inverses for linear transformations. We
need a definition and a theorem relating these concepts:

Definition 10.1.2 The inverse of a square matrix M is a matrix M−1 such
that MM−1 = M−1M = I, an identity matrix. If an inverse for M exists
we say M is invertable.

Theorem 10.1.2 If F : V → W has matrix F with respect to the ordered
bases (~b1, . . . ,~bn) for V and (~c1, . . . ,~cm) for W, then the matrix for F−1 with
respect to the same ordered bases is F−1.

Proof:

First note that the matrix for the identity linear transforma-
tion idV with respect to the ordered basis (~b1, . . . ,~bn) for both the
domain and the codomain is the identity matrix, and similarly for
idW . Since F F−1 = idW we get F G = I where G is the matrix
for f −1. Since F−1F = idV we get GF = I. Thus G = F−1.

A linear transformation L : V → W will be onto if the image is all of W .
The image of a spanning set under L will span Im(L), so if {~bi|i ∈ I} is a

basis for V , then {L(~bi)|i ∈ I} spans Im(L).
A linear transformation is one-to-one if and only if Ker(L) = {~0}. If L is

one-to-one it will preserve linear independence since if∑
akL(~vk) = ~0
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then
L(
∑

ak~vk) = ~0

so ∑
ak~vk ∈ Ker(L)

and thus
(
∑

ak~vk) = ~0.

If the vectors ~vi were independent this tells us that all of the ak = 0.
Summarizing, we have shown

Proposition 10.1.3 Any invertable linear transformation L : V → W takes
a basis for V to a basis for W. Thus if V is finite dimensional, so must W
be and the dimensions must be the same.

Corollary 10.1.4 In order for a matrix to have an inverse it must be square.

Proof:

An invertable matrix represents an invertable linear transfor-
mation with respect to ordered bases. The number of rows in the
matrix is the same as to the dimension of the codomain of the
linear transformation and the number of columns agrees with the
dimension of the domain. In order for a linear transformation to
have an inverse these two dimensions must agree.

Corollary 10.1.5 For an n× n matrix M to have an inverse it must have
column space of dimension n and the only solution to M~xt = ~0t is ~0t.

Proof:

Let M represent a linear transformation L with respect to
some choice of ordered bases. The first assertion corresponds
to the linear transformation being onto. The second says that
Ker(L) = {~0}., so that L is one-to-one.

Now then, how do we go about finding the inverse of a matrix? Since
linear transformations take spanning sets to spanning sets, the dimension of
the domain and codomain of a linear transformation must be equal in order
for it to be possible for there to be an inverse. Thus a matrix must be square
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before it makes sense to ask whether or not it has an inverse. Not all square
matrices have inverses. If M has a row consisting entirely of zeros, so will
MM′ for any matrix M′. This makes it easy to tell when a matrix in row
reduced echelon form has an inverse: a square matrix in row reduced echelon
form either has a row of zeros or it is an identity matrix; if it has a row of
zeros, then it has no inverse; if it is an identity matrix, then it has an inverse.

The next proposition tells us that the product of invertable matrices is
also invertable. This will let us find the inverse of a matrix as the product
of matrices known to have inverses.

Proposition 10.1.6 If A and B are invertable matrices then

(AB)−1 = B−1A−1.

Proof:

This is a simple calculation:

(AB)(B−1A−1) = A(BB−1)A−1

= AIA−1

= AA−1

= I.

And the calculation of (B−1A−1)(AB) is similar. The order of
the factors is reversed in the inverse because multiplication of
matrices is not commutative.

A straightforward induction argument will extend this result to any finite
number of factors. To find the inverse of the product of invertable matrices,
take the product of the inverses in reversed order.

Matrices for elementary row operations The row reduction process
we used in Chapter 7 made use of three kinds of operations on the rows of
a matrix: interchanging two rows, multiplying a row by a non-zero number,
and adding a multiple of one row to another. Each of these can be undone
by an operation of the same type. If you want to undo interchange of rows
5 and 23, all you need to do is interchange them again. If you want to
undo multiplication by a nonzero number, divide by it. If you want to undo
addition of 6 times row 2 to row 7, subtract 6 times row 2 from row 7.
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Proposition 10.1.7 Each of the elementary row operations can be accom-
plished by left multiplication by a matrix which has an inverse.

Proof:

The matrix which accomplishes the elementary row operation
is the one you get by applying the row operation to the identity
matrix. It has an inverse because the operation can be undone
by applying an appropriate row operation.

Example: Interchange

The matrix which accomplishes interchange of rows 2 and 3
in 3 by 3 matrices is  1 0 0

0 0 1
0 1 0.


The matrix which adds 3 times row 1 to row 2 is 1 0 0

3 1 0
0 0 1


which has inverse  1 0 0

−3 1 0
0 0 1.


Try them on some 3 by 3 matrices to check that they perform

as claimed. ♦

Finding inverses by Row Reduction The algorithm for row reduction
tells us how to multiply by a sequence of matrices which we know have
inverses (those corresponding to elementary row operations) to get a matrix
in row reduced echelon form. This will lead to an algorithm for finding the
inverse of a matrix based on the algorithm for row reduction. (Gaussian
elimination keeps coming up in different forms in this subject!)

To find the inverse of an n× n matrix M we do the following steps:
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1. Augment the matrix to an n×2n matrix by adjoining an n×n identity
matrix on the right:

[M|I]

2. Reduce M to row reduced echelon form, performing all of the row
operations on the identity matrix as you go:

[M|I] ; [E|B]

3. If the row reduced echelon form matrix E is an identity matrix, then
the product of the matrices which did the row reduction, now stored
as B, is M−1;

4. If the row reduction did not end in an identity matrix, then M does
not have an inverse.

This works because each row operation can be done by multiplying on
the right by an invertable matrix. Applying these operations to an identity
matrix keeps track of the product of the matrices which do the row opera-
tions.

Example: Finding an inverse

To find the inverse of the matrix 1 2 3
2 5 7
−1 3 3


we augment it with an identity 1 2 3 1 0 0

2 5 7 0 1 0
−1 3 3 0 0 1


and find the row reduced echelon form: 1 2 3 1 0 0

2 5 7 0 1 0
−1 3 3 0 0 1

 R2 − 2R1

R3 +R1

;

 1 2 3 1 0 0
0 1 1 −2 1 0
0 5 6 1 0 1


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R3 − 5R2

;

 1 2 3 1 0 0
0 1 1 −2 1 0
0 0 1 11 −5 1


R2 −R3

R1 − 3R3

;

 1 2 0 −32 15 −3
0 1 0 −13 6 −1
0 0 1 11 −5 1


R1 − 2R2

;

 1 0 0 −6 3 −1
0 1 0 −13 6 −1
0 0 1 11 −5 1


So the inverse of  1 2 3

2 5 7
−1 3 3


is  −6 3 −1

−13 6 −1
11 −5 1

 .
♦

Example: A matrix with no inverse

To show that the matrix 1 2 3
4 5 6
7 8 9


does not have an inverse we can try the same algorithm and see
where we get stuck: 1 2 3 1 0 0

4 5 6 0 1 0
7 8 9 0 0 1


;

 1 2 3 1 0 0
0 −3 −6 −4 1 0
0 −6 −12 −7 0 1



;

 1 2 3 1 0 0
0 1 2 4/3 −1/3 0
0 −6 −12 −7 0 1



;

 1 2 3 1 0 0
0 1 2 4/3 −1/3 0
0 0 0 1 −2 1


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Since we cannot get an identity on the left, there is no inverse. ♦

Exercises 10.1:

1. Write down the 5 by 5 matrix you would multiply on the left by to
interchange rows 3 and 5? What happens if you multiply on the right
by the matrix you have given?

2. Write down the 5 by 5 matrix you would multiply on the left by to add
3 times row 2 to row 4? What happens if you multiply on the right by
the matrix you have given?

3. Write down the 5 by 5 matrix you would multiply on the left by to
multiply row 4 by -2? What happens if you multiply on the right by
the matrix you have given?

4. Write down the 5 by 5 matrix you would multiply on the left by to add
-4 times row 1 to row 3? What happens if you multiply on the right
by the matrix you have given?

For problems 5–10, find the inverse, if any:

5.

 1 4 6
2 3 1
1 −1 −1



6.

 1 2 3
4 5 6
7 8 −9



7.

 0 2 4
1 0 3
2 1 3



8.

 1 0 1
1 1 1
2 2 1


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9.

 3 6 9
2 3 −2
1 0 1



10.


1 0 1 0 2
2 1 0 1 1
0 1 3 2 1
0 0 1 1 1
1 1 1 1 2


11. Prove that if L preserves sums and has an inverse as a function, then

that inverse also preserves sums.

12. Assume that V and W are finite dimensional. Show that if L : V → W
is onto then there is a linear function M with L ◦M = IdW . Such an
M is called a right inverse for L.

13. Assume that V and W are finite dimensional. Show that if L : V → W
is one-to-one then there is a linear function N with N ◦ L = IdV . Such
an N is called a left inverse for L.

14. Prove that if L is invertable and L ◦M = IdW then M = L−1.

15. (Project Problem) Operation counts tell us when it is advantageous to
use one algorithm over another.

(a) Count the number of multiplications necessary to find the inverse
of an n× n matrix using row reduction.

(b) Count the number of multiplications needed to multiply an n× n
matrix and an n-element column vector.

(c) If you have m systems of linear equations with the same n × n
coefficient matrix but different constant vectors, when (if ever)
is it advantageous to find the inverse and then multiply the con-
stant vector by it to find the solutions rather than doing Gaussian
elimination with backsolving m times?

10.2 Rank

We noted above that the dimensions of the kernel and the image of a linear
transformation could be useful in deciding whether or not it has an inverse.
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Since further information can also be derived from these notions and the
related rank of a matrix, which can be easily computed using row reduction.

Definition 10.2.1 The rank of a linear transformation L : V → W is the
dimension of ImL.

Definition 10.2.2 The nullity of a linear transformation L : V → W is
dim(Ker(L)).

The rank of a linear transformation is made more useful by the next
theorem which relates it to the dimension of the kernel.

Theorem 10.2.1 (Rank-Nullity Theorem) If L : V → W is a linear
transformation and V is finite dimensional then dim(V) = dim(Ker(L)) +
rank(L).

Proof:

We know that Ker(L) is a subspace of V , so we can find a basis

for it, say ~k1, . . . , ~kn. Since V is finite dimensional we know how
to extend this to a basis for V by adding more vectors ~b1, . . . ,~bm.
We claim that the vectors L(~b1), . . . ,L(~bm) form a basis for Im(L).
It is clear that the images of all of the basis vectors in V form a
spanning set for the image of L. Since L(~ki) = ~0 for all i, this

tells us that the set of L(~bj) is a spanning set. Now suppose that

a1L(~b1) + . . .+ amL(~bm) = ~0.

Then

L(a1
~b1 + . . .+ am~bm) = ~0.

So a1
~b1 + . . . + am~bm is in Ker(L). But this contradicts the

independence of ~k1, . . . , ~kn,~b1, . . . ,~bm unless all of the ai are 0.
Thus the set {L(~b1), . . . ,L(~bm)} is a basis for Im(L). This shows
that

dim(V) = dim(Ker(L)) + rank(L)

.
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The theorem is useful for obtaining information about a linear transfor-
mation from its rank. For instance, a linear transformation is one to one if
and only if its kernel is just the zero vector. By the rank nullity theorem this
can be shown by showing that dim(Im(L)) = dim(domain of L). A linear
transformation will have an inverse if it is one to one and onto; this in turn
can be determined by looking at the dimensions of its domain and codomain
and its rank, all of which must be equal.

As usual, in order to find the rank of a linear transformation we will want
to do computations on the matrix representing it with respect to ordered
bases.

Definition 10.2.3 The row space of an n by m matrix A is the subspace
of Rm spanned by the rows Ai· = [ai1, ai2, . . . , aim]. The column space is the
subspace of Rn spanned by the columns A·j = [a1j, a2j, . . . , anj]

t.

Definition 10.2.4 The row rank of a matrix A is the dimension of its row
space. The column rank is the dimension of its column space.

All of our work with matrices so far has been linked to notions for linear
transformations. If we recall that the columns of the matrix associated to a
linear transformation are obtained by taking the image of basis vectors, the
following proposition becomes clear:

Proposition 10.2.2 The rank of a linear transformation is the same as the
column rank of its matrix with respect to any choice of ordered bases.

Given an arbitrary matrix it would appear to be a lot of work to find
either of the ranks, though if the form is nice one of them may be easier
to calculate than the other. For matrices in row reduced echelon form the
row rank is particularly easy to identify since the nonzero rows in an echelon
matrix are easily seen to be independent. Thus the row rank of an echelon
matrix will be equal to the number of nonzero rows. To see this we need
some propositions:

Proposition 10.2.3 Elementary row operations leave the row space unchanged.

Proof:
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It is clear that interchanging the order of the rows does not
change the space which is spanned. It is also clear that multi-
plying a row by a non-zero scalar also does not change the space
spanned. Adding a multiple of row i to row j replaces row j with
a linear combination of rows i and j and does not change the
space spanned by the rows.

Proposition 10.2.4 Elementary row operations leave the dimension of the
column space unchanged.

Proof:

It will suffice to show that a linear combination of the columns
after an elementary row operation is applied gives ~0 if and only
if the same linear combination of the columns before the row
operation is applied gives ~0. Then if a basis for the column space
of the original matrix uses, say, columns 1,2,3,5, and 8, then those
same columns of the matrix after the row operation form a basis
of its column space. Let C be the matrix with the columns in
question from M. Then linear independence of the columns of C
says that the only solution to the system

C~x = ~0

is ~x = ~0. Now let R be the matrix which does the elementary
row operation. The matrix RC is the matrix of columns after the
row operation. Linear independence of the columns then asks for
a unique answer to

RC~x = ~0.

Now any answer for this system gives an answer for the system

R−1RC~x = R−1~0

which is the same as

C~x = R−1~0 = ~0.

Similarly any answer to
C~x = ~0
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gives an answer to

RC~x = R~0 = ~0.

Thus these two systems have the same number of solutions. If
the solution to one is unique, so is the solution to the other.

Combining these two propositions and the algorithm for reducing matrices
to row reduced echelon form we get

Theorem 10.2.5 The row rank of a matrix always equals its column rank.

Proof:

The process of reduction to row reduced echelon form does not
change either the row space or the dimension of the column space,
so it suffices to consider only matrices in row reduced echelon
form. In the row reduced echelon form the first nonzero entry
in each row is a one and all of the other entries in its column
are zeros. This guarantees that the set of rows which are not all
zero is a linearly independent set. It also spans the row space.
Furthermore, any column in the matrix can be written as a linear
combination of the columns in which the first non-zero entries in
the rows of the (row reduced) matrix appear, so those columns
form a spanning set for the column space. This set of columns is
easily seen to be independent, since each such column has only one
non zero entry and the non-zero entries occur in different rows.
Thus we have a basis for the column space which has exactly the
same number of members as the number of non-zero rows. Since
both of these are bases, we have shown that the dimension of the
row space is equal to the dimension of the column space. This
says that the row rank equals the column rank.

Example: Rank of a matrix
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Matrix rank 1 0 0 0
0 1 0 1
0 0 1 1

 3

 1 0 0 0
0 1 1 1
0 0 0 0

 2

 1 2 3
4 5 6
7 8 9


;

 1 2 3
0 −3 −6
0 −6 −12

 2

♦

Once we know how to find the rank of a matrix we can use the Rank-
Nullity Theorem to determine how many basic solutions there are to various
kinds of linear problems. If we have a homogeneous system of linear equations
M~vt = ~0, then the dimension of the domain equals the number of variables,
the rank of M can be computed easily, and the rank-nullity theorem tells us
that the dimension of the space of solutions = number of variables - rank M.

We can also see how the Rank-Nullity Theorem relates to the structure of
the row reduced echelon form for a matrix. Recall that the leading 1’s in the
rows of the row reduced echelon form give the columns in the original matrix
which formed a basis for the column space. Thus the number of non-zero
rows gives the rank of the matrix. In solving a homogeneous system of linear
equations we had a free choice for each variable corresponding to a column
which did not have a leading 1 in the row reduced echelon form. Thus the
number of columns not having leading 1’s gives the dimension of Ker(L), the
nullity. Since this accounts for all of the columns of the matrix for L, we get

dim(V) = number of columns

= number of columns with leading 1’s + number without

= rank(L) + nullity(L)

Exercises 10.2:
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1. Find the rank of

 −1 2 −3
4 −5 6
7 8 9



2. Find the rank of


1 4 6 2
4 −5 1 6
2 8 −1 −9
1 7 2 −5



3. Find the rank of


1 2 6
2 4 7
3 3 9
1 1 1
2 5 10



4. Find the rank of


1 3 7 2
2 4 8 3
3 9 5 1
2 1 1 4
3 1 1 6



5. Find the rank of


1 0 1 0 1
0 1 1 1 1
3 4 5 6 7
2 0 4 1 1
2 1 1 1 1


6. Find the rank of F : R3 → R3 taking [x, y, z] to [2x, y − z, 0]. What is

the dimension of Ker(F )?

7. Find the rank of L : R4 → R3 taking [x, y, z, w] to [x + y + z, x + y +
w, x+ y + z + w]. What is the dimension of Ker(L)?

8. Find the rank of G : R3 → R4 taking [x, y, z] to [y+z, x+z, 2z, x+y+z].
What is the dimension of Ker(G)?

9. Find the rank of H : R3 → R5 taking [x, y, z] to [x+y+z, x+z, 2z, 2x+
y + 4z, z − x− y]. What is the dimension of Ker(G)?
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10. Find the rank of K : R6 → R4 taking [u, v, w, x, y, z] to [u− y + z, v +
x+ z, 3u+w− 2z,−2u+ 2v−w+ 2x− y+ 5z]. What is the dimension
of Ker(G)?

11. Show that if r 6= 0 then the nullity of rL is the same as the nullity of
L.

12. Show that if r 6= 0 then the rank of rL is the same as the rank of L.

13. Show that if L : V → W and M : U → V then the nullity(L ◦M ) ≥
nullity(M ).

14. Show that if L : V → W and M : U → V then the rank(L ◦ M ) ≤
rank(L).

15. Give examples of 2× 2 matrices A and B such that

(a) rank(A) = 2, rank(B) = 2 and rank(A + B) = 1

(b) rank(A) = 1, rank(B) = 1 and rank(A + B) = 2

16. Prove that in general rank(A) + rank(B) ≥ rank(A + B).

10.3 LU Decomposition

Modern matrix algebra makes use of a number of factorization theorems.
One class of these involves factorization of a matrix into the product of a
lower triangular matrix and an upper triangular matrix. Different choices
of what the diagonal entries should be lead to different factorizations with
different properties more properly discussed in a numerical analysis course.
In this section we will note that Gaussian elimination can be seen as a means
of obtaining such a factorization.

In the Gaussian elimination with backsolving algorithm we divided the
work of reducing a matrix to row reduced echelon form into two parts: first
we got the ones as first non-zero entries and the zeros below those ones and
then we went back to get the zeros above the ones. Between the two phases
of that algorithm we had a matrix with a nice form worth giving a name.

Definition 10.3.1 A matrix which has aij = 0 whenever i < j is called
lower triangular. A matrix with aij = 0 whenever i > j is called upper
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triangular. We add the adjective strictly if all of the diagonal entries are
0.

Lemma 10.3.1 A product of lower triangular matrices is lower triangular.

Proof:

Suppose we have two lower triangular matrices L and L′.
Since these are lower triangular, we know that lik = 0 if i < k
and l′kj = 0 if k < j The ij entry of LL′ is the sum of terms of
the form likl

′
kj. If i < j then either i < k or k < j, so one of the

two terms in the product will be 0.

Proposition 10.3.2 Any matrix M which can be reduced to echelon form
without row interchanges can be written as the product of a lower triangular
matrix and an upper triangular matrix.

Proof:

First observe that the row operations “multiply a row by a
constant” and “add a multiple of a row to a row below it” are
lower triangular. If no interchanges are needed in reduction to
echelon form then organizing the work so that we get the ones
as first nonzero entries in each row and then get the zeros below
those entries gives us an upper triangular matrix U. Keeping
track of the row operations in the same way that we did in the
algorithm for finding the inverse of a matrix gives:

[M|I]
;

[U|R],

where R = Rk . . .R1 is the lower triangular matrix which is ob-
tained as the product of the row operation matrices and U is the
upper triangular matrix we find at the halfway point of the Gaus-
sian elimination algorithm. The matrices Ri are associated with
elementary row operations of the type “multiply a row by a con-
stant” or “add a multiple of a row to a row below it.” Thus each
has an inverse which is also lower triangular: we undo these op-
erations by either “dividing a row by a constant” or “subtracting
a multiple of a row from a row below it.” Thus we get

R−1 = R−1
1 . . .R−1

k .
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Since each of the R−1
i is lower triangular, this tells us that R−1

is.

From our row reduction of M we saw that

RM = U,

so multiplying both sides by R−1 gives

R−1U = M.

This gives the desired factorization.

Example: LU factorization

To factor the matrix

M =

 1 2 4
2 0 12
1 1 3


we first apply elementary row operations until we have an upper
triangular matrix, keeping track of what row operations we have
done in the same fashion as we did when we were finding the
inverse of M:

 1 2 4 1 0 0
2 0 12 0 1 0
1 1 3 0 0 1

 R2 − 2R1

R3 −R1

;

 1 2 4 1 0 0
0 −4 4 −2 1 0
0 −1 −1 −1 0 1


R3 − 1

4
R2

;

 1 2 4 1 0 0
0 −4 4 −2 1 0
0 0 −2 1

2
−1

4
1


This tells us that we can use

U =

 1 2 4
0 −4 4
0 0 −2

 and L−1 =

 1 0 0
−2 1 0
1
2
−1

4
1

 .
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In order to complete the factorization we will need to find L by
taking the inverse of L−1: 1 0 0 1 0 0
−2 1 0 0 1 0
1
2
−1

4
1 0 0 1

 R2 + 2R1

R3 − 1
2
R1

;

 1 0 0 1 0 0
0 1 0 2 1 0
0 −1

4
1 −1

2
0 1


R3 + 1

4
R2

;

 1 0 0 1 0 0
0 1 0 2 1 0
0 0 1 1 1

4
1


Now notice that 1 2 4

2 0 12
1 1 3

 =

 1 0 0
2 1 0
1 1

4
1

 1 2 4
0 −4 4
0 0 −2


as desired. ♦

Note that if A cannot be reduced to echelon form without interchanges
(say a11 = 0, for instance) it still can be written in the form XU where X
is the product of matrices corresponding to elementary row operations and
U is upper triangular. It is also possible to group the interchanges together
so that the factorization is into a lower triangular matrix, a permutation
matrix, and an upper triangular matrix.

Exercises 10.3:
Write the following matrices as the product of a lower triangular matrix and
an upper triangular matrix:

1.

[
2 8
−4 3

]

2.

 1 2 3
2 3 7
−1 1 5


3.

 2 4 12
1 6 −14
3 8 9


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4. To show that a matrix which uses interchange of rows in the first phase
of Gaussian elimination can be written in the form LXU where X is a
permutation matrix, we need to be able to collect the row interchanges
into one matrix. To show this can be done, prove that

(a) The sequence of row operations consisting of interchanging two
rows and then adding a multiple of one row to another can be done
by adding a multiple of one row to another and then interchanging
rows, though the rows referred to may change.

(b) The sequence of row operations consisting of interchanging two
rows and then multiplying a row by a constant can be done by
multiplying a row by a constant and then interchanging rows,
though the rows referred to may change.

(c) The sequence of row operations consisting of interchanging two
rows and then interchanging two rows can be done by interchang-
ing two rows and then interchanging rows, though the rows re-
ferred to may change.

5. (Project Problem) The LU decomposition can be useful when solving
many systems of equations with the same coefficient matrix. To see
why

(a) Find how many multiplications are required to find L−1 = R.

(b) Find how many multiplications are needed to multiply L−1 times
a column vector of constants.

(c) We showed earlier that it takes

n3

3
+ n2 − n

3

multiplications to solve a system of n linear equations in n un-
knowns using Gaussian elimination with backsolving and that the
backsolving itself took

n2 − n
2

multiplications. Suppose you have m systems all using the same
coefficient matrix. We can then use one of the following three
strategies:
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i. Use Gaussian elimination with backsolving for each system,
ignoring previous work.

ii. Find L−1 for the matrix of coefficients, then solve each sys-
tem by multiplying the column of constants by L−1 and then
backsolving.

iii. Finding the inverse of the matrix of coefficients and then solv-
ing each system by multiplying the column of constants by
that inverse.

Under what conditions on m will each of these strategies involve
less work that the others?
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Chapter 11

Change of Basis and Similar
Matrices

In the exercises after section 1 of the Chapter 8 you were asked to find the
matrices for a linear transformation with respect to several different pairs of
ordered bases. You did this by calculating the effect of the linear transforma-
tion on each basis vector in the domain and then finding ways to represent
the answer in terms of the basis on the codomain. The resulting matrices
were different, even though they represented the same linear transformation,
because they used different bases. In this section we will see how to use the
isomorphism of matrix algebra and the algebra of transformations to change
bases without having to recalculate everything.

Our approach is to think of change of basis as composition with an identity
transformation which is then represented using the old and the new ordered
bases so that the basis we want is on the outside. Change of basis on the
domain is then multiplying on the right by an appropriate matrix and change
of basis on the codomain is multiplication on the left. Because our matrices
will come from compositions and our multiplication of matrices corresponds
to composition written from right to left, we will write our diagrams with
the arrows going from right to left in this chapter.

11.1 Matrices for Changing Basis

Suppose we have a linear transformation M : W ←− V , (notice that V is
the domain and W is the codomain) which has matrix M with respect to

241
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the ordered bases (~b1, . . . ,~bp) for V and (~c1, . . . ,~cq) for W . Let us see how to
change these bases one at a time:

11.1.1 How to change the basis on the domain

Suppose we want to use the basis (~a1, . . .~ap) for the domain instead of the

basis (~b1, . . .~bp). The trick here is to multiply on the right by a matrix Q
obtained by looking at the identity transformation on V going from our new
basis to the original basis.

vector spaces: W M←− V Id←− V
ordered bases: (~c1, . . .~cq) (~b1, . . .~bp) (~a1, . . .~ap)

matrices : M Q
= N

For example, if V = R3, the original basis was the standard basis, and
the new basis is ([1, 2, 3], [1, 0, 4], [2, 1, 0]) then the matrix Q is found by
calculating:

[1, 2, 3] = 1[1, 0, 0] + 2[0, 1, 0] + 3[0, 0, 1]

[1, 0, 4] = 1[1, 0, 0] + 0[0, 1, 0] + 4[0, 0, 1]

[2, 1, 0] = 2[1, 0, 0] + 1[0, 1, 0] + 0[0, 0, 1]

This gives the matrix

Q =

 1 1 2
2 0 1
3 4 0

 .
The columns are given by the coefficients in the equations.

11.1.2 How to change the basis on the codomain

Suppose we want to use the basis (~d1, . . . ~dq) for the codomain instead of
the basis (~c1, . . .~cq). The trick here is to multiply on the left by a matrix
P−1 obtained by looking at the identity transformation onW going from our
original basis to the new basis. The inverse in this matrix is there to remind
us that this is the opposite direction from the placement of the bases when
we change bases on the domain.
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vector spaces: W Id←− W M←− V
ordered bases: (~d1, . . . ~dq) (~c1, . . . ,~cq) (~b1, . . .~bp)

matrices : P−1 M
= N

Again an example may help: letW = R2, (~c1, . . . ,~cq) = ([1, 0], [0, 1]), and

(~d1, . . . ~dq) = ([2, 4], [1, 3]). We need to find our original bases in terms of the
new bases. This involves solving two systems of equations:

2x+ y = 1
4x+ 3y = 0

and
2x+ y = 0
4x+ 3y = 1

These are exactly the systems we solve as we find the inverse of the matrix

P =

[
2 1
4 3

]
.

The solution is obtained by row reduction :[
2 1 1 0
4 3 0 1

]
R2 − 2R1

;

[
2 1 1 0
0 1 −2 1

]
R1 −R2

;

[
2 0 3 −1
0 1 −2 1

]
1
2
R1

;

[
1 0 3

2
−1

2

0 1 −2 1

]
Thus the matrix P−1 which changes the basis on the codomain is[

3
2
−1

2

−2 1

]
.

11.1.3 General change of basis

It should be clear that to change the basis on both the domain and the
codomain we need both change of basis matrices. The diagram then looks
like this:

Vector spaces: W Id←− W M←− V Id←− V
ordered bases: (~d1, . . . ~dq) (~c1, . . . ,~cq) (~b1, . . .~bp) (~a1, . . .~ap)
matrices : P−1 M Q

= N
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Since composition of linear transformations is represented by multipli-
cation of matrices P−1MQ represents the composition IdM Id = M with
respect to the outside bases. But this is exactly what the matrix N does.

Example: Using change of basis matrices

Let us start by looking at the example of the linear transfor-
mation M from R2 to R3 taking [x, y] to [x + y, x− y, 3y]. If we
use the standard bases on the domain and codomain, then we get
the matrix for M by calculating

M [1, 0] = [1, 1, 0] = 1[1, 0, 0] + 1[0, 1, 0] + 0[0, 0, 1]

and

M [0, 1] = [1,−1, 3] = 1[1, 0, 0] +−1[0, 1, 0] + 3[0, 0, 1],

getting the matrix  1 1
1 −1
0 3

 .
If we use the ordered bases ([1, 1], [1,−1]) and ([1, 0, 0], [1, 1, 0], [1, 1, 1])
instead the calculation gives

M [1, 1] = [2, 0, 3] = 2[1, 0, 0] +−3[1, 1, 0] + 3[1, 1, 1]

and

M [1,−1] = [0, 2,−3] = −2[1, 0, 0] + 5[1, 1, 0] +−3[1, 1, 1]

so the matrix is  2 −2
−3 5
3 −3


with respect to these bases.

Next let us find this same matrix representation using change
of basis matrices. We know how to find the matrix for M with
respect to the standard bases. In order to represent it with re-
spect to the alternate bases we compose with the identity on both
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sides and find matrices which represent the identity transforma-
tion with respect to the bases in question. We then get the matrix
for L by multiplying these matrices.

To change basis from ([1, 1], [1,−1]) to the standard basis
([1, 0], [0, 1]) we calculate

Id([1, 1]) = [1, 1] = 1[1, 0] + 1[0, 1]

Id([1,−1]) = [1,−1] = 1[1, 0] +−1[0, 1],

so the matrix for the identity R2 to itself using the new basis on
the domain and the standard basis on the codomain is[

1 1
1 −1

]
.

To get the matrix for changing the basis on R3 from the standard
basis to the basis ([1, 0, 0], [1, 1, 0], [1, 1, 1]) we calculate

[1, 0, 0] = 1[1, 0, 0] + 0[1, 1, 0] + 0[1, 1, 1]

[0, 1, 0] = −1[1, 0, 0] + 1[1, 1, 0] + 0[1, 1, 1]

and
[0, 0, 1] = 0[1, 0, 0] +−1[1, 1, 0] + 1[1, 1, 1],

so the matrix for the identity on R3 with the standard basis on
the domain and the alternative basis on the codomain is 1 −1 0

0 1 −1
0 0 1

 .
Using the fact that matrix multiplication represents composi-
tion of linear transformations, we can calculate the matrix for
M with respect to the alternative bases by first changing from
the basis ([1, 1], [1,−1]) to the standard basis, then using the ma-
trix for M with respect to the standard bases, and then using
the matrix for the change of basis from the standard basis to
([1, 0, 0], [1, 1, 0], [1, 1, 1]). Since composition is written from right
to left, so is the multiplication of these matrices: 1 −1 0

0 1 −1
0 0 1

 1 1
1 −1
0 3

[ 1 1
1 −1

]
=

 2 −2
−3 5
3 −3


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A diagram may help you understand this. The top level gives the
linear transformations, the middle level gives the bases, and the
bottom level gives the matrices:

Vector Spaces: R3 Id←− R3 M←− R2 Id←− R2

Bases:
([1, 0, 0],
[1, 1, 0],
[1, 1, 1])

([1, 0, 0],
[0, 1, 0],
[0, 0, 1])

([1, 0],
[0, 1])

([1, 1],
[1,−1])

Matrices:

 1 −1 0
0 1 −1
0 0 1

  1 1
1 −1
0 3

 [
1 1
1 −1

]

Final Matrix:

 2 −2
−3 5
3 −3


Since composition of linear transformations is represented by

multiplication of matrices 1 −1 0
0 1 −1
0 0 1

 1 1
1 −1
0 3

[ 1 1
1 −1

]

represents the composition Id M Id = M with respect to the
outside bases. But this is exactly what the matrix 2 −2

−3 5
3 −3


does. ♦

This gives the following theorem:

Theorem 11.1.1 Two matrices M and N represent the same linear trans-
formation with respect to different bases if and only if there are matrices P
and Q which have inverses and N = P−1MQ.

The usual practice is to restrict our attention to square matrices. We
then think of them as representing a linear transformation from a vector
space to itself with a particular choice of basis used for both the domain
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and codomain. If we want to change the basis, the matrices P and Q in
the theorem will be the same. Thus two square matrices A and B represent
the same linear transformation if and only if there is a matrix P such that
B = P−1AP.

This motivates the following definition:

Definition 11.1.1 : Two square matrices A and B are said to be similar,
A ∼ B, if and only if there is a matrix P such that B = P−1AP.

It is clear that similarity is an equivalence relation on square matrices,
since two matrices are similar if and only if they represent the same linear
transformation.

Exercises 11.1:
For problems 1–5, write down the matrix for the identity transformation from
V to V using the given bases for the domain and codomain:

1. V = R2 Basis for domain: ([1, 0], [0, 1])
Basis for codomain: ([2, 3], [−1, 5])

2. V = R3 Basis for domain: ([1, 1, 0], [1, 0, 1], [1, 1, 1])
Basis for codomain: ([1, 0, 0], [0, 1, 0], [0, 0, 1])

3. V = Z3
2 Basis for domain:([1, 1, 1], [1, 0, 1], [0, 1, 1])

Basis for codomain: ([1, 0, 0], [0, 1, 0], [0, 0, 1])

4. V = Z3
2 Basis for domain:([1, 0, 0], [0, 1, 0], [0, 0, 1])

Basis for codomain: ([1, 1, 1], [1, 0, 1], [0, 1, 1])

5. V = R[x]2 Basis for domain: (1, x, x2)
Basis for codomain: (1 + x, 1− x, x2 + x+ 1)

For problems 6–10 the matrix M for a linear transformation from Rn to itself
using the standard basis for both domain and codomain is given. Find the
matrix for the same linear transformation with respect to the given basis.

6. M =

 1 2 3
0 3 1
1 1 0

 Basis: ([1, 2, 3], [1, 0, 1], [0, 1, 2])
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7. M =

 8 1 −2
1 1 1
0 0 2

 Basis: ([1, 1, 1], [−1, 1, 1], [1, 1,−1])

8. M =

 −1 −2 −3
0 1 1
2 7 −2

 Basis: ([0, 1, 2], [1,−2, 3], [2, 3, 1])

9. M =


1 2 3 4
1 −1 1 −1
2 3 3 2
0 −1 0 −2

 Basis: ([1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [1, 1, 1, 1])

10. M =


1 1 1 1 1
2 1 3 1 4
1 2 3 4 5
0 1 1 0 0
2 3 4 3 2


Basis: ([1, 0, 0, 0, 0], [1, 1, 0, 0, 0], [1, 1, 1, 0, 0], [0, 1, 1, 1, 1], [0, 0, 0, 0, 1])

For problems 11–15 the matrix M for a linear transformation from Rn to
Rm with respect to the standard basis is given. Give the matrices for the
change of basis on both domain and codomain and the matrix for the linear
transformation with respect to the new bases given in the problems.

11. M =

 1 3 −2 1
0 2 −1 6
1 1 1 1


Basis for domain:

([1, 1, 0, 0], [1, 0,−1, 0], [1, 0, 0, 2], [0, 1, 1, 0])

Basis for codomain:

([1, 1, 0], [0, 1, 1], [1, 0, 1])

12. M =


2 −4 1
0 2 6
1 1 10
1 2 3


Basis for domain:

([1, 1, 0], [0, 1, 1], [1, 0, 1])
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Basis for codomain:

([1, 1, 0, 0], [1, 0,−1, 0], [1, 0, 0, 1], [0, 1, 2, 0])

13. M =

 1 2 3 4
2 2 5 −6
1 0 1 0


Basis for domain:

([1, 1, 1, 0], [1, 1, 0, 1], [1, 0, 1, 1], [0, 1, 1, 1])

Basis for codomain:

([1,−1, 0], [0, 1,−1], [1, 0, 1])

14. M =


1 2 3
4 2 2
5 −6 1
0 1 0


Basis for domain:

([1,−1, 0], [0, 1,−1], [1, 0,−1])

Basis for codomain:

([1, 1, 1, 0], [1, 1, 0, 1], [1, 0, 1, 1], [0, 1, 1, 1])

15. M =


1 3 −2 1
2 2 5 −6
0 2 −1 6
1 1 1 1


Basis for domain:

([1, 1, 0, 0], [1, 0,−1, 0], [1, 0, 0, 2], [0, 1, 1, 0])

Basis for codomain:

([1, 1, 0, 2], [2, 0, 1, 1], [1, 0, 2, 1], [1, 1, 1, 1])

16. Prove that similarity of matrices is an equivalence relation (i.e., that
it is transitive, symmetric, and reflexive) using properties of matrix
multiplication.
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11.2 Similar Matrices and Canonical Forms

One of the important problems of linear algebra is to find matrices similar
to a given matrix which have particularly nice forms. Given the definition of
similarity and Theorem 11.1.1, this is the same as finding nice bases to use in
the representation of a linear transformation. In this section we will explore
some of the ways to choose a basis so that the matrices for particular kinds
of linear transformations have desirable forms.

Similar matrices from a factorization One way to get a matrix similar
to a given matrix is to find a factorization of that matrix. If

M = AB

and B is invertable, then

M = (B−1B)AB = B−1(BA)B

so M is similar to BA. This is often used in numerical linear algebra to
find matrices similar to a given matrix with small off-diagonal entries. Such
similarity transformations are widely used in iterative numerical techniques
for finding eigenvalues.

We have seen one standard factorization: the LU decomposition which
encapsulates the work getting to an upper triangular form in the Gaussian
elimination with backsolving algorithm. While this is not one of the factor-
izations used in finding eigenvalues we can use it to find similar matrices:

Example: Similar matrices from an LU decomposition

We observed earlier that if a matrix can be reduced to row
reduced echelon form without use of exchanges, then the Gaussian
elimination algorithm gives a factorization into a lower triangular
matrix and an upper triangular matrix. We keep track of the row
operations used to get our matrix to upper triangular form and
then apply their inverses in the opposite order to an identity
matrix to get L. If we apply that process to the matrix 1 2 4

2 0 12
1 1 3

 ,
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we get  1 2 4
2 0 12
1 1 3

 =

 1 0 0
2 1 0
1 1

4
1

 1 2 4
0 −4 4
0 0 −2

 .
Thus 1 2 4

2 0 12
1 1 3

 ∼
 1 2 4

0 −4 4
0 0 −2

 1 0 0
2 1 0
1 1

4
1

 =

 9 3 4
4 −3 4
−2 −1

2
−2

 .
♦

Companion Matrices and L-cyclic Subspaces Let us fix a linear trans-
formation L : V → V . Assume that V is finite dimensional. If we start with a
vector ~v and consider the ordered set (~v,L(~v),L2(~v),L3(~v), . . .) we will even-
tually reach an n such that Ln(~v) is a linear combination of the previous
powers. Just for concreteness let us assume that n is the first power for
which this happens. Then (~v,L(~v), . . . ,Ln−1(~v)) is linearly independent and
forms a basis for a subspace of V . This subspace is important enough to have
a name:

Definition 11.2.1 The L-cyclic subspace of V generated by ~v is

Span({~v,L(~v), . . . ,Ln−1(~v)}) = CL
~v .

If we are working with subspaces and a linear transformation from V
to itself, then we will frequently want the linear transformation to map the
subspaces into themselves.

Definition 11.2.2 A subspace U ≤ V is called L-invariant if whenever ~u ∈
U then L(~u) ∈ U .

Notice that it is clear from the definitions that CL
~v is L-invariant.

If we write the matrix for L|CL
~v

: CL
~v → CL

~v with respect to the basis

(~v,L(~v), . . . ,Ln−1(~v)), we will get a particularly nice form, called a companion
matrix. Each basis vector is taken to the next basis vector by L until we reach
the last. Then we notice that

Ln(~v) = a0~v + a1L(~v) + . . .+ an−1Ln−1(~v)
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so that the matrix for L with respect to this basis is
0 0 . . . 0 a0

1 0 . . . 0 a1
...

. . . . . .
...

...

0 0
. . . 0 an−2

0 0 . . . 1 an−1

 .

Example: Finding a companion matrix

If we let L : R3 → R3 have L([x, y, z]) = [x+ y, 2y+ 2z, x+ z]
then the L-cyclic subspace generated by [1, 0, 0] is all of R3. The
basis is ([1, 0, 0], [1, 0, 1], [1, 2, 2]) and

L3([1, 0, 0]) = [3, 8, 3] = 4[1, 0, 0]− 5[1, 0, 1] + 4[1, 2, 2].

The matrix for L with respect to the basis ([1, 0, 0], [1, 0, 1], [1, 2, 2])
is  0 0 4

1 0 −5
0 1 4

 .
♦

It is too much to ask for the whole space to be a L-cyclic subspace in
every case, but if we can decompose the space into a direct sum of L-cyclic
subspaces then the matrix for L with respect to bases built out of the gen-
erators will be built up of little companion matrices. Indeed, if we can write
a vector space as a direct sum of L-invariant subspaces we can reduce the
problem of finding a nice basis for V to many simpler problems of finding
nice bases for the invariant subspaces. This is because of the next theorem:

Theorem 11.2.1 Let L : V → V be a linear transformation and V have a
decomposition of V = U1 ⊕U2 where U1 and U2 are L-invariant. If (~b1 . . .~br)
is a basis for U1, (~c1 . . .~cs) is a basis for U2, the matrix for the restriction of
L to U1 with respect to its basis is M1, and the matrix for the restriction of
L to U2 with respect to its basis is M2, then the matrix for L with respect to
the basis (~b1 . . .~br,~c1 . . .~cs) is the block matrix[

M1 0
0 M2

]
.



11.2. SIMILAR MATRICES AND CANONICAL FORMS 253

Proof:

We obtain the matrix for L with respect to the basis

(~b1 . . .~br,~c1 . . .~cs)

by finding the image of each basis vector. If we use one of the
basis vectors for the basis for U1 the image will be in U1 because
U1 is L-invariant. This means that the coefficient of ~ci will be 0
for all i. Similarly if we take the image of any of the ~ci it will
have coefficient for each ~bj equal to 0 because U2 is L-invariant.
Thus we have a block diagonal matrix.

To see that the blocks on the diagonal are the matrices for
the restrictions to the subspaces note that writing L(~bi) in terms

of the basis (~b1, . . . ,~br) in U gives the same coefficients as writing
it in terms of the basis for V .

In Chapter 15 we will use a decomposition into invariant subspaces to
get a block diagonal form with the blocks all companion matrices. That
decomposition will use inner products, but using more advanced ideas it is
possible to find the rational canonical form, which is a block diagonal form
with all blocks companion matrices, for any matrix.

Canonical forms for nilpotent transformations In some ways matrices
behave quite differently than numbers. Matrix multiplication is not commu-
tative and there are zero divisors. Indeed, it is possible to find matrices such
that M 6= 0 but for which there is an n with Mn = 0. These matrices
correspond to nilpotent linear transformations:

Definition 11.2.3 A linear transformation L : V → V is said to be nilpotent
with index of nilpotence n if Ln is always 0, but lower powers of L are not.

Example: A nilpotent linear transformation

Consider the linear transformation L : R3 → R3 given by
L([x, y, z]) = [0, x, y]. It is not difficult to see that L3 is identically
[0, 0, 0], but L2([1, 1, 1]) = [0, 0, 1]. Thus L is nilpotent with index
3. ♦
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Now suppose L is nilpotent with index of nilpotence n. Then there must
be a vector in V such that Ln−1(~v) 6= ~0. We get a particularly nice form if
we use this ~v in an attempt to form an L-cyclic subspace.

Lemma 11.2.2 If L : V → V is nilpotent with index of nilpotence n and if
Ln−1(~v) 6= ~0 then {~v,L(~v), . . . ,Ln−1(~v)} is linearly independent.

Proof:

We will use a proof by induction on the index of nilpotence.
Certainly if n = 1, then the set {~v} is independent since ~v 6= ~0.

Now suppose that we have the theorem for all index of nilpo-
tence k and we want it for index of nilpotence k+1. Note that if L
is nilpotent with index of nilpotence k+ 1 as a linear transforma-
tion from V to itself then it is nilpotent with index of nilpotence
k on Im(L). If ~v had Lk(~v) 6= 0 then ~w = L(~v) is in Im(L) and
has Lk−1(~w) 6= 0. Thus by the induction hypothesis the set

{~w,L(~w), . . . ,Lk−1(~w)} = {L(~v), . . . ,Lk(~v)}

is independent.
Now suppose that

a0~v + a1L(~v) + . . .+ akLk(~v) = ~0,

then
a0L(~v) + a1L(~v) + . . .+ akLk+1(~v) = ~0

as well since L is linear. Now Lk+1(~v) = 0 so this tells us that

a0L(~v) + a1L(~v) + . . .+ akLk(~v) = ~0.

Now since the set {L(~v), . . . ,Lk(~v)} is independent, this tells us
that each ai is 0 for 1 = 0, . . . , k−1. Thus our linear combination
giving ~0 reduces to

akL
k(~v) = ~0.

Since we assumed that Lk(~v) 6= 0, we can conclude that ak = 0
as well.

Thus, by induction, for any n, if L : V → V is nilpotent with
index of nilpotence n and if Ln−1(~v) 6= ~0 then {~v,L(~v), . . . ,Ln−1(~v)}
is linearly independent.
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Notice that the matrix for L on the subspace with basis {~v,L(~v), . . . ,Ln−1(~v)}
has the form 

0 0 . . . 0 0
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


The next theorem tells us that a nilpotent linear transformation can be

written as a block diagonal matrix with all blocks of this special form.

Theorem 11.2.3 If L : V → V is nilpotent with index of nilpotence n and
if Ln−1(~v) 6= ~0 then V = CL

~v ⊕ V1, where V1 is L-invariant.

Proof:

Direct sums are most easily obtained by taking a basis, break-
ing it into two pieces and looking at the subspaces spanned by the
pieces. Since we already have a basis for CL

~v , namely {~v,L(~v), . . . ,Ln−1(~v)},
we will extend it to a basis for V in such a way that the subspace
spanned by the new basis vectors is L-invariant.

Because L is nilpotent with index of nilpotence n on V , we
know that V can be thought of as the nested family of subspaces

V = Ker(Ln) ⊇ Ker(Ln−1) ⊇ Ker(Ln−2) ⊇ . . . ⊇ Ker(L)

with L taking each subspace into the next. Now note that Ln−1(~v) ∈
Ker(L) and extend to get a basis {Ln−1(~v) = ~b1,~b2, . . . ,~bk} for

Ker(L). The set {~v,L(~v), . . . ,Ln−1(~v),~b2, . . . ,~bk} is linearly inde-
pendent since if

~0 =
k∑
i=2

ai~bi +
n−1∑
j=0

cjL
j(~v)

then

~0 = L(~0) =
k∑
i=2

aiL(~bi) +
n−1∑
j=0

cjL
j+1(~v) = ~0 +

n−2∑
j=0

cjL
j+1(~v)

so that all of the coefficients cj = 0 for j = 0 . . . n − 2 by the
independence of {~v,L(~v), . . . ,Ln−1(~v)}. Independence of the set
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{Ln−1(~v),~b2, . . . ,~bk} tells us that the rest of the coefficients must
be 0.

Now continue the process by extending

{Ln−2(~v),Ln−1(~v),~b2, . . . ,~bk}

to a basis for Ker(L2). We can always do this by adjoining vec-

tors with L(~b) not involving Ln−1(~v). If L(~b) =
∑k

i=1 ci
~bi then

~b − c1Ln−2(~v) can replace ~b in our basis without losing either
independence or spanning, but gaining the L-invariance of the
subspace spanned by the new basis vectors.

Working our way backwards in this fashion, we get bases
for Ker(Lm) whose new vectors all lie in a L-invariant subspace.

Eventually we will have a basis {~v,L(~v), . . . ,Ln−1(~v),~b2, . . . ,~bz}
for V . Now Span({~b2, . . . ,~bz}) is L-invariant, so we can use it as
V1. This shows that V = CL

~v ⊕ V1, as needed.

Example: Canonical form for a nilpotent linear transformation

The linear transformation L : R5 → R5 with

L([u, v, w, x, y]) = [0, u, v, 0, x]

is nilpotent with index of nilpotence 3. If we start with ~v =
[1, 2, 3, 4, 5] we get L(~v) = [0, 1, 2, 0, 4] and L2(~v = [0, 0, 1, 0, 0].
We can extend

{[0, 0, 1, 0, 0]}
to a basis for Ker(L) by adjoining the vector [0, 0, 0, 0, 1]. We
then extend

{[0, 1, 2, 0, 4], [0, 0, 1, 0, 0], [0, 0, 0, 0, 1]}

to a basis for Ker(L2) by adjoining [0, 1, 0, 1, 0]. This was not the
best choice since

L([0, 1, 0, 1, 0]) = [0, 0, 1, 0, 1] = 1[0, 0, 1, 0, 0] + 1[0, 0, 0, 0, 1],

so we use [0, 1, 0, 1, 0] − [0, 1, 2, 0, 4] = [0, 0,−2, 1,−4] instead.
This gives the basis

{[0, 1, 2, 0, 4], [0, 0, 1, 0, 0], [0, 0, 0, 0, 1], [0, 0,−2, 1,−4]}
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for Ker(L2).
We then note that

{[1, 2, 3, 4, 5], [0, 1, 2, 0, 4], [0, 0, 1, 0, 0], [0, 0,−2, 1,−4], [0, 0, 0, 0, 1]}

is a basis for R5. The matrix for L with respect to this basis is
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0


♦

Exercises 11.2:

For problems 1–4, factor the matrix M into a lower triangular matrix
followed by an upper triangular matrix and then reverse the order to find a
matrix similar to M for each of the following matrices:

1.

[
1 4
3 6

]

2.

 1 4 1
3 6 5
1 1 1



3.

 3 12 12
−1 0 0
1 6 9



4.

 4 8 12
1 5 12
−1 0 9


For problems 5–8 find a basis for the m-cyclic subspace generated by ~v,

if you get Cm
~v = V , then give the matrix for m with respect to your basis:
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5. m : R3 → R3 has m([x, y, z] = [x, x+ y, x+ y + z] and ~v = [1, 0, 0].

6. m : R3 → R3 has m([x, y, z] = [x, 2y, x+ 3z] and ~v = [1, 1, 1].

7. m : R3 → R3 has m([x, y, z] = [x, x+ y, x+ 2y] and ~v = [1, 0, 0].

8. m : R3 → R3 has m([x, y, z] = [x+ y, x− y, x+ y + z] and ~v = [1, 1, 0].

The following linear transformations are nilpotent. Find a basis decom-
posing the domain into cyclic subspaces so that the matrix for L has a block
diagonal form like that given in the example.

9. L : R4 → R4 with L([x, y, z, w]) = [0, x, x+ w, y]

10. L : R4 → R4 with L([x, y, z, w]) = [x− w, y + z,−y − z, x− w]

11. L : R5 → R5 with L([x, y, z, s, t]) = [0, s, x, z, 2y + z]

12. L : R6 → R6 with L([u, v, w, x, y, z]) = [u−v+w, u−v−w, y−z, w, x, x]



Chapter 12

Determinants

The determinant of a square matrix is a number associated with the matrix
which can be used to determine whether or not the matrix has an inverse.
Several possible methods can be used to define the function det which takes
the set of square matrices to the reals. One approach is to define it for 2 by
2 matrices using

det

[
a b
c d

]
= ad− bc

and then find a way (called reduction by minors) to reduce all larger matrices
to the 2 by 2 case. Occasionally this gives a quick way to find determinants,
but for general matrices it maximizes computational effort. In any case it
leads to a definition which is very hard to prove things about. Our approach
is to list the properties that we want a determinant function to have, show
that they provide a means to calculate the value of the determinant of a
matrix efficiently, and then use the list of properties as a definition of the
determinant.

12.1 Properties and Efficient Calculation

We take the following as the definition of a determinant function

det : n× n-square matrices→ R.

Until we show that these properties allow us to compute the determinant we
cannot be sure that these properties define the determinant rather than a
determinant, but we will postpone that problem until later.

259
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Definition 12.1.1 A determinant function

det : n× n-matrices → R

is a function with the following properties:

1. det is multiplicative : det(AB) = det A det B

2. det At = det A

3. det is multilinear in the rows, i.e., if the matrices A,B, and C are
identical except in row i and Aij = kBij +hCij then det A = k det B+
h det C.

4. det is not identically 0.

Proposition 12.1.1 The determinant of an identity matrix is 1.

Proof:

Since det is not identically 0, there is some A with det A 6= 0.
We know that IA = AI = A, so by axiom 1, det A = det AI =
det A det I. Since det A 6= 0 we can divide both sides by det A
to get det I = 1.

Proposition 12.1.2 If A has an inverse then det A−1 = 1
detA

, thus det A
cannot be 0.

Proof:

det(AA−1) = det A det A−1 = det I = 1.

Proposition 12.1.3 The determinant of a diagonal matrix (one with 0’s in
all of the off diagonal positions) is the product of its diagonal entries.

Proof:
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We use induction on the number of diagonal entries not equal
to 1. If there are none then we have an identity matrix and the
result is given by Proposition 12.1.1. So let us assume that the
proposition holds for k non-one diagonal entries and show that it
must hold for k + 1 non-one diagonal entries. If A is a diagonal
matrix with k + 1 diagonal entries not equal to 1 then pick a
row i in which A has a diagonal entry which is not 1. Let A′

be the matrix which is identical to A except that its i, i-entry
is a 1. Then det A = aii det A′ by axiom 3, multilinearity. The
matrix A′ has only k non-one diagonal entries so its determinant
is the product of its diagonal entries. This proves that det A is
the product of the diagonal entries in A, and we are finished by
induction.

Next we note some cases in which we can tell by inspection that the
determinant is 0.

Proposition 12.1.4 If A has a row which is all zeros then det A = 0.

Proof:

Let B be identical to A except in the row which is all zeros.
Then det B = det A + det B by multilinearity in the rows. Thus
det A = 0.

Proposition 12.1.5 If A has two rows which are the same then det A = 0.

Proof:

Suppose rows i and j of A are identical. Then multiplying
A by the matrix corresponding to the elementary row operation
“add -1 times row i to row j,” which has an inverse and thus has
nonzero determinant, gives a matrix with a row of zeros. Thus
det A = 0.

Proposition 12.1.6 If A is the result of interchanging two rows in an iden-
tity matrix then detA = −1.

Example:
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The essential features of the argument are found in the exam-
ple

det

[
0 1
1 0

]
= −1.

This is demonstrated by observing that

det

[
1 1
1 1

]
= det

[
1 0
1 1

]
+ det

[
0 1
1 1

]
by multilinearity. Continuing in the same manner we get

det

[
1 1
1 1

]
= det

[
1 0
0 1

]
+det

[
1 0
1 0

]
+det

[
0 1
0 1

]
+det

[
0 1
1 0

]
.

0 = 1 + 0 + 0 + det

[
0 1
1 0

]
This tells us that

det

[
0 1
1 0

]
= −1

using Propositions 12.1.4 and 12.1.5. The general case just adds
a pair of indices to keep track of which two rows are being inter-
changed. ♦

This gets us some of the easy cases. To see how to progress further we
need to see what elementary row operations do to determinants. If we recall
that elementary row operations can be done by multiplying on the left by
appropriate matrices we can reduce our work to calculating the determinants
of those matrices.

Proposition 12.1.7 The elementary row operations have the following ef-
fect on the determinant of A:

1. multiplying row i by r multiplies the determinant by r

2. interchanging two rows multiplies the determinant by -1

3. adding a multiple of one row to another does not change the determi-
nant.

Proof:
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1) The elementary row operation of multiplying row i by r
is effected by left multiplication by a matrix with r in the ii
position and 1 elsewhere on the diagonal and all other entries 0.
By Proposition 12.1.3 this has determinant r. Thus multiplying
by it multiplies the determinant of A by r.

2) Interchanging rows i and j is accomplished by multiplying
on the left by a matrix obtained by interchanging rows i and j
of an identity matrix. Such a matrix has determinant -1. Thus
interchanging two rows changes the sign of the determinant.

3) Adding a multiple of one row to another is accomplished by
left multiplication by the matrix obtained by performing the same
elementary row operation on an identity matrix. For example,
adding m times row 1 to row 3 can be achieved by multiplying
by the matrix  1 0 0

0 1 0
m 0 1


Now by linearity in row 3 we get

det

 1 0 0
0 1 0
m 0 1

 = m det

 1 0 0
0 1 0
1 0 0

+ det

 1 0 0
0 1 0
0 0 1


= m0 + 1 = 1.

So this operation leaves the determinant unchanged.

Corollary 12.1.8 A square matrix is invertable if and only if its determi-
nant is nonzero.

Proof:

None of the row operations changes the determinant from zero
to non-zero or from non-zero to zero. Thus a matrix has a non-
zero determinant if and only if its row reduced echelon form has a
non-zero determinant. From our algorithm for finding inverses we
know that the M−1 exists if and only if the row reduced echelon
form for M is the identity matrix, which has determinant equal
to 1, hence non-zero.
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The work so far lets us calculate determinants for all cases. For example
we calculate

det

[
1 2
3 4

]
as follows:

det

[
1 2
3 4

]
= det

[
1 2
0 −2

]
= −2 det

[
1 2
0 1

]
= −2 det

[
1 0
0 1

]
= −2.

Another example is

det

 1 2 0
0 0 1
0 0 3

 = det

 1 2 0
0 0 1
0 0 0

 = 0.

Yet another

det


1 0 2 1
2 1 4 6
3 0 1 8
1 1 1 1

 = det


1 0 2 1
0 1 0 4
0 0 −5 5
0 1 −1 0



= det


1 0 2 1
0 1 0 4
0 0 −5 5
0 0 −1 −4

 = −5 det


1 0 2 1
0 1 0 4
0 0 1 −1
0 0 −1 −4



= −5 det


1 0 2 1
0 1 0 4
0 0 1 −1
0 0 0 −5

 = 25 det


1 0 2 1
0 1 0 4
0 0 1 −1
0 0 0 1



= 25 det


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = 25.

In each case we calculate the determinant by keeping track of the effect of
the row reduction operations as we reduce the matrix to row reduced echelon
form. This always leads to a case we can solve by inspection because the row
reduced echelon form of a square matrix either has a row of zeros or is an
identity matrix. Actually we can stop before we get that far using the next
proposition.
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Proposition 12.1.9 If A is an upper triangular matrix then det A is the
product of the diagonal entries.

Proof:

If A has no diagonal entries equal to 0 then we can use ele-
mentary row operations of the form “add a multiple of row i to
row j” to eliminate all of the off diagonal entries. Since that form
of elementary row operation does not change the determinant this
tells us det A = det Adiag where Adiag has the same diagonal en-
tries as A and zeros off the diagonal. If aii = 0 for some i then
consider the last row with aii = 0. All of the entries aij with j < i
are 0 and all of the entries ajj with j > i are nonzero. Since ajj
is nonzero when j > i we can use the elementary row operation
“Add −aij/ajj times row j to row i” to eliminate the aij entry.
Thus applying row operations which do not change the determi-
nant will result in a matrix with a row of zeros. Thus det A = 0.

Examples:

det

 2 1 3
0 4 1
0 0 6

 = 48

det

 2 1 3
0 0 1
0 0 6

 = 0

Matrices can sometimes be thought of as being built of blocks. For in-
stance we can think of the matrix

M =


1 2 3 4 5
2 1 1 1 1
0 0 1 2 3
0 0 4 5 6
0 0 1 1 1


as being

M =

[
A B
0 C

]
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where

A =

[
1 2
2 1

]
B =

[
3 4 5
1 1 1

]

C =

 1 2 3
4 5 6
1 1 1


0 =

 0 0
0 0
0 0


This particular example is block upper triangular because of the block of 0’s
in the lower left corner.

Theorem 12.1.10 If the matrix M can be partitioned into four blocks

M = M =

[
A B
0 C

]
where A and C are square and 0 has all entries 0, then det(M) = det(A) det(C).

Proof:

To calculate the determinant of M we do row operations to
reduce it to upper triangular form. In this process we first do
row operations to get the rows in blocks A and B to be upper
triangular, then we deal with the rows in C. This gives a block
upper triangular matrix

M′ = M =

[
A′ B′

0 C′

]
with both A′ and C′ upper triangular. The determinant det(M)
is then given by the product of the determinants for the elemen-
tary row operations times the product of the diagonal elements of
M′. We can break this into the product of the determinants to get
the first rows upper triangular times the diagonal elements of A′

times the product of the determinants of the elementary matrices
to get the last rows in upper triangular form times the diagonal
elements of C′. But this is just det(A) det(C), as claimed.
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Exercises 12.1:
For problems 1–11 find the determinants using row reduction or theorems
from this section:

1. det

 1 0 3
2 1 4
7 6 5



2. det

 1 0 3
0 1 4
0 0 5



3. det

 1 2 3
0 4 5
0 0 6



4. det


1 2 0 0
1 3 0 0
0 0 5 1
0 0 1 1



5. det


1 1 1 1
0 1 4 2
0 0 5 1
0 0 0 8



6. det


1 2 3 0
3 1 4 0
6 0 5 0
0 0 0 17



7. det


1 0 0 2
3 1 4 2
6 0 5 1
1 1 1 1



8. det


−1 0 −2 3
2 1 4 5
1 7 3 0
1 −1 −1 −1


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9. det


0 0 0 a
1 0 0 b
0 1 0 c
0 0 1 d



10. det


0 0 0 d
a 0 0 0
0 b 0 0
0 0 c 0



11. det


0 0 0 a
0 0 b 0
0 c 0 0
d 0 0 0


12. (Project Problem)

(a) Prove that if M is n× n then

det M =
n∑
k=1

det M̂k

where M̂k is identical to M except that all entries other than the
kth in row 1 are 0.

(b) Use an induction argument together with part (a) to show that
the det M is the sum of all the determinants of matrices which
can be made from M by changing all entries to 0 except for one
entry in each row and column.

(c) Show that if M has only one nonzero entry in each row and col-
umn, say ei in column i, then det M is (−1)p

∏
ei where p is

then number of columns in which the nonzero entry is not the
main diagonal entry. If we write ei = mσ(i)i for a permutation
σ : {1, . . . , n} → {1, . . . , n} then (−1)p is called the parity of σ,
written sgn(σ).

(d) Using the earlier parts of this problem prove that

detM =
∑
σ

(sgn(σ)
n∏
i=1

mσ(i)i)



12.2. EXPANSION BY MINORS 269

12.2 Expansion by Minors

In the previous section we found determinants using row reduction. This
is the computationally efficient way to solve the problem of computing a
determinant. In this section we give another, iterative, approach which is
widely used for small matrices, particularly when determinants are used out-

side mathematics. We start with the definition det

[
a b
c d

]
= ad − bc. We

then reduce the calculation of an n × n determinant to n calculations of
(n− 1)× (n− 1) determinants by the following procedure. In order to define
det for n × n matrices, we will reduce the problem to n × n matrices of a
very special form: those for which the only non zero entry in the first row or
column is in the 1,1 position.


a 0 0 · · · 0
0
0
...
0

A1

 = A

For such a matrix, det A = a det A1. To see this note that the determinant
of A1 can be found by applying elementary row operations until it is upper
triangular and then multiplying the diagonal elements. Row i of A1 appears
with a 0 appended in the first column as row i+ 1 of A, so if we add 1 to all
of the row references in the process of reducing A1 to upper triangular form
we get the operations needed to reduce A to upper triangular form. Since a
is the diagonal element this tells us that det A = a det A1. Now suppose we
are given an n × n matrix M = [[mij]]. For each pair (i, j) let Mij be the

(n − 1) × (n − 1) matrix obtained by crossing out the ith row and the jth

column of M. This is called the ij minor. We will show that

det M =
n∑
j=1

(−1)j+1m1j det M1j.

Consider the matrices Aj which are identical with M except that all of the

entries in the first row except the jth have been replaced by zeros. By
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multilinearity, we must have

det M =
n∑
j=1

det Aj.

Since we know that adding a multiple of one row to another does not change
determinants, each the Aj may be replaced by the matrix Bj which has all

entries in the jth column except the first changed to zero as well. These
matrices Bj would look like the special type of matrices for which we know
the determinant, if only we were to exchange columns until the non zero entry
in the first row were also in the first column. This involves j−1 interchanges.
If we call the resulting matrix Cj then

Cj =


mi,j 0 0 · · · 0

0
0
...
0

M1,j


and

det Cj = (−1)j−1 det Bj.

This tells us that det Cj = m1j det M1j. In summary we have to have the
following calculations:

det M =
n∑
j=1

det Aj =
n∑
j=1

det Bj =
n∑
j=1

(−1)j−1 det Cj =
n∑
j=1

(−1)j−1m1j det M1j.

In general we can use row i instead of row 1 by interchanging rows i− 1
times to get it to the row 1 position (multiplying by (−1)i−1) and then
expanding by minors:

det A =
n∑
j=1

(−1)i−1(−1)j−1aij det Aij =
n∑
j=1

(−1)i+jaij det Aij.

We can also use the fact that det A = det At to get expansion using a column
instead of a row:

det A =
n∑
i=1

(−1)i+jaij det Aij.
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Example: Calculating determinants

det

 1 2 0
0 0 1
0 0 3

 = 1 det

[
0 1
0 3

]
= 1 · 0 = 0

♦

Example: A 4 by 4 example

det


1 0 2 1
2 1 4 6
3 0 1 8
1 1 1 1



= 1 det

 1 4 6
0 1 8
1 1 1

−0 det

 2 4 6
3 1 8
1 1 1

+2 det

 2 1 6
3 0 8
1 1 1

−1 det

 2 1 4
3 0 1
1 1 1


= 1(1 det

[
1 8
1 1

]
− 4 det

[
0 8
1 1

]
+ 6 det

[
0 1
1 1

]
)− 0

+2(2 det

[
0 8
1 1

]
− 1 det

[
3 8
1 1

]
+ 6 det

[
3 0
1 1

]
)

−1(2 det

[
0 1
1 1

]
− 1 det

[
3 1
1 1

]
+ 4 det

[
3 0
1 1

]
)

= 1(1(1− 8)− 4(0− 8) + 6(0− 1))− 0

+2(2(0−8)−1(3−8)+6(3−0))−1(2(0−1)−1(3−1)+4(3−0)) = 25.

♦

This same example was also done in the previous section using elementary
row operations. Compare the amount of work involved.
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Exercises 12.2:
Rework exercises 1-11 of the previous section using expansion minors. Use
any convenient row or column.

12. A tridiagonal matrix has nonzero entries only on the main diagonal
and in the diagonals directly above and below the main diagonal. Count
how many multiplications are needed to find the determinant of an n ×
n tridiagonal matrix using row reduction to an upper triangular matrix.
Then count the number of multiplications needed using expansion by minors.
Which method is preferable for these matrices?



Chapter 13

Eigenvalues and Eigenvectors

In this chapter we will turn our attention to a very important problem in-
volving linear transformations, that of finding eigenvalues and eigenvectors.
We will see that eigenvalues tell us what the long term behavior of iterations
of a linear transformation are. We will also see how they enable us to find
bases giving particularly nice forms for the matrix of a linear transformation.

13.1 Eigenvalues and Characteristic Polyno-

mials

The simplest example of a linear transformation is one obtained from a scalar
λ by taking each vector ~v to λ~v. The matrix of this linear transformation with
respect to any basis (using the same basis for both domain and codomain) is
λI. Certainly we would not ask for every linear transformation to look just
like this simplest case, but it does turn out to be useful to ask which vectors
have scalars λ for which the linear transformation looks like multiplication
by λ. If we can find a basis of such vectors we will be able to represent the
linear transformation using a diagonal matrix. We need some terminology
for this situation.

Definition 13.1.1 An eigenvalue for a linear transformation T : V → V
is a scalar λ such that there is a nonzero ~v ∈ V with T (~v) = λ~v. The vector
~v is called an eigenvector for the eigenvalue λ.

Definition 13.1.2 An eigenvalue for a matrix T is a scalar λ so that there
is a nonzero column vector ~v with T~v = λ~v.

273
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It is clear that the eigenvalues of a linear transformation and the eigenval-
ues of the matrix representing it with respect to a basis are the same. This
means that we can find eigenvalues for linear transformations by finding
eigenvalues for matrices. It also means that if two different matrices rep-
resent the same linear transformation with respect to different bases, then
they will have the same eigenvalues, since the eigenvalues are properties of
the transformation and not artifacts of how we represent it. Some of the util-
ity of eigenvalues arises from the nice forms that they let us find for matrices–
upper triangular forms and for very nice transformations, diagonal forms.

Example:

The linear transformation L : R2 → R2 taking [x, y] to [2x, 3y]
has eigenvalues 2 and 3. The vector [1, 0] is an eigenvector for the
eigenvalue 2, and [0, 1] is an eigenvector for 3. These eigenvectors
form a basis. If we use the basis of eigenvectors, the matrix for L
is the diagonal matrix [

2 0
0 3

]
.

♦

It is not always so easy to tell what the eigenvalues of a linear trans-
formation are. It is, however, easy to check that a particular vector is an
eigenvector for a given eigenvalue.

Example:

The scalars 2 and 1 are eigenvalues for the linear transforma-
tion with matrix [

.8 .3
−.8 2.2

]
though this is far from obvious from looking at the matrix. If,
however, we are told that [1, 4] is an eigenvector for 2 and [3, 2]
is an eigenvector for 1, we can check:[

.8 .3
−.8 2.2

] [
1
4

]
=

[
2
8

]
and [

.8 .3
−.8 2.2

] [
3
2

]
=

[
3
2

]
.
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In fact, all we really needed to be told was that 2 and 1 were
eigenvalues. We can find eigenvectors by looking at systems of
equations:

.8x+ .3y = 2x

−.8x+ 2.2y = 2y

which says that

−1.2x+ .3y = 0

−.8x+ .2y = 0.

We can solve this system[
−1.2 .3 0
−.8 .2 0

]
1
−1.2

R1

;

[
1 −.25 0
−.8 .2 0

]
R2 − .8R1

;

[
1 −.25 0
0 0 0

]
so we have nontrivial solutions. One such solution can be given
by taking y = 4, from which we get x = 1. A similar computation
would produce an eigenvector for the eigenvalue 1. ♦

This tells us that we can reduce the problem of finding an eigenvalue and
an eigenvector to that of finding the eigenvalue first and then using it to find
the eigenvector.

If we can find the eigenvalue λ for a matrix then we can find the eigen-
vector by looking at a system of equations arising from M~v = λ~v. We do
this by subtracting λ~v from both sides to get a homogeneous system of lin-
ear equations. This suggests a way to find eigenvalues: see when the system
M~v = λ~v has non-trivial solutions. This equation has ~v on both sides so we
subtract λ~v to get M~v − λ~v = ~0. Writing this system in matrix form gives
(M−λI)~v = ~0. This system of equations will have nontrivial solutions if and
only if (M − λI) does not have an inverse; that is, when its determinant is
zero.

Definition 13.1.3 The characteristic polynomial of the matrix M is
pM(λ) = det(M− λI).

Example:
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The characteristic polynomial of the matrix[
2 0
0 3

]
is det

[
2− λ 0

0 3− λ

]
which is (2−λ)(3−λ) = 6−5λ+λ2. The roots of the characteristic
polynomial are 2 and 3, the eigenvalues of the matrix. ♦

Example:

The characteristic polynomial of the matrix[
.8 .3
−.8 2.2

]
is det

[
.8− λ .3
−.8 2.2− λ

]
which is λ2− 3λ+ 2. The roots of the characteristic equation are
the eigenvalues 2 and 1. ♦

The examples illustrate the method used to find eigenvalues, at least for
2 by 2 and 3 by 3 matrices. In theory the method would work well for larger
matrices as well, but in practice it can be very difficult to find the roots of
the characteristic polynomial. It is also easy to find examples of matrices
which do not have real eigenvalues, since there are lots of polynomials with
no real roots.

Example: Complex eigenvalues

As an example, consider the rotation by 45 degrees, which has
matrix with respect to the standard basis[

1√
2
−1√

2
1√
2

1√
2

]
and characteristic polynomial

λ2 − 2λ+ 1

which has no real roots. It does, however have two complex roots.
Thus if we consider the matrix as representing a linear transfor-
mation from C2 to C2 instead of from R2 to R2 there will be
eigenvalues. ♦
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Indeed the fundamental theorem of algebra (which says that any polyno-
mial over the complex numbers factors into linear pieces) tells us that we can
always find n eigenvalues for an n by n matrix over the complex numbers.
The usual proofs of the fundamental theorem of algebra are, however, both
beyond the scope of this course and nonconstructive. Still, when working
problems involving eigenvalues we usually work over the complex numbers.

Example: Finding complex eigenvalues

Find the eigenvalues (in the complex numbers) for the matrix[
2 4
6 −8

]
.

We find the characteristic polynomial

det

[
2− λ 4

6 −8− λ

]
= (2− λ)(−8− λ)− 24

= −16 + 6λ+ λ2 − 24

= λ2 + 6λ− 40.

This has roots

λ =
−6±

√
36 + 160

2
or λ = −10 or 4. ♦

Example:

Find the eigenvalues of [
1 −1
1 1

]
by taking

det

[
1− λ −1

1 1− λ

]
to get (1− λ)(1− λ) + 1 = 2− 2λ+ λ2, which has roots

λ =
2±
√

4− 8

2
= 1± i.

♦
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Exercises 13.1:

1. For the following matrices M show that the vector ~v is an eigenvector:

(a) M =

[
2 3
2 1

]
and ~v =

[
3
2

]

(b) M =

 5 −3 −9
−3 5 9
3 −3 −7

 and ~v =

 1
−1
1


2. Given that λ is an eigenvalue for the matrix M find an eigenvector with

eigenvalue λ:

(a) λ = 3 M =

 3 0 0
1 3 0
0 0 4


(b) λ = 3 M =

 0 0 0
1 0 −6
0 1 5


(c) λ = 2 M =

 −1 −9 0
1 5 0
−4 −12 1


3. Find the characteristic polynomials of the following matrices:

(a)

 1 2 3
0 5 6
0 0 9


(b)

 0 0 3
1 0 1
0 1 −3


(c)

 1 0 0
0 5 6
0 8 9


(d)

 1 2 3
4 5 6
7 8 9


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4. Find the eigenvalues of the following matrices and give an eigenvector
for each eigenvalue you find:

(a)

 1 2 3
0 5 6
0 0 9


(b)

 0 0 3
1 0 1
0 1 −3


(c)

 1 0 0
0 5 6
0 8 9


5. Prove that if λ is an eigenvalue for M with eigenvector ~V then λ− r is

an eigenvalue for M− rI with eigenvector ~v.

6. Suppose you know the eigenvalues of M; how do you get the eigenvalues
for Mn?

7. How are the eigenvalues of M related to the eigenvalues of M−1?

8. Show that if 0 is an eigenvalue of L then L is not invertable. Does the
converse also hold?

9. Show that if L is nilpotent (i.e., Ln = 0 for some n) then 0 is the only
eigenvalue for L.

10. Show that applying elementary row operations to a matrix will, in
general, change its eigenvalues.

11. Show that similar matrices have the same eigenvalues.

13.2 Eigenvalues and Special Forms of Ma-

trices

Because of the properties of determinants there are certain forms of matrices
for which the eigenvalues can be determined by inspection. It is not hard
to see that a diagonal matrix has its diagonal entries as eigenvalues: the
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eigenvectors are the corresponding standard basis elements. It turns out
that the eigenvalues of an upper triangular matrix are also given by the
diagonal elements.

Theorem 13.2.1 If A is upper triangular then the eigenvalues of A are the
diagonal entries aii.

Proof:

The characteristic polynomial is det(A − λI). The matrix
A−λI is upper triangular, so its determinant is the product of its
diagonal entries. This tells us that the characteristic polynomial
of A is the product of linear factors of the form (aii − λ). Thus
the roots of the characteristic polynomial, the eigenvalues, are
the diagonal entries.

Example: An upper triangular matrix

The eigenvalues of the matrix
1 2 3 4
0 −4 7 195
0 0 −1 1
0 0 0 1


are 1,-4, and -1, with 1 repeated. ♦

It is easiest to find eigenvalues of 2 by 2 matrices since we can always
use the quadratic formula to solve the characteristic equation. The algebra
involved in finding eigenvalues of larger matrices increases precipitously as the
size of the matrix increases. One approach to larger matrices is to partition
them into smaller matrices. If there is a block of zeros in the lower left hand
corner of the matrix we get the following result:

Theorem 13.2.2 If the matrix M can be partitioned into four blocks

M =

[
A B
0 C

]
where A and C are square matrices, then the characteristic polynomial of M
is the product of the characteristic polynomials of A and C.



13.2. EIGENVALUES AND SPECIAL FORMS OF MATRICES 281

Proof:

The matrix M−λI also has a block structure with A−λI and
C − λI in the diagonal positions. To calculate the determinant
of M− λI we apply row operations to get it to upper triangular
form. The row operations applied to A − λI to make it upper
triangular are the same as the ones used to make the first block
of columns of M − λI look upper triangular and they do not
affect the lower right hand block. The row operations used to
complete the upper triangularization of M−λI make C−λI upper
triangular and do not change the work already done. This means
that the calculation of det(M− λI) proceeds by making A− λI
and C−λI upper triangular and then multiplying their diagonal
entries. That means that det(M−λI) = det(A−λI) det(C−λI).
This says that the characteristic polynomial of M is the product
of the characteristic polynomials of A and C.

Corollary 13.2.3 Under the same hypotheses as the previous theorem, the
eigenvalues of M are those of A together with those of C.

Proof:

The roots of det(A−λI) det(C−λI) will be the roots of either
factor. Thus the eigenvalues of M are those of A and those of C.

Example: A block diagonal matrix

The eigenvalues of 
2 1 3 4
1 2 −5 1
0 0 3 1
0 0 2 2


are those of [

2 1
1 2

]
and

[
3 1
2 2

]
They are the roots of λ2− 4λ+ 3 and those of λ2− 5λ+ 4. These
give eigenvalues 1 and 3 and 1 and 4, respectively. ♦
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At the end of Chapter 9 we considered companion matrices for m on m-
cyclic subspaces. These had 1’s below the diagonal and no other non-zero
entries except in the last column. We can read the characteristic polynomial
of such a matrix out of the entries in the last column:

Theorem 13.2.4 If M is a companion matrix with final column
a0

a1
...

an−1


then

χM(λ) = (−1)n+1(a0 + a1λ+ a2λ
2 + . . .+ an−1λ

n−1 − λn).

Proof:

This is actually just a calculation of det(M−λI); the question
is how best to take advantage of the special form. What we do
is to make judicious use of row operations and then expand by
minors using the first row. We start with the determinant

det



−λ 0 0 0 . . . a0

1 −λ 0 0 . . . a1

0 1 −λ 0 . . . a2
...

. . .
...

0 0 . . . 1 −λ an−2

0 0 0 . . . 1 (an−1 − λ)


and then systematically use the 1 below the diagonal to get rid
of the −λ on the diagonal. These row operations do not change
the value of the determinant, so

det(M−λI) = det



−λ 0 0 0 . . . a0

1 −λ 0 0 . . . a1

0 1 −λ 0 . . . a2
...

. . .
...

0 0 . . . 1 0 an−2 + an−1λ− λ2

0 0 0 . . . 1 (an−1 − λ)


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= det



−λ 0 0 0 . . . a0

1 −λ 0 0 . . . a1
...

. . .
...

0 . . . 1 0 an−3 + an−2λ+ an−1λ
2 − λ3

0 0 . . . 1 0 an−2 + an−1λ− λ2

0 0 0 . . . 1 (an−1 − λ)



= det



0 0 0 0 . . . a0 + a1λ+ a2λ
2 + . . .+ an−1λ

n−1 − λn
1 0 0 0 . . . a1 + a2λ+ . . .+ an−1λ

n−2 − λn−1

...
. . .

...
0 . . . 1 0 an−3 + an−2λ+ an−1λ

2 − λ3

0 0 . . . 1 0 an−2 + an−1λ− λ2

0 0 0 . . . 1 (an−1 − λ)


This last determinant can be expanded by minors using the

first row to get

det(M− λI) = (−1)n+1(a0 + a1λ+ a2λ
2 + . . .+ an−1λ

n−1 − λn).

Eigenvalues can be easy to find for matrices in special forms; similarly,
special forms for matrices for a linear transformation can be found by using
eigenvectors in a basis. In particular, if there is a basis consisting entirely of
eigenvectors then we can represent the linear transformation by a diagonal
matrix. It is therefore of possible utility to study linear independence for
eigenvectors.

Theorem 13.2.5 If the vectors ~v1, . . . , ~vm are eigenvectors for the distinct
eigenvalues λ1, . . . , λm for the linear transformation L, then the set {~v1, . . . , ~vm}
is linearly independent.

Proof:

Suppose that the set of ~v’s is dependent. Then there is a first
~vn which can be written as a linear combination of the previous
~v’s. By taking the first we guarantee that the set {~v1, . . . , ~vn−1}
is independent, so there is only one way to write ~vn as a linear
combination of the others, say

~vn =
n−1∑
i=1

ai~vi.
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Applying the transformation L we get

L(~vn) =
n−1∑
i=1

aiL(~vi).

Using the fact that the ~v’s are eigenvectors this gives

λn~vn =
n−1∑
i=1

aiλi~vi.

If λn = 0 this shows that the set {~v1, . . . ~vn} is not independent,
so we may assume that λn 6= 0. Dividing by λn we get

~vn =
n−1∑
i=1

aiλi
λn

~vi

which is a different way of writing ~vn as a linear combination
of the previous ~v’s since λi 6= λn for all i. This contradicts the
uniqueness of the representation, so our original set of vectors
must have been linearly independent.

Corollary 13.2.6 If a linear transformation from an n-dimensional space
to itself has n distinct eigenvalues then it can be represented by a diagonal
matrix.

Proof:

Use a set consisting of one eigenvector for each eigenvalue for
the basis.

We cannot always find a basis so that the matrix for a linear transforma-
tion is diagonal–if eigenvalues are repeated there may or may not be a basis
of eigenvectors. We can, however, always get an upper triangular matrix by
proper choice of basis.

Theorem 13.2.7 For any n×n complex matrix M there is an upper trian-
gular matrix U which is similar to M.

Proof:
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[Following Wesson, Lessons in Linear Algebra, Merrill,1974]
We argue by induction on n.

If n = 1, then M is already upper triangular.
Now suppose that we have the theorem for all matrices which

are k × k and we wish to show that the theorem holds for (k +
1)× (k+1) matrices. Let A be a (k+1)× (k+1) matrix. By the
fundamental theorem of algebra, the characteristic polynomial
for A has a root in C, say λ1. This eigenvalue will have an
eigenvector, say ~v1. We can extend to a basis (~v1,~b1, . . . ,~bk).
With respect to this basis the matrix for the linear transformation
has the form

B =

[
λ1 A12

0 A22

]
where A22 is a k × k matrix and 0 is a column of zeros. Since
matrices for the same linear transformation with respect to two
different bases are similar, this gives us a matrix similar to A.

Now A22, as a k × k matrix is similar to an upper triangular
matrix, say U22. So there is a matrix P22 such that P−1

22 A22P22 =
U22. Now let P be the matrix[

1 0
0 P22

]
and observe that

P−1 =

[
1 0
0 P−1

22

]
so

P−1BP =

[
1 0
0 P−1

22

] [
λ1 A12

0 A22

] [
1 0
0 P22

]
=

[
λ1 A12P22

0 U22

]
which is upper triangular. Similarity is transitive, so this shows
that A is similar to an upper triangular matrix.

Example: Triangularization

Let us find an upper triangular matrix similar to

M =

 0 0 1
1 0 1
0 1 −1


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which has characteristic polynomial p(λ) = λ3 + λ2 − λ − 1 =
(λ + 1)2(λ − 1). A little work gives us [−1, 0, 1] as an eigen-
vector for the eigenvalue λ = −1. Extending gives the basis
([−1, 0, 1], [1, 0, 0], [0, 1, 0]). If the linear transformation M has
matrix M with respect to the standard basis then the matrix for
the linear transformation M with respect to this new basis is −1 0 1

0 0 1
0 1 0


which is thus similar to M.

Let us now focus on the 2× 2 matrix[
0 1
1 0

]
in the lower right corner. It has eigenvalues λ = 1 and λ = −1,
so it is similar to the diagonal matrix[

1 0
0 −1

]
obtained by using a basis of eigenvectors. One possible such basis
is ([1, 1], [1,−1]). The matrix P22 which does the change of basis
is then [

1 1
1 −1

]
which has inverse [

1
2

1
2

1
2
−1

2

]
so that [

1
2

1
2

1
2
−1

2

] [
0 1
1 0

] [
1 1
1 −1

]
=

[
1 0
0 −1

]
.

Now we know that

M ∼

 −1 0 1
0 0 1
0 1 0


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and −1 1 1
0 1 0
0 0 −1

 =

 1 0 0
0 1

2
1
2

0 1
2
−1

2

 −1 0 1
0 0 1
0 1 0

 1 0 0
0 1 1
0 1 −1

 ,
so

M ∼

 −1 1 1
0 1 0
0 0 −1

 .
♦

Exercises 13.2:
For problems 1–10 find the eigenvalues of the following matrices:

1.

 4 1 −1
0 2 −1
0 1 2



2.


4 1 0 0
2 2 0 0
0 0 1 2
0 0 −5 3



3.


1 1 0 0 0
0 1 0 0 0
0 0 2 1 0
0 0 −1 2 0
0 0 0 0 3



4.


1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 3



5.

 1 2 0
2 2 1
0 1 4


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6.

 0 0 6
1 0 1
0 1 −6



7.

 0 0 −1
1 0 −3
0 1 −3



8.


1 4 2 3
2 3 1 1
0 0 2 3
0 0 2 1



9.


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1



10.


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 −2
0 0 0 1 3



11. Show that the matrix

 0 0 2
1 0 1
0 1 −2

 is similar to a diagonal matrix.

Give the change of basis matrices as well.

12. Show that the matrix

 0 0 −4
1 0 4
0 1 1

 is similar to a diagonal matrix.

Give the change of basis matrices as well.

13. Show that the matrix

 0 0 1
1 0 −3
0 1 3

 is similar to a upper triangular

matrix. Give the change of basis matrices as well.
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14. A matrix is symmetric if mij = mji for all i and j. Show that a
symmetric 2× 2 matrix must have real eigenvalues.

13.3 The Power Method

Using the characteristic equation to find eigenvalues can be a very cumber-
some approach. In many applications (notably those of predicting the long
term behavior of population models) what is needed is the principle eigen-
value, that is, the one with the largest absolute value. The power method,
described in this section, provides an iterative approach to approximation of
the largest eigenvalue of a reasonably large class of matrices.

To see how the method works, suppose that M has distinct real eigenval-
ues λ1, . . . , λn. Then there is a basis of eigenvectors (~b1, . . . ,~bn) with each ~bi
an eigenvector for λi. If we take any vector ~v, we can write it as

~v =
n∑
i=1

ai~bi.

Multiplying by M we get

M~v =
n∑
i=1

aiλi~bi.

If we then divide by the eigenvalue with largest absolute value we will get a
new vector with the same component for the principle eigenvector but with
all of the other components reduced. Continuing this process will eventually
lead to all of the components other than the component in the direction of the
principle eigenvector vanishing. Thus in some sense the principle eigenvalue
tells us what the long term behavior is.

As a procedure for finding the principle eigenvalue what we have just
done is no help, since we needed to know what the principle eigenvalue was
so that we could divide by it. So we devise a method which lets us estimate
the eigenvalue while we are converging (we hope) to an eigenvector. We
start with a vector ~v which has its largest component equal to 1 when it is
represented using the standard basis. We then multiply by M and then divide
by the entry with largest absolute value. If all goes well this will converge to
an eigenvector. Eventually multiplying by M has the effect of multiplying
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each component by the same (or approximately the same) number. The
process we have described will then stabilize.

Example: Power method

Let us look at an example. The matrix

M =

[
4 0
2 1

]
has eigenvalues 4 and 1. If we start with the vector [1, 1] and
apply the power method we first multiply by M to get [4, 3], then
divide by the largest entry (4) to get the next approximation to an
eigenvector: [1, 3

4
]. Repeating this process leads to the following

results:
largest entry next iterate

4 [1,.6875]
4 [1,.671875]
4 [1,.66796875]
4 [1,.666992187]
4 [1,.666748046]

It is not hard to see that the eigenvalue is 4. The approximate
eigenvectors are approaching the eigenvector [1, 2

3
]. ♦

Let us try an example where it is not so obvious what the eigenvalues
are.

Example:

Let M be the matrix  1 2 3
2 4 6
−1 4 0


and start with the vector [1, 1, 1]. The following results are ob-
tained:
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largest entry of M~v next approximate eigenvector
12 [.5,1,.25]
6.5 [.5,1,.538461538]

8.23076923 [.5,1,.425233645]
7.55140187 [.5,1,.463490099]
7.7809406 [.5,1,.449817083]
7.6989025 [.5,1,.454610251]
7.72766151 [.5,1,.452918389]

after 20 iterations
7.72015326 [.5,1,.453358876]

at which point no further changes occur to within eight deci-
mal places. ♦

How can the algorithm fail? Two possibilities exist: if we start with a
vector which completely misses the subspace of V spanned by the eigenvectors
for the largest eigenvector the algorithm may converge to a smaller eigenvalue
and eigenvector for it. It can also happen that there are two eigenvalues with
the same absolute value.

Example:

An example of this is the matrix[
0 1
1 0

]
which has eigenvalues 1 and -1. If we start with the vector [1,1]
we will get the eigenvalue 1 and the eigenvector [1,1] immediately
(lucky guess for the starting point!). If on the other hand we start
with [1,0], we will get an alternation between [1,0] and [0,1]. ♦

Periodic behavior in the approximate eigenvalue and approximate eigen-
vectors suggests multiple principle eigenvalues. If we have complex eigenval-
ues we also get periodic behavior. Since complex eigenvalues for real matrices
occur in conjugate pairs, we always have two complex eigenvalues with the
same absolute value.

Example:
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As an example consider the matrix[
1 −1
1 1

]
which has complex eigenvalues. If we apply the power method
starting with [1,1] we get the following pattern:

largest entry of M~v next approximate eigenvector
2 [0,1]
-1 [1,-1]
-2 [1,0]
1 [1,1]
2 [0,1]
-1 [1,-1]
-2 [1,0]
1 [1,1]

Clearly we are caught in a loop. ♦

Exercises 13.3:

1. Use the power method to find the principle eigenvalue and an eigen-
vector for it for the following matrices:

(a)

[
1 2
2 −3

]

(b)

 0 1 1
1 0 1
1 1 0


(c)

 1 1 2
1 2 −1
2 −1 3


2. Suppose that the n by n matrix M has n distinct eigenvalues λ1 . . . λn.

Show that M − λ1I has n distinct eigenvalues 0, λ2 − λ1, . . . λn − λ1.
This allows us to use the power method to find smaller eigenvalues too.



Chapter 14

Inner Products and
Approximation

So far we have not put the ideas related to the dot product of two vectors in
the plane in a more general setting. Our vectors have no notion of magnitude
or angle between them yet. In some cases such notions would be artificial.
(What would the angle between two polynomials mean, particularly if they
do not have intersecting graphs? We will see that there is a notion of or-
thogonality for polynomials which is important, though it has nothing to do
with the angle formed at the intersection of the graphs.) When we add the
analogue of a dot product, called an inner product, we are adding additional
structure. This additional structure turns out to be very useful.

14.1 Definition and Examples

What additional structure should we add to get the analogue of a dot prod-
uct? Let us consider the properties of a dot product: the dot product of
two vectors is a scalar; it doesn’t matter what order we write the product in;
scalar multiples and sums behave nicely with respect to dot product. There
were other properties, too; look back at the end of Chapter 4 . The next
definition captures what is needed. (In this book we only consider real valued
inner products. Complex valued inner products are also important, but a bit
more complicated.)

Definition 14.1.1 An inner product on a vector space V over the reals is
a function from V ×V to R whose value at (~a,~b) is denoted 〈~a | ~b〉, satisfying

293
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the following axioms:

Symmetry: 〈~a | ~b〉 = 〈~b | ~a〉
Positive definiteness: 〈~a | ~a〉 ≥ 0 with equality if and only if ~a = ~0

Linearity: 〈~a | k~b〉 = k〈~a | ~b〉
〈~a | ~b+ ~c〉 = 〈~a | ~b〉+ 〈~a | ~c〉

Note that symmetry tells us that what we have said for the linearity in
the second variable also holds for the first variable.

Definition 14.1.2 If 〈 | 〉 is an inner product on V and ~a is a vector in
V, then the norm of ~a, denoted ‖~a‖ is

√
〈~a | ~a〉.

The square root in question always exists because of positive definiteness.
The norm gives us a notion of length for vectors in an inner product space.
We also get a notion of orthogonality:

Definition 14.1.3 Two vectors ~v and ~w are said to be orthogonal if 〈~v|~w〉 =
0.

We will call a vector space over the reals which is equipped with a (spec-
ified) inner product an inner product space. The examples will show that
it is quite possible for a vector space to have several different inner products.

14.1.1 Examples in Rn

Dot product: The dot product of vectors in R2 is a function from R2×R2

to R satisfying the axioms for an inner product space. That is, after all,
where we got the idea for the axioms.

A similar dot product may be defined on Rn by

[a1, . . . , an] · [b1, . . . , bn] =
n∑
i=1

aibi.

The symmetry of the dot product will follow from n applications of com-
mutativity of the reals. Positive definiteness follows from the fact that the
dot product of a vector in Rn with itself is the sum of the squares of the
scalar components and so is positive unless all of the components are zero.
Linearity follows from the associative and distributive laws in R.
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Example:

The dot product of the vectors [1, 2, 3, 4] and [1,−2,−1, 3] is
1× 1 + 2×−2 + 3×−1 + 4× 3 = 1− 4− 3 + 12 = 6.

The norm ‖[1, 2, 3, 4]‖ is
√

12 + 22 + 32 + 42 =
√

30. ♦

Weighted dot product If ~w is a vector in Rn all of whose components are
positive, then ~w can be used as a set of weights in defining an inner product:

〈~a | ~b〉 =
n∑
i=1

aibiwi.

It is clear that this inner product satisfies axioms symmetry and linearity.
The reason that we need all the components of ~w to be positive is so that
〈~a | ~a〉 is certain to be a sum with no negative terms and with zeros only
when ~a has a zero component.

Example:

The weighted dot product of the vectors [1, 2, 3, 4] and [1,−2,−1, 3]
using the weights ~w = [1, 2, 2, 1] is 1× 1× 1 + 2× 2×−2 + 2×
3×−1 + 1× 4× 3 = 1− 8− 6 + 12 = −1.

Using this inner product

‖[1, 2, 3, 4]‖ =
√

1× 1× 1 + 2× 2× 2 + 2× 3× 3 + 1× 4× 4 =
√

43.

♦

14.1.2 Function space examples

We next consider a family of inner products defined using definite integrals.
We have chosen to call the inner products by the names of certain families
of polynomials associated with them.

Legendre inner product: Let V be the vector space of continuous func-
tions from the interval [−1, 1] to R. Since continuous functions are integrable
and the product of continuous functions is continuous we can define the inner
product 〈f | g〉 by

〈f | g〉 =

∫ 1

−1

f(x)g(x)dx.
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Symmetry will hold because f(x)g(x) = g(x)f(x). Linearity follows from
simple properties of integrals. The only sticky point is showing that positive
definiteness holds. Now 〈f | f〉 is the integral of f 2 on [−1, 1], and f 2 is
always bigger than or equal to 0. We need to show that the integral will be
zero only if f is identically 0. Now f 2 is continuous, so if it is strictly positive
at a point a it will be bigger than f 2(a)/2 on some interval (a − δ, a + δ)
for small enough δ. This is enough to guarantee that the integral of f 2 is at
least δf 2(a)/2, which is strictly positive.

Example: Legendre inner product

Let f(x) = x and g(x) = x2 − 1, then

〈f | g〉 =

∫ 1

−1

x(x2 − 1) dx = 0

‖f‖ =

√∫ 1

−1

x2 dx =

√
2

3

♦

The concept of magnitude which results from this kind of inner product
is important in engineering and physics. If instead of the interval [−1, 1] you
use one period for a periodic function (say [−π, π] for the sine) and then
divide by the magnitude of the constant function 1, you get the root mean
square magnitude of the function. This turns out to be exactly the right
approach for measuring, for instance, the power in a signal.

One of the major uses of inner products on spaces of functions is the
measurement of the error in an approximation: use the inner product to
calculate the magnitude of the difference between what you want and what
you have. Often it makes a difference where the error occurs. For instance,
if you are approximating the mortality function in calculating life insurance
rates you will be less concerned about errors in the approximation for people
over 90 than you would be for people between 30 and 40, so you would put
more weight on the interval between 30 and 40 than you would on the interval
90 to 100. For such situations we use a weighting function w(x) in the integral
in the same way we used a weighting vector ~w in the earlier example. For
the result to be an inner product it suffices for w(x) to be strictly positive
on the interval used in the integral. One can actually allow w(x) to be 0 in
isolated points, though it is rare that such weights are desired.
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The most important examples of weighted inner products use improper
integrals.

Hermite inner product: One possibility, the Hermite inner product, is
to use the bell shaped curve of a normal distribution as a weighting function:

〈f | g〉 =

∫ ∞
−∞

f(x)g(x)e−x
2

dx.

The integration technique involved in using this inner product is a bit tricky,
so we give a table for some selected powers of x:

n
∫∞
−∞ x

ne−x
2
dx

0
√
π

1 0
2 1

2

√
π

3 0
4 3

4

√
π

5 0
6 15

8

√
π

7 0
8 105

16

√
π

9 0
10 945

32

√
π

Example:

Let f(x) = x and g(x) = x2 − 1, then

〈f | g〉 =

∫ ∞
−∞

x(x2 − 1)e−x
2

dx = 0

‖f‖ =

√∫ ∞
−∞

x2e−x2 dx =

√
1

2

√
π

♦
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Laguerre inner product: Another important example is given by

〈f | g〉 =

∫ ∞
0

f(x)g(x)e−xdx.

Here an integration by parts argument will give∫ ∞
0

xne−x dx = n!

making calculations with the Laguerre inner product of polynomials not too
difficult.

Example:

Let f(x) = x and g(x) = x2 − 1, then

〈f | g〉 =

∫ ∞
0

x(x2 − 1)e−x dx = 3!− 1! = 5

‖f‖ =

√∫ ∞
0

x2e−x dx =
√

2! =
√

2

♦

Both of Laguerre and Hermite inner products occur naturally because of
connections with differential equations which have been found to be impor-
tant in physics.

Tchebyshev inner product: Our last example is the Tchebyshev inner
product, which has important applications in numerical analysis where it is
used to find the best points to use in interpolation. Here the interval used is
[−1, 1] and the weighting function is w(x) = 1√

1−x2 .

Because the integration technique involved in evaluating the integrals for
the Tchebyshev inner product is a bit delicate (the integrals which result
are improper at both end points and require both trigonometric substitu-
tions and even powers of sin(θ)), we include a table of values of the integral
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−1
xn
√

1−x2 dx:

n
∫

xn
√

1−x2 dx
∫ 1

−1
xn
√

1−x2 dx

0 arcsin(x) π

1 −
√

1− x2 0

2 −x
√

1−x2

2
+ arcsin(x)

2
π
2

3
√

1− x2
(
−2

3
− x2

3

)
0

4
√

1− x2
(
−3x

8
− x4

4

)
+ 3

8
arcsin(x) 3π

8

5
√

1− x2
(
− 8

15
− 4x2

15
− x4

5

)
0

6
√

1− x2
(
−5x

16
− 5x3

24
− x5

6

)
+ 5

16
arcsin(x) 5π

16

7
√

1− x2
(
−16

35
− 8x2

35
− 6x4

35
− x6

7

)
0

8
√

1− x2
(
−35x

128
− 35x3

192
− 7x5

48
− x7

8

)
+ 35

128
arcsin(x) 35π

128

Example:

Let f(x) = x and g(x) = x2 − 1, then

〈f | g〉 =

∫ 1

−1

x(x2 − 1)√
1− x2

dx = 0

‖f‖ =

√∫ 1

−1

x2

√
1− x2

dx =

√
π

2

♦

14.1.3 Cauchy-Schwarz and the Triangle Inequality

We finish this section with two important inequalities which follow from the
definition of an inner product. They generalize results about dot products
and distances discussed in chapter 1.

Theorem 14.1.1 (Cauchy-Schwarz Inequality) For any inner product
space

〈~a | ~b〉2 ≤ 〈~a | ~a〉〈~b | ~b〉.
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Proof:

If ~b = ~0, then the theorem is trivial, so let us consider the case
where ~b is not ~0, so that 〈~b | ~b〉 is strictly positive.

The only axiom for inner products which has an inequality in
it is positive definiteness, so we must find a way to use it which
involves both ~a and ~b. Let us apply it to a vector of the form
~a+ x~b:

〈~a+ x~b | ~a+ x~b〉 ≥ 0.

Applying the other axioms we get

〈~a+ x~b | ~a+ x~b〉 = 〈~a+ x~b | ~a〉+ 〈~a+ x~b | x~b〉
= 〈~a | ~a〉+ x〈~b | ~a〉+ x〈~a | ~b〉+ x〈x~b | ~b〉
= 〈~a | ~a〉+ 2〈~a | ~b〉x+ 〈~b | ~b〉x2.

If we now think of this as a quadratic expression in x and treat
the inner products as coefficients, we can pull the theorem out
of high school algebra. If Ax2 + Bx + C is always going to be
non-negative and A is positive then there can be at most one real
root. That means that the discriminant B2−4AC, which appears
under the radical in the quadratic formula, must be non-positive.
Applying this in the current situation we see that

(2〈~a | ~b〉)2 − 4〈~a | ~a〉〈~b | ~b〉 ≤ 0

Simple algebraic manipulation then gives the theorem.

Corollary 14.1.2 (The Triangle Inequality) In any inner product space

‖~a+~b‖ ≤ ‖~a‖+ ‖~b‖.

Proof:

First note that we know both sides of the inequality are non-
negative, so it will suffice to show that

‖~a+~b‖2 ≤ (‖~a‖+ ‖~b‖)2.

This helps because

‖~a+~b‖2 = 〈~a+~b | ~a+~b〉,
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which we can calculate.

〈~a+~b | ~a+~b〉 = 〈~a | ~a+~b〉+ 〈~b | ~a+~b〉
= 〈~a | ~a〉+ 2〈~a | ~b〉+ 〈~b | ~b〉

Now by the Cauchy-Schwarz inequality 〈~a | ~b〉2 ≤ ‖~a‖2‖~b‖2, so it

is certainly true that the weaker statement 〈~a | ~b〉 ≤ ‖~a‖‖~b‖ is
true. Thus

〈~a+~b | ~a+~b〉 ≤ 〈~a | ~a〉+ 2‖~a‖‖~b‖+ 〈~b | ~b〉
≤ ‖~a‖2 + 2‖~a‖‖~b‖+ ‖~b‖2

= (‖~a‖+ ‖~b‖)2

as needed.

Exercises 14.1:

1. Prove in detail that the Legendre inner product is in fact an inner
product on the space of continuous functions from [−1, 1] to R.

2. If ~w = [1, 2, 2, 2, 3] and ~a = [0, 1, 2, 3, 4] and ~b = [9, 3, 5, 1,−6] then find

(a) 〈~a | ~b〉 using the weighted inner product

(b) ‖~a‖ using the weighted inner product

(c) ‖~b− ~a‖

3. Given that ~a = [1, 2, 4], ~b = [3, 7, 1] and ~c = [2, 0,−1] use dot product
to find

(a) 〈~a|~b+ ~c〉 and 〈~a|~b〉+ 〈~a|~c〉

(b) ‖~a‖‖~b‖ and 〈~a|~b〉2

(c) k so that 〈~a+ k~b|~c〉 = 0

4. Use the fact that
∫∞

0
xne−xdx = n! to find the Laguerre inner product

of f(x) = x+ 1 and g(x) = x2 − 1.
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5. Using the Legendre inner product find c so that f(x) = x + c and
g(x) = 1 are orthogonal; that is, so that 〈f | g〉 = 0.

6. Find ‖x2‖ using

(a) the Legendre inner product

(b) the Tchebyshev inner product

(c) the Laguerre inner product

7. Find 〈x− 2|x2 + 1〉 using

(a) the Legendre inner product

(b) the Tchebyshev inner product

(c) the Laguerre inner product

8. Illustrate the triangle inequality by finding

‖x2‖+ ‖1‖ and ‖x2 + 1‖

using

(a) the Legendre inner product

(b) the Tchebyshev inner product

(c) the Laguerre inner product

14.2 Orthogonal Bases

If V is an inner product space there is more that we can ask for in a basis.
Since we have notions of orthogonality and length we can ask for the basis
vectors to be pairwise orthogonal and have unit length. Part of our reason
for asking for these properties is given by the next theorem.

Theorem 14.2.1 If a set of non-zero vectors {~a1, . . . ,~an} has the property
that 〈~ai | ~aj〉 = 0 for all i 6= j, then it is linearly independent.

Proof:
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Suppose, to the contrary, that the set is dependent. Then
there are scalars k1, . . . kn not all 0 so that

k1~a1 + . . .+ kn~an = 0.

Suppose that ki is non-zero. If we take an inner product on both
sides with ~ai we get

〈k1~a1 | ~ai〉+ . . .+ 〈ki~ai | ~ai〉+ . . . 〈kn~an | ~ai〉 = 〈~0 | ~ai〉.

Now all of the terms 〈kj~aj | ~ai〉 = kj〈~aj | ~ai〉 = 0 if i 6= j and
〈~0 | ~v〉 = 0 for any ~v. This tells us that 〈ki~ai | ~ai〉 = 0. But
this tells us that ki〈~ai | ~ai〉 = 0 so either ki = 0 or ~ai = ~0, both
of which we have assumed to be false. Thus the set is linearly
independent.

One consequence of this theorem is that when we are looking for a basis in
an inner product space we can save ourselves the labor of checking for linear
independence by making sure that vectors in our set are pairwise orthogonal.
The next proposition tells how to do that.

Proposition 14.2.2 Given a vector ~v and a vector ~w not parallel to ~v,

~w − 〈~v | ~w〉
〈~v | ~v〉

~v is orthogonal to ~v.

Proof:

Taking an inner product with ~v gives

〈~v | ~w〉 − 〈~v | ~w〉
〈~v | ~v〉

〈~v | ~v〉 = 〈~v | ~w〉 − 〈~v | ~w〉 = 0.

If the vectors were parallel then

~w =
〈~v | ~w〉
〈~v | ~v〉

~v.

Now suppose that we have a set of pairwise orthogonal vectors, or an
orthogonal set of vectors for short, A = {~v1, . . . ~vn}, and a vector ~w we
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want to write as the sum of a vector in Span(A) and a vector orthogonal to
everything in A. We know that

~w −
(
〈~v1 | ~w〉
〈~v1 | ~v1〉

)
~v1

is orthogonal to ~v1. So is ~v2. Thus(
~w −

(
〈~v1 | ~w〉
〈~v1 | ~v1〉

)
~v1

)
−
((
〈~v2 | ~w〉
〈~v2 | ~v2〉

)
~v2

)
will be orthogonal to ~v1 because(

~w −
(
〈~v1 | ~w〉
〈~v1 | ~v1〉

)
~v1

)
is orthogonal to ~v1,

as is ~v2, and it will be orthogonal to ~v2 by Proposition 6.3.2. Continuing in
this manner we see that

~w −
n∑
i=1

〈~vi | ~w〉
〈~vi | ~vi〉

~vi

is orthogonal to all of the ~vi. This is the essence of the Gram Schmidt
orthogonalization process.

Theorem 14.2.3 (Gram Schmidt Orthogonalization process) If (~a1, . . . ,~an)
is an ordered set of vectors and we define

~b1 = ~a1

~bj = ~aj −
j−1∑
i=1

〈~aj | ~bi〉
〈~bi | ~bi〉

~bi,

Then the resulting set {~b1, . . . ,~bn} is an orthogonal set which spans the same

subspace as the set {~a1, . . . ,~an}. If we omit from the set of ~b’s those which
are ~0 we get an orthogonal basis for the subspace spanned by (~a1, . . . ,~an).

Proof:

We will prove this by induction on n. If n = 1 there is noth-
ing to prove since any one element set is an orthogonal set. So
suppose that we have the theorem for n = k, we need to show
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that the set {~b1, . . . ,~bk+1} is orthogonal. Since we are assuming

that the set {~b1, . . . ,~bk} is orthogonal, we need only show that
~bk+1 ∈ {~b1, . . . ,~bk}⊥. Let j be a number between 1 and k. We

know that ~bj is orthogonal to all the other ~bi with i < k so the
sum

k∑
i = 1
i 6= j

〈~ak+1 | ~bi〉
〈~bi | ~bi〉

~bi

is too. Thus it will suffice to prove that

~ak+1 −
〈~ak+1 | ~bj〉
〈~bj | ~bj〉

~bj

is orthogonal to ~bj. But this is exactly what Proposition 14.2.2
tells us.

To see that the subspace spanned by the ~a’s is the same as
the subspace spanned by the ~b’s we need only note that each ~bk is
defined as a linear combination of the vectors ~a1 . . .~ak and that
it is easy to see how to write ~ak as a linear combination of the
vectors ~b1 to ~bk:

~ak = ~bk +
k−1∑
i=1

〈~aj | ~bi〉
〈~bi | ~bi〉

~bi.

For the comment that the ~b’s form a basis for the subspace
they span if we omit zeros, recall that an orthogonal set of nonzero
vectors is linearly independent. A linearly independent spanning
set is a basis.

The calculation carried out in the Gram Schmidt process is somewhat
easier if at each point we replace ~bi by the unit vector in the same direction.
This process, called normalization, forces 〈~bi | ~bi〉 to be 1, saving a lot of
division. The result is what is called an orthonormal set of vectors and the
process is called Gram Schmidt orthonormalization.

Definition 14.2.1 A set of vectors {~v1, . . . , ~vn} is called orthonormal if

〈~vi | ~vj〉 =

{
0 if i 6= j
1 if i = j

.
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Example:

The standard basis {[1, 0, 0], [0, 1, 0], [0, 0, 1]} is an orthonor-
mal basis for R3. ♦

Example:

Use the Gram Schmidt process to find an orthogonal basis for
R3 starting with the set {[1, 1, 1], [2, 1, 1], [2, 2, 1]}. We get

~b1 = [1, 1, 1]

~b2 = [2, 1, 1]− [2, 1, 1] · [1, 1, 1]

[1, 1, 1] · [1, 1, 1]

= [2, 1, 1]− 4

3
[1, 1, 1]

= [2/3,−1/3,−1/3]

~b3 = [2, 2, 1]− [2, 2, 1] · [1, 1, 1]

[1, 1, 1] · [1, 1, 1]
[1, 1, 1]

− [2, 2, 1] · [2/3,−1/3,−1/3]

(4/9 + 1/9 + 1/9)
[2/3,−1/3,−1/3]

= [2, 2, 1− 5/3][1, 1, 1]− 1/2[2/3,−1/3,−1/3]

= [0, 1/2,−1/2]

♦

Example:

Use the Gram Schmidt process on the set {1, x, x2} with the
inner product

〈f | g〉 =

∫ 1

0

f(x)g(x)dx.

This gives:

~b1 = 1

~b2 = x− 〈x | 1〉
〈1 | 1〉

1
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= x−
∫ 1

0
xdx∫ 1

0
1dx

= x− 1/2

~b3 = x2 − 〈x
2 | 1〉
〈1 | 1〉

1− 〈x2 | x− 1/2〉
〈x− 1/2 | x− 1/2〉

(x− 1/2)

= x2 −
∫ 1

0
x2dx∫ 1

0
1dx

−
∫ 1

0
x2(x− 1/2)dx∫ 1

0
(x− 1/2)2dx

(x− 1/2)

= x2 − 1/3− (x− 1/2)

= x2 − x+ 1/6

♦
This is an example of using the Gram Schmidt process to find orthogo-

nal polynomials. There are many ways of generating certain of the families
of orthogonal polynomials, some using the Gram Schmidt process, some us-
ing differential equations, some using a three term recurrence which can be
derived from Gram Schmidt. Families of orthogonal polynomials have impor-
tant uses in approximation theory, least squares fit of polynomials to data,
and differential equations.

Exercises 14.2:

1. Find an orthonormal basis for R2 with dot product using the set {[1, 1], [0, 1]}
as a starting point.

2. Find an orthogonal basis for R3 with dot product using the set

{[1, 0,−1], [0, 1, 1], [1, 1, 1]}

as a starting point.

3. Find an orthonormal basis for R2 with weighted dot product with ~w =
[1, 2] using the set {[1, 1], [0, 1]} as a starting point.

4. Find an orthogonal basis for R3 with dot product with ~w = [1, 3, 2]
using the set

{[1, 0,−1], [0, 1, 1], [1, 1, 1]}
as a starting point.
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5. Extend the set {[1, 0, 1], [2, 1,−2]} to an orthogonal basis for R3 with
dot product.

6. Use the Legendre inner product

〈f | g〉 =

∫ 1

−1

f(x)g(x)dx

to find the first three Legendre polynomials by applying the Gram
Schmidt orthogonalization process to the set {1, x, x2}.

7. Use the Laguerre inner product

〈f | g〉 =

∫ ∞
0

f(x)g(x)e−xdx

to find the first three Laguerre polynomials by applying the Gram
Schmidt process to {1, x, x2}. You may use the fact that∫ ∞

0

xne−xdx = n!.

8. Use the Hermite inner product

〈f | g〉 =

∫ ∞
−∞

f(x)g(x)e−x
2

dx

to find the first three Hermite polynomials by applying the Gram
Schmidt orthogonalization process to the set {1, x, x2}.

9. Use the Tchebyshev inner product

〈f | g〉 =

∫ 1

−1

f(x)g(x)√
1− x2

dx

to find the first three Tchebyshev polynomials by applying the Gram
Schmidt orthogonalization process to the set {1, x, x2}.

10. Show that the set {sin(nx) | n a positive integer}∪{cos(mx) |m a positive integer}
is orthogonal using the inner product

〈f | g〉 =

∫ π

−π
f(x)g(x)dx.
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This involves showing that if n 6= m , then

〈sinnx | cosmx〉 = 0,

〈sinnx | sinmx〉 = 0

and that f n 6= m, then

〈cosnx | cosmx〉 = 0.

The following identities may prove useful:

sinnx cosmx =
1

2
(sin(n+m)x+ sin(n−m)x)

sinnx sinmx =
1

2
(cos(n−m)x− cos(n+m)x)

cosnx cosmx =
1

2
(cos(n−m)x+ cos(n+m)x)

This orthogonal set forms the basis for Fourier series representations of
periodic functions as sums of sines and cosines.

11. (Project Problem) The Gram-Schmit process can be quite cumbersome
for finding orthogonal polynomials of high degree. If the inner product
involved has the property that

〈xf(x)|g(x)〉 = 〈f(x)|xg(x)〉
then a recurrence with fewer terms works with less effort. What you
do is let

u0(x) = 1

u1(x) = x− 〈u0|x〉u0(x)

un(x) = (x− 〈xun−1|un−1〉
〈un−1|un−1〉

)un−1(x)− 〈xun−1|un−2〉
〈un−2|un−2〉

un−2(x)

(a) Show that the leading coefficient of these polynomials is always 1.

(b) Show that 〈un|un−1〉 = 0 and 〈un|un−2〉 = 0.

(c) Explain why any polynomial p(x) of degree n − 1 or less can be
written as a linear combination of the functions ui where i ≤ n−1.

(d) Show that for k < n− 2 we get 〈xun−1|uk〉 = 0.

(e) Show that for k < n− 2 we get 〈un|uk〉 = 0.

(f) Use this recurrence to find the Laguerre polynomials with leading
coefficient 1 up to degree 5.
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v

kw

w
v-kwv-kw

Figure 14.1: Orthogonal Projection

14.3 Projections and Best Approximations

After going to all the work that the Gram Schmidt process involves one may
well ask why we care so much about orthogonal bases. For an answer let us
recall one of the uses of the dot product in R2. Given two vectors ~v and ~w
we ask for the vector in the direction of ~w which is closest to ~v in the sense
that ‖~v − k ~w‖ is minimized. If we look at the situation geometrically it is
clear that what we want to do is make ~v − k ~w perpendicular to ~w. (See
Figure 14.1)

This is clear since the shortest distance from the endpoint of ~v to the line
determined by ~w is along the perpendicular. Since we want 〈~w | ~v−k ~w〉 = 0,
we want 〈~w | ~v〉 − k〈~w | ~w〉 = 0, so

k =
〈~w | ~v〉
〈~w | ~w〉

.

If we want to do a similar construction in R3, finding the vector in a given
plane which is closest to a given vector, we drop a perpendicular from the
endpoint of the vector to the plane. On the face of it, this does not appear to
be as easy to do analytically as the two dimensional case was. Our approach
is to find two vectors in the given plane which are themselves perpendicular
and find the projection of the given vector onto each of them, then add the
projections. If ~w1 and ~w2 are the perpendicular vectors in the given plane
and ~v is the given vector then the projection is

~v · ~w1

~w1 · ~w1

~w1 +
~v · ~w2

~w2 · ~w2

~w2.
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The geometry of two space and three space leads us to suspect that if
we want the vector in a subspace closest to a given vector we should take
a projection along a perpendicular. In other words to find the vector in a
subspace W closest to ~v we should write ~v as ~w+ ~w′ where ~w ∈ W and ~w′ is
orthogonal to everything inW and then use ~w as our best approximation. We
will show that this is, in fact, the case by showing how to use an orthonormal
basis to calculate distance and find projections.

Definition 14.3.1 The projection of ~v onto the subspace W is the vector
~w ∈ W such that ~v = ~w + ~w′ with ~w′ orthogonal to every vector in W.

Lemma 14.3.1 If {~b1, . . . ,~bn} is an orthonormal basis for V and ~v =
∑n

i=1 ki
~bi

then ‖~v‖2 =
∑n

i=1 k
2
i .

Proof:

We need only calculate 〈~v | ~v〉. Using the properties of the
inner product we find that

〈~v | ~v〉 = 〈
n∑
i=1

ki~bi |
n∑
j=1

kj~bj〉

=
n∑
i=1

n∑
j=1

kikj〈~bi | ~bj〉

=
n∑
i=1

k2
i

where the last equality follows from the fact that 〈~bi | ~bj〉 = 0 if

i 6= j and 〈~bi | ~bi〉 = 1.

This means that if we represent our vectors in terms of an orthonor-
mal basis, then the length looks just like the lengths we calculate using the
Pythagorean theorem in Euclidean space.

Lemma 14.3.2 If {~b1, . . . ,~bn} is an orthonormal set and ~v is any vector in
V, then the vector

π(~v) =
n∑
i=1

〈~v | ~bi〉~bi

has the property that ~v − π(~v) is orthogonal to all of the ~bi. The vector π(~v)

is the projection of ~v onto the subspace spanned by {~b1, . . . ,~bn}.
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Proof:

Again all that is involved is the calculation of a rather messy
inner product:

〈

(
~v −

n∑
i=1

〈~v | ~bi〉~bi

)
| ~bj〉 = 〈~v | ~bj〉 −

n∑
i=1

〈~v | ~bi〉〈~bi | ~bj〉

= 〈~v | ~bj〉 − 〈~v | ~bj〉〈~bj | ~bj〉
since 〈~bi | ~bj〉 = 0 if i 6= j.

= 〈~v | ~bj〉 − 〈~v | ~bj〉
= 0.

This lemma tells us how to find the projection of a vector onto a subspace,
provided that we have an orthonormal basis for the subspace. The Gram
Schmidt process tells us how to find an orthogonal basis for the subspace.
Dividing each of those basis vectors by its length gives an orthonormal basis,
so this information is available to us. The next theorem tells us why we want
projections.

Theorem 14.3.3 If W is a subspace of an inner product space V and ~v is
an element of V, then the element of W closest to ~v is the projection of ~v
onto W.

Proof:

Let {~b1, . . . ,~bn−1} be an orthonormal basis for W . We know

that we can find one because of the Gram Schmidt process. Let~bn
be the unit vector in the direction of ~v− π(~v). Then {~b1, . . . ,~bn}
is an orthonormal set which is a basis for Span(W ∪ {~v}). If we

write ~v as
∑n

i=1 ki
~bi, then

‖~v − π(~v)‖ = ‖kn~bn‖ = | kn|.

Any time we can write ~v as ~w + ~w′ with ~w in W , we know that
~w′ is in Span({~b1, . . . ,~bn}). Since ~w ∈ W we know that its ~bn
component must be 0. Thus ~w′ must be of the form

n−1∑
i=1

hi~bi + kn~bn.
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Hence its length, calculated using Lemma 14.3.1 is√√√√(n−1∑
i=1

h2
i

)
+ k2

n,

and thus is at least as big as | kn|. This shows that the projection
is the closest element of W to ~v.

Example:

Find the vector in the space spanned by the orthonormal set

{[ 1√
3
,

1√
3
,

1√
3

], [
1√
2
, 0,− 1√

2
]}

closest to [0, 1, 0]. We want the projection of [0, 1, 0] onto the
subspace spanned by the given orthonormal set. It is

[0, 1, 0] − [0, 1, 0] · [ 1√
3
,

1√
3
,

1√
3

][
1√
3
,

1√
3
,

1√
3

]

− [0, 1, 0] · [ 1√
2
, 0,− 1√

2
][

1√
2
, 0,− 1√

2
]

= [0, 1, 0]− [1/3, 1/3, 1/3]

= [−1/3, 2/3,−1/3].

♦

Example:

Find the polynomial of degree 2 or less closest to x3 using the
inner product

〈f | g〉 =

∫ 1

0

f(x)g(x)dx.

We have the orthogonal polynomials {1, x − 1
2
, x2 − x + 1/6} as

an example in the last section. To make this an orthonormal set
we need to divide each by its length. 〈1 | 1〉 is 1, so no change is
needed on the first.

〈x− 1/2 | x− 1/2〉 = 1/12
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so for our second basis vector we use (
√

12)(x−1/2). Continuing
with Gram Schmidt

〈(x2 − x+ 1/6) | (x2 − x+ 1/6)〉 =

∫ 1

0

(
1

36
− x

3
+

4x2

3
− 2x3 + x4)dx

=
1

180
,

so our third basis vector is
√

180(x2 − x + 1/6). The projection
is then∫ 1

0

x3dx +

(∫ 1

0

x3
√

12(x− 1/2)dx

) √
12(x− 1/2)

+

(∫ 1

0

x3
√

180(x2 − x+ 1/6)dx

) √
180(x2 − x+ 1/6)

= 1/4 + 12(
1

5
− 1

8
)(x− 1/2) + 180(

1

6
− 1

5
+

1

24
)(x2 − x+ 1/6)

=
1

4
+

9

10
(x− 1

2
) +

3

2
(x2 − x+

1

6
)

=
1

20
− 3x

5
+

3x2

2

The graphs are given in Figure 14.3 with the approximation
graphed in black and x3 graphed in gray.

♦

Exercises 14.3:

1. Find the vector in the space spanned by {[1/
√

2, 0,−1/
√

2], [1/
√

3, 1/
√

3, 1/
√

3]}
closest to [1, 0, 0].

2. Find the vector in the space spanned by {[1/
√

5, 0, 0, 2/
√

5], [1/2, 1/2, 1/2,−1/2]}
closest to [1, 1, 1, 1].

3. Find the vector in the space spanned by {[1, 0, 1], [2, 2, 1]} closest to
[1, 1, 1].
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Figure 14.2: Approximating x3
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4. Find the polynomial of degree 2 closest to ln(x + 1) using the inner
product

〈f |g〉 =

∫ 1

0

f(x)g(x)dx.

Hint: Use integration by parts.

5. Find the polynomial of degree 2 closest to sin(x) using the Legendre
inner product.

6. Find the polynomial of degree 2 closest to sin(x) using the Lageurre
inner product. (This will involve some nasty integration by parts.)

7. (Project Problem) The problem of finding the best curve of a particular
type for a set of data points occurs often in science. For instance
suppose that we want to find the polynomial of degree 2 which comes
closest to fitting the points (1,0), (2,1), (3,5), (4,0), (5,1) in the sense
that

5∑
i=1

(p(i)− yi)2

is minimized. Compare the amount of work involved in the following
two approaches.

(a) Since a polynomial of degree 4 is completely determined by its
value at 5 points, the rule

〈p|q〉 =
5∑
i=1

p(i)q(i)

defines an inner product on the vector space R[x]4. Use the Gram
Schmidt orthonormalization procedure to find an orthonormal ba-
sis for R[x]2 < R[x]4. Then find the projection of the polynomial
of degree 4 passing through the given points onto R[x]2.

(b) The least squares approximation can also be found by applying
multivariable calculus. We want

E(a, b, c) =
5∑
i=1

(a i2 + b i+ c− yi)2
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to be minimized. This will happen when the partial derivatives
with respect to a, b, and c are all zero. This gives the system of
so called normal equations:

a
5∑
i=1

i4 + b

5∑
i=1

i3 + c

5∑
i=1

i2 =
5∑
i=1

i2yi

a
5∑
i=1

i3 + b

5∑
i=1

i2 + c

5∑
i=1

i =
5∑
i=1

iyi

a
5∑
i=1

i2 + b
5∑
i=1

i+ c5 =
5∑
i=1

yi.

This system can then be solved to find the coefficients of the ap-
proximating polynomial. Try it and see that you get the same
result.

(c) Which of the methods in a and b would you prefer to use if you
had 100 sets of data of the form (1, y1), (2, y2), . . . (5, y5). Which
would let you fit a polynomial of degree 3 without throwing out
all of your calculations?

14.4 Approximation in Function Spaces

14.4.1 Fourier series approximations

We noted in the exercises that the set of functions

{1, sin(x), sin(2x), . . . , sin(nx), cos(x), cos(2x), . . . , cos(nx)}

is orthogonal with respect to the inner product

〈f |g〉 =

∫ π

−π
f(x)g(x)dx.

The norm which results from this inner product gives the root mean square
measure of the size of periodic functions. This family of functions is often
used to give approximations to periodic functions in terms of a fundamental
frequency and its harmonics. This approximation of periodic functions by
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trigonometric polynomials is the first step in analysis of signals using Fourier
series.

If we limit our attention to even functions (those for which f(−x) = f(x))
we can use just the cosine terms, since all the integrals with sin(nx) will give
0. The nth Fourier coefficient will then be

〈f | cos(nx)〉
〈cos(nx)| cos(nx)〉

=

∫ π

−π
f(x) cos(nx)dx/π.

Example: Sawtooth wave

Suppose we start by looking at a sawtooth wave:

w(x) =

{
1− 2

π
x if 0 ≤ x ≤ π

1 + 2
π
x if − π ≤ x < 0

and then extend using periodicity. This looks like this:

-7.5 -5 -2.5 2.5 5 7.5

-1

-0.5

0.5

1

A sawtooth wave

The Fourier coefficient is∫ π
−π w(x) cos(nx)dx

π
=

8

n2π2
for n ≥ 1.

This makes it fairly easy to approximate w(x) using trigonometric
polynomials. If we use the first three terms, we get

w(x) ≈ 4 cos(x)

π
− 4 cos(3x)

3π
,
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which has graph:

-10 -5 5 10

-0.75

-0.5

-0.25

0.25

0.5

0.75

If we use the first 21 terms the graph looks like this:

-10 -5 5 10

-1

-0.5

0.5

1

which gives a very good approximation! ♦

Example: Square wave

If we look at a square wave we can see one of the things which
can go wrong with Fourier approximations. The square wave is
periodic with period 2π and has its value on [−π, π] given by

s(x) =

{
1 if − π/2 ≤ x ≤ π/2
−1 otherwise

This has graph (the vertical lines are artifacts of the program
used to produce the graph)
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-10 -5 5 10

-1

-0.5

0.5

1

A square wave.

The Fourier coefficient is∫ π
−π s(x) cos(nx)dx

π
=


0 if n is even
4
nπ

if n = 4k + 1
− 4
nπ

if n = 4k − 1

Again this makes it fairly easy to approximate s(x) using trigono-
metric polynomials. If we use the terms up to n = 3 we get

s(x) ≈ 4 cos(x)

π
− 4 cos(3x)

3π
,

which has graph

-10 -5 5 10

-1

-0.5

0.5

1
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This isn’t as good an approximation as we got for the sawtooth
function, so lets look at the approximation up to n = 21. Here
the graph is given by

-10 -5 5 10

-1

-0.5

0.5

1

The “ears” at each of the jump discontinuities will not dis-
appear if we take larger n. They illustrate the phenomenon of
Gibbs overshoot; it is typical of Fourier approximations to func-
tions with jump discontinuities. ♦

14.4.2 Wavelet approximations

Fourier series give good approximations to continuous periodic functions.
They are less successful with discontinuous functions and functions with
bounded support. We turn our attention next to wavelet functions, which
approximate functions with bounded support much more satisfactorily.

For the purposes of this section we will use the inner product

〈f |g〉 =

∫ +∞

−∞
f(x)g(x) dx

on the vector space of square integrable functions. We will start with two
simple functions and use them to generate a large orthogonal set. Let

φ(x) =

{
1 if 0 ≤ x < 1
0 otherwise

and

ψ(x) =


1 if 0 ≤ x < 1

2

−1 if 1
2
≤ x < 1

0 otherwise
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Then we define translations and dilations of these functions by

φmn (x) =
√

2nφ(2nx+m) and ψmn (x) =
√

2nψ(2nx+m).

The functions φmn are called Haar scaling functions and the ψmn are
called Haar wavelets . For each n the family of all φmn and all ψmn is
orthonormal. Each of the ψmn−1 can be obtained as linear combinations of the
φmn . The index n gives a measure of the grain size of the approximation.

Example:

To illustrate how wavelets can be used to approximate a func-
tion with a bounded support, let us consider approximations to

g(x) =

{
4− x2 if − 2 ≤ x ≤ 2
0 otherwise

which has graph

Since this function is 0 outside of [-2,2], it will not be neces-
sary to consider wavelets which have support outside that inter-
val. Thus the projection of g onto the subspace generated by the
wavelets of grain size n will only involve a finite number of terms.
In particular,

f(x) ≈
b2n∑

m=−b2n+1

(〈f |ψmn 〉ψmn (x) + 〈f |φmn 〉φmn (x))
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if the support of f is contained in [−b, b]. This is 2n+1b terms, so
we see that one of the problems with Haar wavelet approxima-
tions is that a large number of terms are needed for a reasonable
approximation. Some of the work can be eliminated by observing
that the contribution of the φmn (x) is precisely the whole approx-
imation at the n− 1 scale, so that to improve the approximation
one need only add the contribution of the ψmn (x) terms.

We can see how the granularity affects the quality of the ap-
proximation by looking at the approximations for several different
values of n.

Wavelet approximation to g using n = 0
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Wavelet approximation to g using n = 1

Wavelet approximation to g using n = 2
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Wavelet approximation to g using n = 3

Wavelet approximation to g using n = 4

This last approximation uses 64 terms. ♦



326 CHAPTER 14. INNER PRODUCTS AND APPROXIMATION

Exercises 14.4:
Working with Fourier series and wavelet approximations really only makes
sense if you have some computer software to do the calculations for you. If
you do, try the following:

1. See what the wavelet approximation does to a function which looks like
the square wave, but is 0 outside the interval from -5 to 5.

2. See how the Fourier series works on the example given for wavelets.
Note that some restrictions will need to be made, since the Fourier
series always give periodic functions.

3. Define the function h(x) on the interval [−π, π) using

h(x) =

{
x+ π if x ≤ 0
x− π otherwise

Use a wavelet approximation to see how well Haar wavelets handle
jump discontinuities.

4. Extend the function h in the previous exercise to make it periodic
with period 2π. Explore how well the Fourier series approximates this
function. Note that h is not even, so the sin terms must be used as
well as the cos terms.



Chapter 15

Orthogonal Subspaces and
Transformations

15.1 Orthogonal Subspaces

The existence of an inner product on a vector space opens up the possibility of
many new questions. In this section we will use inner products to produce a
new construction of subspaces. The construction is based on the observation
that inner product with a given vector gives a linear transformation:

Proposition 15.1.1 If V is an inner product space and ~v is any element of
V then 〈 | ~v〉 : V → R is a linear transformation.

Proof:

First observe that 〈 | v〉 is a function from V to Rsince it
takes a vector ~w to the real number 〈~w | ~v〉. Linearity follows
quickly from the properties of inner products:

〈~w + ~u | ~v〉 = 〈~w | ~v〉+ 〈~u | ~v〉
〈k ~w | ~v〉 = k〈~w | ~v〉

by the linearity axiom in our definition of an inner product.

One of the ways that we can use this proposition is by describing the
kernel of the linear transformation 〈 | v〉. Recall that the kernel of a linear
transformation is a subspace and that it is the set of all vectors sent to ~0 by

327
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the linear transformation. In this case we get the set of all vectors in V which
are orthogonal to ~v. This construction can be generalized to the subspace of
vectors orthogonal to a whole set of vectors:

Definition 15.1.1 If S is a non-empty set of vectors in an inner product
space V, then the orthogonal complement S⊥ is the set of all vectors orthog-
onal to all of the members of S.

Proposition 15.1.2 For any S ⊆ V, S⊥ is a subspace of V.

Proof:

S⊥ is the intersection of the subspaces Ker(〈 − | ~s〉) where
~s is in S. Since S⊥ is the intersection of subspaces, it is itself a
subspace.

Example: Finding A⊥

Let V = R3, A = {a1 = [1,−1, 0], a2 = [0, 2, 3]}. If ~b =
[b1, b2, b3] ∈ A⊥, then we must have

〈~b | ~a1〉 = 0 and 〈~b | ~a2〉 = 0,

since any vector in A⊥ must be orthogonal to every vector in
Span(A). This tells us that

b1 − b2 = 0

2b2 + 3b3 = 0.

The solution of this system is easily seen to be

b1 = b2

b2 = b2

b3 = −2

3
b2,

so

A⊥ = {b2[1, 1,−
2

3
]} = Span([1, 1,−2

3
]).

♦
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Example: Finding A⊥

Let V = R3. A = {~a} where ~a = [1, 2, 3]. If ~b = [b1, b2, b3] ∈
A⊥ , then 〈~b | ~a〉 = 0, or

b1 + 2b2 + 3b3 = 0.

One way of writing the solution to this system is

b1 = −2b2 − 3b3

b2 = b2

b3 = b3.

Thus,

A⊥ = {[−2b2 − 3b3, b2, b3] | b2, b3 ∈ R}
= {b2[−2, 1, 0] + b3[−3, 0, 1] | b2, b3 ∈ R}
= S({[−2, 1, 0], [−3, 0, 1]}).

♦

It will often be the case that we are interested in the orthogonal comple-
ment of U when U is a subspace of V . When V is finite dimensional, it is
also true that

V = U + U⊥,

and
U ∩ U⊥ = {~0}.

Note that it is easy to show that A ∩ A⊥ = {~0} for any set A since the only
vector which is orthogonal to itself is the zero vector, but the proof of the
other half must await careful consideration of bases. Observe, though, that
the above assertion is illustrated by the example V = R3, U = xy-plane, U =
z-axis:

R3 = (xy-plane ) + (z-axis)

(xy-plane ∩ (z-axis) = {~0}.

Example:
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For another example let us consider V = R4, let

U = Span({~e1, ~e3})

where ~e1 = [1, 0, 0, 0] and ~e3 = [0, 0, 1, 0]. If ~b = [b1, b2, b3, b4] ∈ U
, then 〈~b | ~e1〉 = 〈~b | ~e3〉 = 0, or b1 = b3 = 0. Thus

U⊥ = {[0, b2, 0, b4] | b2, b4 ∈ R}
= {b2[0, 1, 0, 0] + b4[0, 0, 0, 1]}
= {b2~e2 + b4~e4}
= S({~e2, ~e4}).

Note that
U + U⊥ = R4

and
U ∩ U⊥ = {~0}.

♦

With the Gram Schmidt process we can prove that V = U ⊕ U⊥ by
exhibiting a basis for V which is the disjoint union of a basis for U and a
basis for U⊥.

Theorem 15.1.3 If V is a finite dimensional inner product space and U is
any subspace, then V = U ⊕ U⊥.

Proof:

Choose an ordered basis for U , say (~a1, . . . ,~am), and extend to
a basis (~a1, . . . ,~an) for all of V . Apply the Gram Schmidt process

to obtain an orthogonal basis for V , (~b1, . . . ,~bn).
In this process the subspace spanned by the first m elements of

the original basis is the same as the subspace spanned by the first
m elements of the orthogonal basis, so (~b1, . . . ,~bm) is a basis for U .

We claim that (~bm+1, . . . ,~bn) is a basis for U⊥. Clearly a vector
orthogonal to all of the vectors in U must have the coefficients
of ~b1 to ~bm all equal to 0, so it must lie in the subspace of V
spanned by {~bm+1, . . . ,~bn}. Similarly anything in that subspace

will be orthogonal to everything in U . The set {~bm+1, . . . ,~bn} is
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linearly independent because it is a subset of a basis for V , namely
(~b1, . . . ,~bn). It spans U⊥. Thus it is a basis for U⊥.

It is an easy exercise to show that partitioning a basis gives a
direct sum decomposition.

Exercises 15.1:

1. Let V = R3. Find A⊥ using ordianry dot product if

(a) A = {[1, 0, 0]}

(b) A = {[1, 2, 0]}

(c) A = {[1, 1, 0], [0, 1, 1]}

(d) A = {[0, 1, 1], [1, 0, 1]}

(e) A = Span({[1, 1, 0], [0, 1, 1]})

2. Let V = R4. Find A⊥ using dot product if

(a) A = {[1, 1, 0, 0], [0, 0, 1, 1]}

(b) A = {[1, 1, 0, 0], [1, 0, 1, 0]}

(c) A = {[1, 1, 0, 0], [1, 0, 1, 0], [0, 0, 1, 1]}

(d) A = {[1, 2, 3, 4], [0,−1, 1, 0]}

3. Prove that if A is not empty and V is an inner product space then
A ⊆ (A⊥)⊥ .

4. Give an example which shows that it need not be true that A = (A⊥)⊥.
When does equality hold?.

5. Prove that if V is an inner product space and A is a subset of B then
B⊥ is a subset of A⊥ .

6. Prove that if V is an inner product space and A is a subset of V then
A⊥ = (S(A))⊥ .
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15.2 Orthogonal Transformations

If V and W are inner product spaces it is natural to ask that a map L : V →
W preserve both the vector space structure and the inner product. In this
section we will explore the properties of the matrix associated with such a
map. We start with a formal definition.

Definition 15.2.1 If V and W are inner product spaces and L : V → W is
a linear transformation then L is an orthogonal transformation if and only if

〈L~a | L~b〉 = 〈a | b〉

for all ~a, ~b in V.

Example: Inclusion of a subspace

The map L : R2 → R3 with L([x, y]) = [x, y, 0] preserves the
usual inner product (dot product) and is linear, hence it is an
orthogonal transformation. ♦

Example: Rotation

The map
p : R2 → R2

taking
[x, y] to [(x+ y)/

√
2, (x− y)/

√
2]

is orthogonal. To see this we must calculate 〈p[a, b] | p[c, d]〉.

〈p[a, b] | p[c, d]〉 = 〈[(a+ b)/
√

2, (a− b)/
√

2] | [(c+ d)/
√

2, (c− d)/
√

2]〉

=
(a+ b)(c+ d)

2
+

(a− b)(c− d)

2

=
ac+ ad+ bc+ bd

2
+
ac− ad− bc+ bd

2
= ac+ bd

= 〈[a, b] | [c, d]〉.

♦
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Example: A non-orthogonal transformation

The map s : R2 → R2 which takes [x, y] to [x, 2y] is not
orthogonal. To see this note that

〈[1, 1] | [1, 1]〉 = 2

but

〈s([1, 1]) | s([1, 1])〉 = 〈[1, 2] | [1, 2]〉 = 5.

♦

This last example illustrates the following proposition:

Proposition 15.2.1 Orthogonal transformations preserve length.

Proof:

If ~a is a vector in an inner product space V then

‖~a ‖ =
√
〈~a | ~a〉.

We want to show ‖L~a‖ = ‖~a‖ when L is orthogonal. Now

‖L~a‖ =
√
〈L~a|L~a〉

=
√
〈~a|~a〉

= ‖a‖

using the definition of length for the outside equalities and the
definition of orthogonal transformations for the inside equality.

Proposition 15.2.2 Orthogonal transformations take orthonormal sets of
vectors to orthonormal sets of vectors.

Proof:

We need to show that if 〈~a |~b〉 = 0 then 〈L~a | L~b〉 = 0 and that
if 〈~a | ~a〉 = 1 then 〈L~a | L~a〉 = 1. Both are direct consequences
of the definition of orthogonal transformation.
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The most natural kind of basis for us to use in exploring the properties of
the matrix associated with an orthogonal transformation is an orthonormal
basis {~bi}i=1,...,n. We know from the previous proposition that the vectors

L(~b1), . . . ,L(~bn) will be orthonormal. The next lemma will help us identify
orthogonal transformations by looking at the columns in the corresponding
matrix.

Lemma 15.2.3 If {~di}i=1,n is an orthonormal basis for the inner product
space W then the inner product

〈
n∑
i=1

ai~di |
n∑
j=1

bj ~dj〉 = [a1, . . . , an] · [b1, . . . , bn].

Proof:

This is a straightforward, if tedious, calculation:

〈
n∑
i=1

ai~di |
n∑
j=1

bj ~dj〉 =
n∑
i=1

ai〈~di |
n∑
j=1

bj ~dj〉

by linearity of the inner product in the first variable. This is turn
equals

n∑
i=1

ai

n∑
j=1

bj〈~di | ~dj〉

by linearity in the second variable. Combining the double sum
we get

n∑
i=1

n∑
j=1

aibj〈~di | ~dj〉.

Now 〈~di | ~dj〉 = 0 if i 6= j and 〈~di | ~di〉 = 1 so this double sum
collapses to a single sum

n∑
i=1

aibi.

This is just [a1, . . . , an] · [b1, . . . , bn].
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Theorem 15.2.4 If L : V → W is an orthogonal transformation and (~bi)i=1,m

and (~dj)j=1,n are ordered orthonormal bases for V and W then the matrix for

L with respect to (~bi) and (~dj) has orthonormal columns.

Proof:

Since L preserves the inner product it takes the basis to an
orthonormal set. The column vectors of the associated matrix
are obtained by representing the L~bi in terms of the basis for W .
Then Lemma 15.2.3 tells us how to calculate 〈L~bi | L~bj〉 using
these coefficients. The result is that the column vectors must be
orthonormal.

The converse of this theorem is also true.

Theorem 15.2.5 If L : V → W is a linear transformation with associated
matrix L using the ordered orthonormal bases (~bi) and (~dj), then if L has
orthonormal columns then L is an orthogonal transformation.

Proof:

Since the columns of L are the images of basis vectors, the fact
that L has orthonormal columns tells us that the the basis (~bi)
is taken to an orthonormal set by L. To show that 〈L~x | L~y〉 =
〈~x | ~y〉 we first write ~x and ~y as linear combinations of basis
elements:

~x =
m∑
i=1

xi~bi and ~y =
m∑
j=1

yj~bj.

Then

L~x =
m∑
i=1

xiL~bj and L~y =
m∑
j=1

yjL~bj

using linearity of L. Then we calculate

〈L~x | L~y〉 = 〈
m∑
i=1

xiL~bi |
m∑
j=1

yjL~bj〉

=
m∑
i=1

m∑
j=1

xiyj〈L~bi | L~bj〉



336 CHAPTER 15. ORTHOGONAL TRANSFORMATIONS

using linearity of the inner product. Since the L~bi form an or-
thonormal set we replace this with the single sum

m∑
i=1

xiyi.

Our earlier Lemma tells us that this is 〈~x | ~y〉 as needed.

This theorem gives us a useful tool for identifying orthogonal transforma-
tions. To see whether a given linear transformation is orthogonal one need
only represent it with respect to orthonormal bases and see if the resulting
matrix has orthonormal columns.

This leads to the following definition.

Definition 15.2.2 A square matrix A is called orthogonal if its column vec-
tors form an orthonormal set.

By reason of tradition we restrict the term orthogonal matrix to square
matrices. For such matrices it can also be shown that the rows form an
orthonormal set. The transpose of a matrix M = [[mij]] is the matrix
Mt = [[mji]] obtained by reflecting through the main diagonal. The fact
that an orthogonal matrix has orthonormal columns then tells us that if M
is orthogonal MtM is an identity matrix. For square matrices this will tell
us that M−1 = Mt.

Example: A rotation

The matrix for the rotation by 45 degrees with respect to the
standard basis ([1, 0], [0, 1]) is[

1√
2

1√
2

− 1√
2

1√
2

]
,

which is an orthogonal matrix. ♦

Matrices with orthonormal columns also figure in the QR factorization
given by the Gram-Schmit orthonormalization process:

Theorem 15.2.6 (QR Factorization) If M is a matrix with linearly ind-
pendent columns, then there are matrices Q, which has orthonormal columns,
and R, which is upper triangular, with M = QR
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Proof:

The columns of M form a linearly independent set, so the
Gram-Schmidt orthonormalization process can be used to find
column vectors ~qk such that

1. Each ~qk is a linear combination of the first k columns of M

2. Span{~qi|i = 1 . . . k} = Span{the first k columns of M}
3. The vectors ~qk form an orthomormal set.

4. The matrix Q has the vectors ~qk as its column vectors.

We can write the kth column of M as a linear combination of
~q1 . . . ~qk, so there are numbers ri,j with

mi,k =
k∑
j=1

qi,jrj,k.

This gives us an upper triangular matrix R = [[ri,j]] with M =
QR.

The easiest way to find R once you have Q is by noting that
R = IR = QtQR = QtM.

Exercises 15.2:

1. Are the following orthogonal matrices?

(a)


1√
3

1√
3
−1√

3
1√
2

0 1√
2

−1√
6

2√
6

1√
6


(b)

 1
2

1
4

1
4

1
2

0 −1
−1 2 0


(c)

[
3
5

4
5

−12
13

5
13

]
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2. Prove that the composition of two orthogonal transformations is or-
thogonal.

3. In each of the following the inner product is given by dot product.
Which are orthogonal transformations?

(a) f : R3 → R3 with f [x, y, z] = [−x,−y, z]
(b) g : R3 → R3 with g[x, y, z] = [x+y+z√

3
, x+z√

2
, x+y√

2
]

(c) h : R2 → R2 with h[x, y] = [x cos(Θ) + y sin(Θ), x sin(Θ) −
y cos(Θ)]

(d) i : R2 → R3 with i[x, y] = [x/
√

2, x/
√

2, y]

4. Give four examples of orthogonal matrices.

15.3 Rational Canonical Forms for

Orthogonal Matrices

Throughout this section we assume that V is a finite dimensional vector space
equipped with an inner product. Our object is to show that orthogonal linear
transformations from V to itself have a rational canonical form. That is, buy
proper choice of basis, the matrix will be a block diangonal matrix with each
block a companion matrix.

Theorem 15.3.1 If L : V → V preserves inner products, then if U is L-
invariant, then so is U⊥.

Proof:

First note that since L preserves inner products, it must be
one-to-one. Thus since U < V , which is finite dimensional, L
must map U onto U .

Now suppose ~v ∈ U⊥ and ~u ∈ U . Then ~u = L(~u1) for some
~u1 ∈ U from the fact that L is onto. But 〈~v|~u1〉 = 0, so we would
then get

0 = 〈L(~v)|L(~u1)〉 = 〈L(~v)|~u〉

Thus L(~v) ∈ U⊥, since ~u was an arbitrarily chosen member of U .
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Theorem 15.3.2 If L : V → V preserves inner products, then V can be
written as the direct sum of L-cyclic subspaces.

Proof:

We prove this by strong induction on the dimension of V . If
~V is of dimension 1 it is L cyclic, so the theorem is true.

Now suppose that dim(V) > 1. First pick any vector ~v ∈ V
and let U1 be the L-cyclic subspace it generates. The dimension
of U1 will be at least one, so the dimension of U⊥1 will be less
than the dimension of V . Since L preserves the inner product,
its restriction to U⊥1 is an inner product preserving map onto U⊥1 .
That means, by the induction hypothesis, that U⊥1 can be written
as the direct sum of L-cyclic subspaces. Since V = U ⊕ U⊥1 , this
will give us V as the direct sum of L-cyclic subspaces as needed.

Recall (from Chapter 11 section 2) that a basis can be chosen so that the
matrix for a linear transformation L on an L-cyclic subspace is a companion
matrix. This gives the following corollary:

Corollary 15.3.3 Any orthogonal matrix is similar to a block diagonal ma-
trix in which each block is a companion matrix.

Now one of the nice properties of companion matrices is that their char-
acteristic equations can be obtained by inspection: if the companion ma-
trix M is built using a basis (~v0,L(~v0),L

2(~v0), . . . ,L
n−1(~v0)) where Ln(~v0) =

a0~v0 + a1L(~v0) + . . .+ an−1Ln−1(~v0) then the characteristic polynomial of M
is p(x) = (−1)n+1(a0 + a1x+ . . .+ an−1x

n−1 − xn). Now suppose we define

p(L) = (−1)n+1(a0Id + a1L + a2L2 + . . . a(n− 1)Ln−1 − Ln

as a linear transformation. We know by definition that p(L)(~v0) = ~0. Fur-
thermore, linearity tells us that p(L)(L(~v)) = L(p(L)(~v)), so we will get
p(L)(Lk(~v0)) = ~0 for each k. Since the companion matrix is found using a
basis of vectors of the form Lk(~v0), this tells us that p(L) takes each basis
vector to ~0 and thus must be the zero transformation. This tells us that
any companion matrix satisfies its characteristic polynomial. Since we have
shown that any orthogonal matrix can be written as a direct sum of com-
panion matrices we get the same result for orthogonal matrices.
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Indeed, rational canonical forms can be found for all matrices, not just
orthogonal ones, though the decomposition into direct summands is a bit
more delicate. This form makes the following theorem evident:

Theorem 15.3.4 (Cayley-Hamilton) Every linear transformation satis-
fies its characteristic equation.

Exercises 15.3:
For each of the following matrices find the rational canonical form:

1.

 0 1 0
1 0 0
0 0 1



2.

 1√
2
− 1
sqrt2

0
1√
2

1
sqrt2

0

0 0 1



3.


1
2

0 2√
6
− 1√

12

−1
2
− 1√

2
1√
6

1√
12

−1
2

1√
2

1√
6

1√
12

1
2

0 0 3√
12


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Definitions of basic concepts

B-coordinate representation of a vector [1.2.2,8.2.2]:

If B = (~b1,~bn) is an ordered basis for V , then the B-coordinate

representation of ~a = k1
~b1 + . . . + kn~bn is the column vector k1

...
kn

.

basis for R2 [1.1]:

A basis for R2 is a pair of vectors ~b1 and ~b2 such that any
vector in R2 can be written in exactly one way as k1

~b1 + k2
~b2.

basis [8.2.1]:

A basis for a vector space V is a set B of vectors which is
linearly independent and which spans V .

characteristic polynomial of a matrix [13.1.3]:

The characteristic polynomial of the matrix M is

pM(λ) = det(M− λI)

codomain [5.2.1]:

The codomain of a function L : V → W is W .

341
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column rank of a matrix [10.2.4]:

The column rank of a matrix is the dimension of its column
space.

column space of a matrix [2.3.1,6.2.4,10.2.3]:

If M is a m × n matrix then the column space of M is the
subspace of Rm spanned by the column vectors of M.

companion matrix [11.2]:

The companion matrix for the polynomial p(x) = xn − (a0 +
a1x+ . . .+ an−1x

n−1 is the matrix
0 0 · · · 0 a0

1 0 · · · 0 a1
...

...
. . .

...
...

0 0 · · · 1 an−1


dependent set [8.1.1]:

A set A of vectors in V is linearly dependent if and only if ~0
can be written as a linear combination of vectors in A in which
there are nonzero coefficients.

determinant of a 2× 2 matrix [2.3.3,Exercises 2.1#6]:

The determinant of a 2× 2 matrix is given by the formula

det

[
a b
c d

]
= ad− bc.

determinant of a matrix [Exercises 2.3#4,12.1.1]:

A determinant function

det : n× n-matrices→ R

is a function with the following properties:

1. det is multiplicative: det(AB) = det A det B
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2. det(At) = det(A)

3. det is multilinear in rows

4. det is not identiacally 0

dimension [8.2.3]:

The dimension of a finite dimensional vector space is the num-
ber of elements in a basis for that space.

direct sum of subspaces [6.3.2]:

Let V be a vector space and let U and W be subspaces of V
which satisfy

V = U +W and U ∩W = {~0},

then V is said to be the direct sum of U and W ; this relation is
indicated by writing

V = U ⊕W .

domain [5.2.1]:

The domain of a function L : V → W is V .

dot product [T]:

he dot product of vectors ~a = [a1, . . . , an] and ~b = [b1, . . . , bn]
is defined

1. geometrically as ~a ·~b = ‖~a‖ ‖~b‖ cos(θ) where θ is the angle
between the vectors

2. algebraically as ~a ·~b =
∑n

i=1 aibi

dual space V∗ [Example 6.1.6]:

V∗ = Hom(V ,R)

eigenvalue [13.1.1]:

A number λ such that there is a non-zero vector ~v with

L(~v) = λ~v
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eigenvector [13.1.1]:

A non-zero vector ~v such that L(~v) = λ~v.

elementary row operations [2.4,7.1]:

The elementary row operations are:

1. Swap rows i and j : Ri ↔ Rj

2. Multiply row i by r (where r 6= 0): rRi

3. Add r times row i to row j: Rj + rRi

equal algebraic vectors [1.1.2]:

Two vectors ~a = [a1, a2] and ~b = [b1, b2] are equal if a1 = b1
and a2 = b2.

equal geometric vectors [1.1.1]:

Two vectors will be considered equal if they have the same
direction and magnitude or if both are the zero vector.

field [5.1.1]:

A field is a set F equipped with two binary operations + :
F × F → F and × : F × F → F satisfying the following axioms
for all a, b, and c ∈ F :

Closure: a+ b ∈ F a× b ∈ F
Associativity: (a+ b) + c = a+ (b+ c) (a× b)× c = a× (b× c)
Commutativity: a+ b = b+ a a× b = b× a
Identity: ∃0∈F∀a(a+ 0 = a) ∃1∈F∀a(a× 1 = a)
Inverses: ∀a∈F∃−a(−a+ a = 0) ∀a6=0∃ 1

a
∈F (a× 1

a
= 1)

Distributive: a× (b+ c) = (a× b) + (a× c)

finite dimensional [8.2.2]:

A vector space is finite dimensional if it has a finite basis.

formal power series [5.1]:

A formal power series is an expression of the form
∑∞

i=0 a1x
i.

There is no requirement of convergence.
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Fourier series [14.4]:

The Fourier series up to nth harmonics for a periodic func-
tion is its projection onto the subspace spanned by the functions
sin(mx) and cos(mx) for m ≤ n.

Hom(V ,W) [Example 6.1.6]:

Hom(V ,W) is the vector space of linear transformations from
V to W .

homogeneous [Example 6.1.8, Example 6.1.9]:

A homogeneous equation is one in which the constant term is
0.

identity linear transformation [2.2]:

The identity linear transformation I d : V → V has value
I d(~v) = ~v.

identity matrix [2.2]:

The identity matrix I has 1’s on the main diagonal and 0’s
elsewhere. It has the property that IM = M and MI = M for
all M for which the products are defined.

image of a linear transformation [2.3.1,6.1]:

The image of a linear transformation L : V → W is the sub-
space of W consisting of all vectors of the form L(~v).

inconsistent system [Example 7.1.2]:

A system of equations with no solutions is called inconsistent.

independent [8.1.1]:

A set A of vectors in V is linearly independent if whenever a
linear combination of elements of A has

c1~a1 + . . .+ cn~an = ~0

then all of the ci = 0.
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inner product [14.1.1]:

An inner product on a vector space V over the reals is a func-
tion from V × V to R whose value at (~a,~b) is denoted 〈~a | ~b〉,
satisfying the following axioms:

Symmetry: 〈~a | ~b〉 = 〈~b | ~a〉
Positive definiteness: 〈~a | ~a〉 ≥ 0 with equality if and only if ~a = ~0

Linearity: 〈~a | k~b〉 = k〈~a | ~b〉
〈~a | ~b+ ~c〉 = 〈~a | ~b〉+ 〈~a | ~c〉

inverse of a linear transformation [10.1.1]:

The inverse of a linear transformation L : V → W is a linear
transformation L−1 : W → V such that L ◦ L−1 = idW and
L−1 ◦ L = idV .

inverse of a matrix [10.1.2]:

The inverse of a square matrix M isd a matrix M−1 such that
MM−1 = M−1M = I.

invertible [10.1.1]:

A matrix or linear transformation is said to be invertible if
and only if it has an inverse.

kernel of a linear transformation [2.3.2,6.1]:

The set of vectors ~v such that L(~v) = ~0 is the kernel of L. It
is a subspace of the domain of L.

L-cyclic subspace [11.2.1]:

The L-cyclic subspace of V generated by ~v is

CL
V = Span({~v,L(~v), . . . ,Ln−1(~v)})

length of a vector in R2 [1.1.2]:

The length of the vector ~a = [a1, a2] is ‖~a‖ =
√
a2

1 + a2
2.

linear combination [2.3,6.2.1]:
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Let A be a nonempty subset of vectors in V . A linear combina-
tion of vectors in A is a vector ~b of the form ~b = c1~a1 + . . .+cm~am,
where c1, . . . ., cm are scalars and ~a1, . . . .,~am ∈ A.

linear transformation [2.1.1,5.2.1]:

A function L : V → W is a linear transformation if L(~v1+~v2) =
L(~v1) + L(~v2) and L(k~v) = kL(~v).

L-invariant subspace [11.2.2]:

A subspace U < V is called L-invariant it whenever ~u ∈ U
then L(~u) ∈ U .

lower triangular matrix [10.3.1]:

A matrix with aij = 0 whenever i < j is called lower triangu-
lar.

matrix for a linear transformation with respect to ordered bases
on domain and codomain [2.2,9.1]:

The matrix for the linear transformation L with respect to the
ordered basis (~d1, . . . , ~dn) for the domain and (~c1, . . . ,~cm) for the

codomain has lij given by the coefficient of ~ci in L(~bj).

matrix [2.2]:

A matrix is a rectangular array of numbers.

minor [12.2]:

The ij-minor of a matrix M is the matrix Mij obtained by
omitting the ith row and the jth column of M.

nilpotent [11.2.3]:

A linear transformation L is nilpotent with index of nilpotence
n if Ln is identically ~0 but Ln−1 is not.

norm [14.1.2]:

If 〈 | 〉 is an inner product on V and ~a is a vector in V , then
the norm of ~a, denoted ‖~a‖, is

√
〈~a | ~a〉.
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nullity of a linear transformation [10.2.2]:

The nullity of a linear transformation L : V → W is the
dimension of Ker(L).

orthogonal basis [14.2]:

An orthogonal basis is a basis whose elements are mutually
orthogonal.

orthogonal complement S⊥ [15.1.1]:

If S is a non-empty set of vectors in an inner product space
V , then the orthogonal complement S⊥ is the set of all vectors
orthogonal to all of the members of S.

orthogonal matrix [15.2.2]:

A square matrix A is called orthogonal if its column vectors
form an orthonormal set.

orthogonal transformation [15.2.1]:

If V and W are inner product spaces and L : V → W is a
linear transformation then L is an orthogonal transformation if
and only if

〈L~a | L~b〉 = 〈a | b〉

for all ~a, ~b in V .

orthogonal [14.1.3]:

Two vectors ~v and ~w are said to be orthogonal if 〈~v|~w〉 = 0.

orthonormal set [14.2.1]:

A set of vectors {~v1, . . . , ~vn} is called orthonormal if

〈~vi | ~vj〉 =

{
0 if i 6= j
1 if i = j

.

pivot [7.1.2]:
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If M is a matrix with mij 6= 0 then the pivot on the ij position

of M is the sequence of row operations
1

aij
Ri then Rk −mkjRi

for all k 6= i. It results in a new matrix with a 1 in the ij position
and 0 in the rest of the jth column.

product of a matrix and a column vector [2.2,5.2]:[
a b
c d

] [
k1

k2

]
=

[
ak1 + bk2

ck1 + dk2

]
product of two matrices [2.2,9.3.1]:

The product GF of an m × n matrix F and a p ×m matrix
G is the p× n matrix with ij entry given by

m∑
k=1

gikfkj.

projection of a vector onto subspace [14.3.1]:

The projection of ~v onto the subspaceW is the vector ~w ∈ W
such that ~v = ~w + ~w′ with ~w′ orthogonal to every vector in W .

rank of a linear transformation [10.2.1]:

The rank of a linear transformation L : V → W is the dimen-
sion of ImL.

rank of a matrix [Theorem 10.2.5]:

The row rank and the column rank of a matrix are equal,
hence we call either number the rank of M.

redundant system [Example 7.1.3]:

A system of equations in which one or more of the equations
provides no new information is called redundant.

row rank of a matrix [10.2.4]:

The row rank of a matrix M is the dimension of the row space
of M.
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row space of a matrix [6.2.3,10.2.3]:

If M is a m×n matrix then the row space of M is the subspace
of Rn spanned by the row vectors of M.

row-reduced echelon form [7.1.1]:

A matrix is in row-reduced echelon form if and only if

1. The first nonzero entry in each row is a 1

2. The first nonzero entry in a row appears to the right of the
first nonzero entry in the row above it

3. All other entries in the column of that first nonzero entry in
the row are 0.

4. All rows with only 0 entries are at the bottom.

scalar multiple of a matrix [2.2,9.2]:

If A is an m× n matrix then kA has ij-entry kaij.

similar matrices [2.2.1,11.1.1,11.2]:

If two matrices represent the same linear transformation with
respect to different choices of basis we say that they are similar
matrices. This is usually restricted to square matrices using the
same basis for domain and codomain; in this case A ∼ B if and
only if there is an invertible matrix P with A = P−1BP.

Span(A) [6.2.2]:

If A is not empty then the span of A, written Span(A), is
the set of all linear combinations of vectors in A. If A is empty
Span(A) is the vector space {~0}.

spanning set [6.2.2]:

If Span(A) = V then A is a spanning set for V .

stochastic matrix [3.1 Exercise 22]:

A matrix with all entries non-negative in which the columns
add up to 1.
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subspace spanned by a set [2.3,6.2.2]:

Let A be a subset of V . If A is not empty then the span of A,
written Span(A), is the set of all linear combinations of vectors
in A. If A is empty Span(A) is the vector space {~0}.

subspace [2.3,6.1.1]:

A subspaceW of a vector space V is a subset which is a vector
space using the same addition and scalar multiplication as in V .

sum of subspaces [6.3.1]:

W1 +W2 = {~a ∈ V | ~a = ~b1 +~b2,~b1 ∈ W1,~b2 ∈ W2}.

sum of two matrices [2.2,9.2]:

If A and B are m×n matrices then A+B has ij-entry aij+bij.

symmetric matrix [Exercises 9.3#3]:

A symmetric matrix is a matrix with mij = mji for all i, j.

transpose of a matrix [2.3 Exercise 21b]:

The transpose switches rows and columns:[
a b
c d

]t
=

[
a c
b d

]
upper triangular matrix [10.3.1]:

A matrix with aij = 0 whenever i > j is called upper trian-
gular.

vector in the plane [1.1.2]:

A vector ~a in the plane is an ordered pair of real numbers
~a = [a1, a2].

vector space [5.1.2]:
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A vector space over a field F (whose elements are called
scalars) is a set V (whose elements are called vectors) which
has two operations: + : V × V → V and scalar multiplication
F × V → V (usually indicated by juxtaposition) which are re-

quired to satisfy the following axioms for all vectors ~a,~b,~c, and
scalars h and k:

Closure: both ~a+~b and k~a are vectors

Commutativity of + : ~a+~b = ~b+ ~a

Associativity of + : (~a+~b) + ~c = ~a+ (~b+ ~c)

Identity for + : There is a unique vector ~0 with ~0 + ~a = ~a for all ~a.

Inverses for + : For each ~a there is a unique − ~a so that ~a+−~a = ~0
Absorption: h(k~a) = (hk)~a
Distributivity: (h+ k)~a = (h~a) + (k~a)

h(~a+~b) = (h~a) + (h~b)
Identity for scalars: 1~a = ~a

zero vector [1.1.3]:

The zero vector ~0 is the vector such that ~v +~0 = ~v for all ~v.

Z2 [5.3]:

The field of integers using arithmetic modulo 2.
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Answers to selected exercises

Chapter 1
Section 1.1

1. (a) ~a+ 5~c = [28,−55]

(c) π~a+ 3(~b+ ~d) = [3π − 3, 5π + 12]

3. Look at −1~v + ~v +−2~v. The associative law tells us that

(−1~v + ~v) +−2~v = −1~v + (~v +−2~v).

The facts that −1~v and −2~v are inverses for ~v tell us that

(−1~v + ~v) = ~0 and (~v +−2~v) = ~0

so
−2~v = ~0 +−2~v = −1~v +~0 = −1~v.

Section 1.2

1. (a) [3, 0] = 2[1, 1]− 1[−1, 2]

(c) [2, 5] = 3[1, 1] + 1[−1, 2]

(e) [a, b] = x[1, 1] + y[−1, 2] has the unique solution

x =
2a+ b

3

y =
b− a

3

Thus {[1, 1], [−1, 2]} is a basis.

353
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3. c = 2 and d = 1. We can also let c = 0 and d = 0.

5. ~v = −b
a
~w

7. Certainly if we let x = 0 and y = 0 we get a solution. Since exercise 5
proved that if the vectors are nonzero and nonparallel, then there is at
most one solution, this is sufficient.

Chapter 2

Section 2.1

1. Not linear: L([0, 0]) = [3,−2] instead of [0, 0].

3. Linear

5. Not linear: 2L([1, 1]) = [0, 4] but L([2, 2]) = [0, 8].

7. Not linear: L([1, 2] + [2, 1]) = L([3, 3]) = [0, 0] but L([1, 2]) + L([2, 1]) =
[1, 1] + [1, 1] = [2, 2].

9. Linear

11. Let us look at what happens to a unit square:
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-2 -1 1 2

-2

-1

1

2

Stretch first then rotate

-2 -1 1 2

-1

-0.5

0.5

1

Rotate first then stretch

12. If L([a1, b1]) = L([a2, b2]) then [a1, 2b1] = [a2, 2b2], from which we con-
clude that a1 = a2 and b1 = b2, so L is one to one. To show it is
onto we need to see that any vector [a, b] is in the image of L: now
[a, b] = L([a, b

2
]), so L is onto. The inverse is the map taking [a, b] to

[a, b
2
].
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Section 2.2

1. AC =

[
0 1
−5 −3

]

3. BC =

[
−1 −2
−7 1

]

5. B(CA) =

[
5 −10
−10 5

]

7. (A + B)C =

[
−1 −1
−12 −2

]

9. (a)

[
3 1
−1 1

]
(b)

[
2 2
0 2

]
(c)

[
4 1
−4 0

]
(d)

[
23
19

9
19

−25
19

53
19

]

11. (a)

[
2 3
−5 −8

]
(b)

[
−2 9
1 −4

]
(c)

[
5 3
−18 −11

]
(d)

[
−144

19
37
19

−107
19

30
19

]
13. If we think of the matrix as representing a linear transformation L

with respect to the standard basis, then the columns tell us where the
standard basis vectors go. Since any vector in R2 can be written as
x~c1 + y~c2 where the ~ci are the column vectors, any vector in R2 can be
written as L([x, y]). Thus L is onto.
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17. This proof is just like the proof that R2 is a vector space, but it uses
four components instead of two, since there are four positions in a 2×2
matrix.

Section 2.3

1. Span({[0, 0]}) = {[0, 0]}

3. Span({[1, 2]}) = {[x, 2x]|x ∈ R}

5. Span({[1, 3], [1, 2]}) = R2

7. Span({[1, 2], [−2, 4], [3,−6]}) = R2

9. For these problems many answers are possible, including

(a) L([x, y]) = [x+ y, x− y]

(b) L([x, y]) = [0, 0]

(c) L([x, y]) = [x− 1
3
y, 0]

11. Determinant = 6 so matrix has an inverse

13. Determinant = 0 so matrix does not have an inverse

15. Determinant = .04 so matrix has an inverse

17. Determinant = 5 so matrix has an inverse

19. Determinant = 14 so matrix has an inverse

21. If

[
a b
c d

] [
x
y

]
=

[
0
0

]
then we can conclude that

bc− ad
b

x = 0 and y = −a
b
x

Since ad− bc = 0 this puts no restriction on x.

22. (a) Ker(L) = {[0, 0]} and Im(L) = R2 There is an inverse L−1[x, y] =
1
9
[x+ 2y, 4x− y]

(c) Ker(Z ) = R2 and Im(Z ) = {[0, 0]} No inverse
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Section 2.4

1.

[
2 −3

4

−1 1
2

]

3.

[
1
2

1
4

−1
2

1
4

]

5.

[
2 2
4 4

]−1

does not exist

7. L−1 does not exist

9. L−1 does not exist

14. The algorithm using row operations takes 6 multiplications, 2 recipro-
cals, and 3 additions. The method using the formula takes 6 multipli-
cations and one addition, so for the 2 by 2 case it is less work.

Chapter 3
Section 3.1

1. The eigenvalues are the roots of (2 − λ)(3 − λ) − 1 · 0 = 0, so we get
λ = 2, 3. An eigenvector for 2 is [1, 0]; for 3 we get [1, 1]. The system
will expand fairly rapidly in the direction of both eigenvectors.

3. The eigevalues are the roots of (2 − λ)(1 − λ) − 12 = 0, giving λ = 5
or λ = −2. Corresponding eigenvectors are [1, 1] and [1,−4

3
]. We

get expansion in the direction of the eigenvector for 5 and diverging
oscillation in the direction of the eigenvector for -2.

5. Here the eigenvalue is .2 obtained twice. Eigenvectors all have the form
[x, 0]. Iterations get closer to the origin.

7. The characteristic equation is λ2− 3λ+ 4 = 0 which has complex roots
λ = 3±

√
7i

2
. These have modulus bigger than 1, so the system spirals

outward.

9–16 In all cases the value of the characteristic polynomial applied to the
original matrix is the zero matrix.
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17. The eigenvalues are complex with modulus less than 1. The real part
is negative.

19. The eigenvalues are complex with modulus greater than 1.

21. Both eigenvalues are real, positive, and less than 1.

Section 3.2

1.

[
2 3
0 1

]
∼
[

2 0
0 1

]
using the basis {[1, 0], [1,−1

3
]}

3.

[
−2 3
1 1

]
∼

[
−1−

√
21

2
0

0 −1+
√

21
2

]
using the basis {[1, 3−

√
21

6
], [1, 3+

√
21

6
]}

5.

[
2 −3
0 1

]
∼
[

2 0
0 1

]
using the basis {[1, 0], [1, 1

3
]}

7.

[
1 1
−2 4

]
∼
[

2 0
0 3

]
using the basis {[1, 1], [1, 2]}

9.

[
1 −1
1 3

]
∼
[

2 1
0 2

]
using the basis {[−1, 1], [2,−1]}

11.

[
1 4
−1 1

]
∼
[

1 −2
2 1

]
using the basis {[0, 2], [4, 0]}

13. Since

k

[
λ1 0
0 λ2

]
=

[
kλ1 0
0 kλ2

]
giving eigenvalues kλ1 and kλ2 and

k

[
λ 1
0 λ

]
=

[
kλ k
0 kλ

]
giving eigenvalues kλ twice, and since

k

[
a b
−b a

]
=

[
ka kb
−kb ka2

]
giving eigenvalues ka±kb i, multiplying by k multiplies the eigenvalues
by k.
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15. (a) Suppose M is the identity matrix, which has 1 as an eigenvalue,
and that

N =

[
2 0
0 3

]
with eigenvalues 2 and 3. Then MN = N which does not have 1
as an eigenvalue.

(b) The eigenvalues for

M =

[
1 0
1 2

]
are 1 and 2. The eigenvalues for

N =

[
3 1
0 4

]
are 3 and 4. The eigenvalues for

MN =

[
3 1
3 9

]
are 6 ± 2

√
3, not obtained as a product of the eigenvalues of M

and N.

Chapter 4
Section 4.1

1. cos(θ) = 3√
10

3. cos(θ) = 3√
14

5. cos(θ) = 1

7. cos(θx) = 3
5

and cos(θy) = 4
5

9. cos(θx) = 1√
2

and cos(θy) = 1√
2

11. cos(A) = 58√
73
√

61
, cos(B) = −33√

73
√

18
, cos(C) = 3√

61
√

18

13. c = 3
4

15. k = 14
20
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17. Recall that ‖[a1, a2]‖ =
√
a2

1 + a2
2 so ‖[a1, a2]‖2 = a2

1 + a2
2 = [a1, a2] ·

[a1, a2].

19. We calculate

‖~a+~b‖2 = (~a+~b) · (~a+~b)

= (~a+~b) · ~a+ (~a+~b) ·~b
= ~a · ~a+ 2~a ·~b+~b ·~b
= ‖~a‖2 + 2~a ·~b+ ‖~b‖2

≤ ‖~a‖2 + 2‖va‖‖~b‖+ ‖~b‖2

= (‖~a‖+ ‖~b‖)2

Since both ‖~a‖ + ‖~b‖ and ‖~a + ~b‖ are non-negative, we can conclude

that ‖~a+~b‖ ≤ ‖~a‖+ ‖~b‖.

Section 4.2

1.
−−→
proj~u(~v) = 11

5
[1, 2] = [11

5
, 22

5
]

3.
−−→
proj~u(~v) = 3

29
[5,−2] = [15

29
,− 6

29
]

5.
−−→
proj~u(~v) = −7

5
[−2,−1] = [14

5
, 7

5
]

7. [3, 4] = [11
5
, 22

5
] + [4

5
,−2

5
]

9. [1, 1] = [15
29
,− 6

29
] + [14

29
, 35

29
]

11. [2, 3] = [14
5
, 7

5
] + [−4

5
, 8

5
]

13. Let ~a = [a1, a2], ~v = [v1, v2], and ~w = [w1, w2] then

(a) In general

~a =
v2a1 − v1a2

w1v2 − w2v1

~v +
w2a1 − w1a2

v1w2 − v2w1

~w

(b) For orthogonal vectors

~a =
~v · ~a
~v · ~v

~v +
~w · ~a
~w · ~w

~w.
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Chapter 5

Section 5.1

1. This is essentially RN which is a vector space as in Theorem 5.1.5.

3. Since the sum of two polynomials which have only even powers also has
only even powers, we get closure. The zero polynomial has only even
powers of x, so identity is OK. All of the other properties follow as for
polynomials without the restriction.

5. This is R3 written with a different encoding.

7. We define + by ~0 +~0 = ~0 and scalar multiplication by k~0 = ~0.

Commutativity ~0 +~0 = ~0 +~0

Associativity (~0 +~0) +~0 = ~0 + (~0 +~0) = ~0

Identity ~0 +~0 = ~0

Inverses ~0 +~0 = ~0

Absorption k(h~0) = (kh)~0 = ~0

Distributive (k + h)~0 = k~0 + h~0 = ~0

k(~0 +~0) = k~0 + k~0 = ~0 +~0 = ~0

Identity for multiplication 1~0 = ~0

We have checked, for each axiom, the only cases which occur. Thus
{~0} is a vector space.

9. We define R, the vector space, by using the + from the field as + for
vectors and x from the field gives scalar multiplication. Commutativity
for + in vectors is precisely commutativity for + in the field. Associa-
tivity for + in vectors is precisely associativity for + in the field. The
associative law for multiplication in the field yields the absorption law
for multiplication by a scalar. The distributive law k(a+b) = ka+kb is
the distributive law for the field. The distributive law (k+h)a = ka+ha
follows from it by commutativity of multiplication. Identity for multi-
plication in the field gives identity for scalar multiplication in the vector
space.

11. We can think of C as numbers of the form a+ b i. This is just another
way to write R2.
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13. This fails to satisfy the identity axiom for scalar multiplication. All of
the other axioms are satisfied.

15. This fails to satisfy the identity axiom for scalar multiplication.

17. We consider the axioms in order:

Closure under ⊕ holds
Closure under scalar multipication holds
Associativity of ⊕ holds
Commutativity of ⊕ holds
Absorption fails .3 · (30 · .8) = .3 6= .24 = .9 · .8
Identity under ⊕ holds
Identity for scalar multiplication holds
Distributivity holds

Section 5.2

1. We show that both addition and scalar multiplication are preserved.
Let ~v = [x, y] and ~u = [s, t] then

L(~u+ ~v) = L([s+ x, t+ y])

= 3(s+ x)− 4(t+ y)

= 3s+ 3x− 4t− 4y

= (3s− 4t) + (3x− 4y)

= L(~u) + L(~v)

L(k~u) = L([ks, kt])

= 3(ks)− 4(kt)

= k(3s− 4t)

= kL(~u)

3. We show that both addition and scalar multiplication are preserved.

J (x1 + x2) = [x1 + x2, 0]

= [x1, 0] + [x2, 0]

= J (x1) + J (x2)

J (kx) = [kx, 0]

= k[x, 0]

= kJ (x)
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The function taking x t [x, 1] does not preserve addition, so it is not
linear. The function taking x to [x, 2x] is linear.

5. We show that both addition and scalar multiplication are preserved.

Let ~p =

[
ab
c d

]
and ~q =

[
s t
u v

]
then

M (~p+ ~q) = M (

[
a+ sb+ t
c+ u d+ v

]
)

=

[
a+ s+ 2(b+ t)
c+ u+ 2(d+ v)

]
=

[
a+ 2b+ s+ 2t)
c+ 2d+ u+ 2v)

]
=

[
a+ 2b
c+ 2d)

]
+

[
s+ 2t
u+ 2v

]
= M (~p) + L(~q)

M (k~p) = M (

[
ka 2kb
kc kd

]
)

=

[
ka+ 2kb)
kc+ 2kd

]
= kM (~u)

7.

g([x, y, z] + [x′, y′, z′]) = g[x+ x′, y + y′, z + z′]

= x+ x′ + y + y′ − 2z − 2z′)

= g[x, y, z] + g[x′, y′, z′]

g(k[x, y, z]) = g[kx, ky, kz]

= kx+ ky − 2kz

= k(x+ y − 2z)

= kg[x, y, z]

9. k(p+q) = p(x+1)+q(x+1) = (p+q)(x+1) and k(rp) = (rp)(x+1) =
r(p(x+ 1)) = rk(p) so k is linear.

11. m[0, 0] = [1, 0, 0] 6= ~0 so this is not linear
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13. If L(~a) and L(~b) both equal ~0 then L(~a+~b) = L(~a) + L(~b) = ~0 +~0 = ~0
and L(k~a) = kL(~a) = k~0 = ~0.

15. If L is 1-1 then L(~a) = L(~b) implies ~a = ~b so if L(~a) = ~0 then ~a = ~0
since we know L(~0) = ~0. Now suppose L(~a) = ~0 ⇒ ~a = ~0. Then if

L(~b) = L(~b′) we know L(~b−~b′) = ~0 so ~b−~b′ = ~0 and ~b = ~b′.

Section 5.3

1.

((a+ bi)(c+ di))(e+ fi) = ((ac− bd) + (ad+ bc)i)(e+ fi)

= ((ace− bde− adf − bcf) + (ade+ bce+ acf − bdf)i

(a+ bi)((c+ di)(e+ fi)) = (a+ bi)((ce− df) + (ed+ fc)i)

= (ace− adf − bed− bfc) + (aed+ afi+ bce− bdf)i

= (ace− bde− adf − bcf) + (ade+ bce+ acf − bdf)i

so associativity holds.

3.

((a1 + b1 i) + (a2 + b2 i))
∗ = ((a1 + a2) + (b1 + b2) i)

∗

= ((a1 + a2)− ((b1 + b2) i)

= (a1 − b1 i) + (a2 − b2 i)
= (a1 + b1 i)

∗ + (a2 + b2 i)
∗

((a1 + b2 i)× (a2 + b2 i))
∗ = ((a1a2 − b1b2) + (a1b2 + a2b1) i)

∗

= ((a1a2 − b1b2)− (a1b2 + a2b1) i)

= ((a1a2 − (−b1)(−b2)) + (a1(−b2) + a2(−b1)) i)
= (a1 − b1 i)× (a2 − b2 i)
= (a1 + b1)

∗ × (a2 + b2 i)
∗

5. Since R is a subfield of C, scalar mulitplication properties for real
scalars follow from those for complex scalars.
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7.

a b c ab + ac a(b+c)
1 1 1 0 0
1 1 0 1 1
1 0 1 1 1
1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

Chapter 6
Section 6.1

1. (a) subspace

(c) subspace

(e) subspace

(g) subspace

3. a) and b) are subspaces

5. Since the meaning of the operations is the same in all three sets all we
need to do to show that U <W is to show that it is a subset of W .

7. functions with integral 0 (there isn’t much more you can say about
them)

9. This is the kernel of a linear transformation.

11. Any scalar multiple of a periodic function of period p is also periodic
with period p. The sum of two functions which are periodic with period
p also is periodic with period p. Thus the set of functions of period p is a
subspace. Notice that we could not say the same for functions of prime
period p or just periodic functions without specifying the period.

Section 6.2

1. (a) Span({[1, 2, 3], [1, 2, 4]} = {[h, 2h, k]|h, k ∈ R}
(c) {[h− k, h, 2h+ 3k]|h, k ∈ R} note that [1,2,7] is of this form.
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3. It is clear that Span(A1) ⊆ Span(A) since every linear combination of
elements of A1 is a linear combination of elements of A. Now suppose
we have an element of Span(A), say

m∑
i=1

ki~ai =
m−1∑
i=1

ki~ai + km(
m−1∑
i=1

ci~ai

=
m−1∑
i=1

(ki + kmci)~ai

This shows that Span(A) ⊆ Span(A1) finishing the proof.

5. Span(S) = RN

7. Eventually constant sequences form a subspace, so Span(S) = S.

9. A counterexample: in R2 let S = {[1, 0]} and T = {[0, 1]}. Then
Span(S ∪ T ) = R2 but Span(S) ∪ Span(T ) is just the axes.

11. Suppose ~v =
∑n

i=1 ai~si and ~v =
∑m

k=1 bk~tk are two different ways to
get ~v as a linear combination of elements of S. Then the zero linear
combination (all elements of S have coefficient 0 and the non-trivial
linear combination

∑n
i=1 ai~si −

∑m
k=1 bk~tk both give ~0.

Section 6.3

1. Since the difference of codewords is a codeword, it suffices to show that
the non-zero codewords all have at least 3 bits non-zero. The 16 code-
words are [0,0,0,0,0,0,0], [1,1,0,1,0,0,1], [0,1,0,1,0,1,0], [1,0,0,0,0,1,1],
[1,0,0,1,1,0,0], [0,1,0,0,1,0,1], [1,1,0,0,1,1,0], [0,0,0,1,1,1,1], [1,1,1,0,0,0,0],
[0,0,1,1,0,0,1], [1,0,1,1,0,1,0], [0,1,1,0,0,1,1], [0,1,1,1,1,0,0], [1,0,1,0,1,0,1],
[0,0,1,0,1,1,0], and [1,1,1,1,1,1,1] all of which have at least three bits 1
except for the zero word.

2. (c) Correcting errors gives the string 0000000 1110000 1110000 1110000
which decodes as 0000 1000 1000 1000 .

3. Codewords for the Hamming(8,4) code are the solutions to the system
of equations.

x1 + x2 + x5 = 0
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x3 + x4 + x6 = 0

x1 + x3 + x7 = 0

x2 + x4 + x8 = 0.

Adding two such solutions gives a solution, [0, 0, 0, 0, 0, 0, 0] is a solution
so scalar multiplication stays in solutions. All other properties follow
from those for Z8

2 . No two bits occur together in all equations in which
they occur at all. Thus the pattern of equations which fail determines
which bit is wrong. For instance, suppose we get 10111101, then

x1 + x2 + x5 = 0

x3 + x4 + x6 = 1

x1 + x3 + x7 = 0

x2 + x4 + x8 = 0.

Thus the bit in error must be one which occurs only in the second
equation. Hence it is bit 6 and the message was 1011.

Section 6.4

1. U +W = {[a1, a2, 0]|a1, a2 ∈ R} and U ∩W = {[0, 0]}.

3. U +W = R3 and U ∩W = {[0, t, 0]|t ∈ R}.

5. U +W = R3 and U ∩W = {[2t, t,−3t]|t ∈ R}.

7. U +W = R[x] and U ∩W = {constant polynomials}

9. U +W = RN and U ∩W = {the constant sequence 0}

11. It is true that U ∪W is a subspace if U <W or W < U

Chapter 7
Section 7.1

1. x1 = 1 x2 = 2 x3 = 0

3. x1 = 0 x2 = 1 and x3 = 1.
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5.

x1 = 2− x4

x2 = 4

x3 = −3− x4

x4 arbitrary

7. x1 = 2, x2 = 5, x3 = −3

9. x1 = −1, x2 = 10, x3 = 2

11. x1 + 2x3 = 3, x2 + x3 = 4, x3 arbitrary

13. no solutions

15. no solutions

17.

 1 0 0
0 1 0
0 0 1



19.

 1 0 0
0 1 0
0 0 1


Section 7.2

1. [1, 1, 3]x+ [−2, 1,−3]y = [1, 2, 3] has no solutions, so no.

3. [6, 5, 6] = 2[1, 2, 4]− 3[0, 1, 2] + 4[1, 1, 1], so yes.

5. no

7. [0, 1, 0, 1] = [1, 1, 0, 0]− [1, 0, 1, 0] + [0, 0, 1, 1]. Yes.

9. x4 + x2 + 1 = (x4 + x3 + 1)− (x3 + 1) + (x2 + x+ 1)− x
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11. If the polynomial is A + Bx + Cx2 + Dx3 then four distinct roots
x1, x2, x3, x4 give four equations in the four unknowns A,B,C,D:

A+Bx1 + Cx2
1 +Dx3

1 = 0

A+Bx2 + Cx2
2 +Dx3

2 = 0

A+Bx3 + Cx2
3 +Dx3

3 = 0

A+Bx4 + Cx2
4 +Dx3

4 = 0

Row reduction gives:
1 x1 x2

1 x3
1 0

1 x2 x2
2 x3

2 0
1 x3 x2

3 x3
3 0

1 x4 x2
4 x3

4 0

 ;


1 x1 x2

1 x3
1 0

0 1 x2 + x1 x2
2 + x2x1 + x2

1 0
0 0 1 x3 + x2 + x1 0
0 0 0 x4 − x3 0


Thus the only solution is the trivial one.

Section 7.3

1. If the polynomial is A + Bx + Cx2 + Dx3 then four distinct roots
x1, x2, x3, x4 give four equations in the four unknowns A,B,C,D:

A+Bx1 + Cx2
1 +Dx3

1 = 0

A+Bx2 + Cx2
2 +Dx3

2 = 0

A+Bx3 + Cx2
3 +Dx3

3 = 0

A+Bx4 + Cx2
4 +Dx3

4 = 0

Row reduction gives:
1 x1 x2

1 x3
1 0

1 x2 x2
2 x3

2 0
1 x3 x2

3 x3
3 0

1 x4 x2
4 x3

4 0

 ;


1 x1 x2

1 x3
1 0

0 x2 − x1 x2
2 − x2

1 x3
2 − x3

1 0
0 x3 − x1 x2

3 − x2
1 x3

3 − x3
1 0

0 x4 − x1 x2
4 − x2

1 x3
4 − x3

1 0



;


1 x1 x2

1 x3
1 0

0 1 x2 + x1 x2
2 + x2x1 + x2

1 0
0 1 x3 + x1 x2

3 + x3x1 + x2
1 0

0 1 x4 + x1 x2
4 + x4x1 + x2

1 0


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;


1 x1 x2

1 x3
1 0

0 1 x2 + x1 x2
2 + x2x1 + x2

1 0
0 0 x3 − x2 x2

3 − x2
2 + (x3 − x2)x1 0

0 0 x4 − x2 x2
4 − x2

2 + (x4 − x2)x1 0



;


1 x1 x2

1 x3
1 0

0 1 x2 + x1 x2
2 + x2x1 + x2

1 0
0 0 1 x3 + x2 + x1 0
0 0 1 x4 + x2 + x1 0



;


1 x1 x2

1 x3
1 0

0 1 x2 + x1 x2
2 + x2x1 + x2

1 0
0 0 1 x3 + x2 + x1 0
0 0 0 x4 − x3 0


Thus the only solution is the trivial one.

3. This involves solving the system of equations

a1 + a2 + a3 + a4 = 3h

ha2 + 2ha3 + 3ha4 =
9h2

2
h2a2 + 4h2a3 + 9h2a4 = 9h3

h3a2 + 8h3a3 + 27h3a4 =
81h4

4

h4a2 + 16h4a3 + 81h4a4 + 24c =
243h5

5

which has solution a1 = 3h
8
, a2 = 9h

8
, a3 = 9h

8
, a4 = 3h

8
, c = −3h5

80
.

5. General form is
Ax3 +Bx2 + Cx+D = y

For (0, 0) to be on the curve says

A0 +B0 + C0 +D = 0.

For (1, 0)) to be on the curve says

A+B + C +D = 0.

For (2, 4) to be on the curve says

8A+ 4B + 2C +D = 4.
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For (3, 0) to be on the curve says

27A+ 9B + 3C +D = 0.

Solving this system of equations gives A = −2, B = 8, C = −6 and
D = 0. The cubic is y = -2x3 + 8x2 - 6x + 0

7. 
1 0 0 0 0 0
−1
4

1 −3
4

0 0 0
0 −1

4
1 −3

4
0 0

0 0 −1
4

1 −3
4

0
0 0 0 0 1 1

 ;


1 0 0 0 0 0
0 1 0 0 0 27

40

0 0 1 0 0 9
10

0 0 0 1 0 39
40

0 0 0 0 1 1


9.

2

x− 1
− 1

(x− 1)2
+

3

x2 + 1
+

x− 2

(x2 + 1)2

11. hm = 8
13

Chapter 8
Section 8.1

1. Independent

3. Dependent

5. Independent

7. Dependent

9. Independent

11. Independent

13. Independent

15. (a) The linear combination of elements of A which demonstrates its
dependence is also a non-trivial linear combination of vectors in
B giving ~0.

(b) This is logically equivalent to a) using a contrapositive argument.
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17. Suppose that c1~a1 + . . .+cn~an = 0 with the ~ai in S1∪S2 and the ci 6= 0.
Then since both S1 and S2 are independent, there must be ~ai from both
sets. If we assume that ~a1 . . .~am are from S1 and ~am+1 . . .~an are from
S2, then

~v =
m∑
i=1

ci~ai =
n∑

j=m+1

−cj~aj

is in Span(S1) ∩ Span(S2) and is thus ~0. Independence of S1 tells us
that all of the ci = 0 for i = 1 . . .m and independence of S2 tells us
that cj = 0 for j = m + 1 . . . n. Thus we have a contradiction, so no
nontrivial linear combination can give ~0.

To see that it is not enough to ask for S1 ∩ S2 = ∅ let V = R2,
S1 = {[1, 0], [0, 1]} and S2 = {[1, 1], [1,−1]}. Both S1 and S2 are inde-
pendent and S1 ∩ S2 = ∅, but S1 ∪ S2 = {[1, 0], [0, 1], [1, 1], [1,−1]} is
not independent.

19. For ease in numbering, let us assume that the set of columns involved
is all of the m×n matrix A(otherwise we will just need to avoid talking
about certain indices). If the columns are dependent then there will be
constants ci, not all 0, such that

n∑
i=1

ciA.i = ~0

which is the same as asking that for each j = 1, . . . ,m

n∑
i=1

ciaji = 0.

This is a homogeneous system of equations. Elementary row opera-
tions do not change the solutions to the system, so they cannot change
independence of the column vectors.

21. Each non-zero row of a row reduced echelon form matrix has a leading
1 which is the only non-zero entry in its column, hence there is no way
to get that entry as a linear combination of the corresponding entries
of the other rows.

Section 8.2
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1. Yes

3. No, not independent

5. Yes

7. No, doesn’t span

9. Yes

11. If ~v1, . . . , ~vn is a basis for V over C, then ~v1, . . . , ~vn, i~v1, . . . , i~vn is a basis
for V over R.

13. To see independence, suppose that

n∑
i=0

cifi = 0.

Then
n∑
i=0

cifi(k) = ck = 0

for each k.

The sequences which can be obtained as linear combinations of fi have
only a finite number of non-zero values.

15. Since any vector in ~v ∈ V can be written as

~v = ~w + ~u

=
n∑
i=1

xi~bi +
m∑
j=1

yj~cj

V is spanned by {~b1, . . . ,~bn,~c1, . . . ,~cm}. Since W ∩ U = {~0} and both

{~b1, . . . ,~bn} and {~c1, . . . ,~cm} are independent, {~b1, . . . ,~bn,~c1, . . . ,~cm}is
linearly independent. Thus it is a basis for V .

Section 8.3

1. {[3,−1], [1, 0]}

3. {x− 1, 1, x2}
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5. {[1, 1,−1, 1], [2,−1, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0]}

7. {[1,−2, 3], [−4, 5, 6], [7, 8,−9]}

9. {1, x+ 1, x2 + 1, x3 + x2}

11. Basis for U ∩W is

{[1, 2, 3, 1, 2], [1, 0, 1, 0, 1}

Basis for U +W is

{[1, 2, 3, 1, 2], [1, 0, 1, 0, 1], [1, 1, 1, 1, 1], [1, 2, 3, 4, 5], [1, 1, 1, 1, 2]}

13. If B is a basis and B′ = B \ {~b} is linearly independent then ~b is not
in S(B). But B is a spanning set, giving a contradiction.

15. Consider the xy plane and the yz plane in R3, dim (xy plane) = dim
(yz plane) = 2 but the two planes are not the same.

17. Since the non-zero rows in a row reduced echelon form matrix are in-
dependent and span the row space of that matrix, they form a basis
for the row space of the row reduced echelon form of M. But that is
the same as the row space of M, so it gives the desired basis.

18. Row reduction gives

(a)

 1 2 3
4 5 6
7 8 9


;

 1 0 −1
0 1 2
0 0 0

 so the basis is {[1, 0,−1], [0, 1, 2]}

(c)


1 4 3
2 1 1
1 1 1
1 4 5

 ;


1 0 0
0 1 0
0 0 1
0 0 0

 so the basis is {[1, 0, 0], [0, 1, 0], [0, 0, 1]}

Chapter 9
Section 9.1

1.

[
1 1
1 −1

]
and

[
1 1
1 −1

] [
4
7

]
=

[
11
−3

]
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3.

[
0 2
1 0

]
and

[
0 2
1 0

] [
−3
7

]
=

[
14
−3

]
11[1, 0]+−3[0, 1] = [11,−3], 11[1, 0]+−3[0, 1] = [11,−3], and 14[1, 0]+
−3[1, 1] = [11,−3], so these all give the same answer.

5.

 1 0 2 3
0 1 −1 −3
0 0 3 3

Now [2, 1,−3, 4] = 0[1, 0, 0, 0]+3[1, 1, 0, 0]−1[1, 2, 3, 0]+

4[0, 0, 0, 1] so we calculate

 1 0 2 3
0 1 −1 −3
0 0 3 3




0
3
−1
4

 =

 10
−8
9


Giving 10[1, 0, 0]− 8[1, 1, 0] + 9[0, 1, 1] = [2, 1, 9].

7.


1 0 2
0 1 −1
1 1 1
1 −1 −1


 1

2
3

 =


7
−1
6
−4



9.


9 11 13
14 14 18
13 15 17
6 6 8

 is the matrix.

11. T [1, 2, 3] = 1[3, 2] + 2[1, 4] + 3[0, 0] = [5, 10]

13. T [1, 2, 3, 4] = T [1, 1, 1, 1] + T [0, 1, 1, 1] + T [0, 0, 1, 1] + T [0, 0, 0, 1] =
[1, 2] + [2, 2] + [3, 5] + [0,−3] = [6, 7]

Section 9.2

1. (a) The matrix for f is

 1 1
−1 1
0 3

 and the one for g is

 0 −2
3 1
6 0


(b) f + g([x, y]) = [x− y, 2x+ 2y, 6x+ 3y] and 3g([x, y]) = [−6y, 9x+

3y, 18x]

(c) routine
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3.

AB =

 10 15
3 18
22 43


AC =

 18 10
23 13
48 31



B + C =


1 3
1 1
5 2
5 7


A(B + C) =

 28 25
26 31
70 74


AB + AC =

 28 25
26 31
70 74


3. (a) x2 + 5xy + 4y2

(c) x2 − xy + y2

(d)

[
2 −2
−2 1

]
5.

[
4 8
12 16

] [
0 1 4
1 0− 2

]
is defined

[
0 1 4
1 0 −2

] [
4 8
12 16

]
is not.

Even if both are defined they need not give the same answer:[
1 1
0 1

] [
1 0
2 1

]
=

[
3 1
2 1

]
but [

1 0
2 1

] [
1 1
0 1

]
=

[
1 1
2 3

]
.

7.

f(g + h)(~v) = f(g(~v) + h(~v))

= f(g(~v)) + f(h(~v))

= (fg) + (fh)(~v)
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Chapter 10
Section 10.1

1.


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

 When you multiply on the right this swaps columns

3 and 5.

3.


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −2 0
0 0 0 0 1

 When you multiply on the right this multiplies

column 4 by -2.

5.

 1
10

1
10

7
10

− 3
20

7
20
−11

20
1
4
−1

4
1
4



7.

 − 3
10
−1

5
3
5

3
10

−4
5
−2

5
1
10

2
5
−1

5



9.

 − 1
14

1
7

13
14

2
21

1
7
−4

7
1
14

−1
7

1
14


11. If L−1(~u1) = ~v1 then L(~v1) = ~u1 and if L−1(~u2) = ~v2 then L(~v2) = ~u2.

Now since L preserves sums

L(~v1 + ~v2) = L(~v1) + L(~v2)

= ~u1 + ~u2

so

~v1 + ~v2 = L−1(~u1 + ~u1)

L−1(~u1) + L−1(~u2) = L−1(~u1 + ~u1)

13. Since L is one to one it will take a basis of V to a linearly independent
set. Extend that set to a basis for W . Define the left inverse M by
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taking the basis vector L(~vi) to ~vi and all basis vectors which are not
of this form to ~0.

Section 10.2

1. rank = 3

3. rank = 3

5. rank = 5

7. rank = 3 nullity = 1

9. rank = 3 , nullity = 0

11. The nullity is the dimension of the kernel of L. If r 6= 0 then the set
solutions to rL(~v) = ~0 are exactly the same as the solutions to L(~v) = ~0.
Hence the kernels of rL and L are the same, so their dimensions must
be as well.

13. If M (~v) = ~0, then it is also true that L ◦ M (~v) = ~0 so Ker(M ) ⊆
Ker(L ◦M ). Thus dim(Ker(M )) ≤ dim(Ker(L ◦M )).

15. The following examples will do:

(a) A =

[
1 2
3 4

]
, B =

[
1 −2
3 −4

]
gives A + B =

[
2 0
6 0

]
which has

rank 1.

(b) A =

[
1 0
3 0

]
and B =

[
0 2
0 4

]
gives A + B =

[
1 2
3 4

]
Section 10.3

1.

[
2 8
−4 3

]
=

[
2 0
−4 19

] [
1 4
0 1

]

3.

 2 4 12
1 6 −14
3 8 9

 =

 2 0 0
1 4 0
2 2 1

 1 2 6
0 1 −5
0 0 1


Chapter 11
Section 11.1
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1.

[
5
13

1
13

− 3
13

2
13

]

3.

 1 1 0
1 0 1
1 1 1

 V = Z3
2

5.

 1
2

1
2
−1

1
2
−1

2
0

0 0 1



7.

 9
2
−7

2
9
2

−2 5 −5
1
2
−1

2
3
2



9.


0 3 5 10
−1 −5 −7 −10
2 6 9 13
0 −1 −1 −3



11.

 1
2

1
2
−1

2

−1
2

1
2

1
2

1
2
−1

2
1
2

 1 3 −2 1
0 2 −1 6
1 1 1 1




1 1 1 0
1 0 0 1
0 −1 0 1
0 0 2 0

 =

 2 2 6 0
0 −1 6 1
2 1 −3 1



13.

 1
2
−1

2
−1

2
1
2

1
2
−1

2
1
2

1
2

1
2

 1 2 3 4
2 2 5 −6
1 0 1 0




1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 =

 −5
2

4 5
2

7
2

13
2

2 7
2

9
2

17
2

3 11
2

11
2



15.


−1

4
−1

4
−1

4
3
4

3
4
−1

4
−1

4
−1

4

−1
2
−1

2
1
2

1
2

1
4

5
4

1
4
−3

4




1 3 −2 1
2 2 5 −6
0 2 −1 6
1 1 1 1




1 1 1 0
1 0 0 1
0 −1 0 1
0 0 2 0

 =


−1 19

4
1 −23

4

1 31
4

1 −27
4

−2 21
2

11 −25
2

5 −111
4
−11 111

4


Section 11.2

1.

[
1 4
3 6

]
∼
[

1 0
3 −6

] [
1 4
0 1

]
=

[
7 −24
3 −6

]
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3.

 3 12 12
−1 0 0
1 6 9

 ∼
 1 4 4

0 1 1
0 0 1

 3 0 0
−1 4 0
1 2 3

 =

 3 24 12
0 6 3
1 2 3


5. Basis = {[1, 0, 0], [1, 1, 1], [1, 2, 3]} Matrix =

 0 0 1
1 0 −3
0 1 3


7. Basis = {[1, 0, 0], [1, 1, 1], [1, 2, 3]} Matrix =

 0 0 0
1 0 −1
0 1 2



9. Basis = {[1, 0, 0, 0], [0, 1, 1, 0], [0, 0, 0, 1], [0, 0, 1, 0]}Matrix =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


11. Basis = {[1, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 1], [0, 1, 0, 0, 0], [0, 0, 0, 0, 2]}

Matrix =


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


Chapter 12
Section 12.1

1. -4

3. 24

5. 40

7. -18

9. −a

11. abcd

12. A matrix A is invertible if and only if its row reduced echelon form is the
identity, which has determinant 1. Since the operations which reduce a
matrix to row reduced echelon form do not change a determinant from
0 to non-zero, this tells us that if det(A) 6= 0 then A is invertible.
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Section 12.2 1-11 as in section 12.1
Chapter 13
Section 13.1

1. (a)

[
2 3
2 1

] [
3
2

]
=

[
12
8

]
= 4

[
3
2

]
2. (a) [1, 0, 0]

(c) [−3, 1, 0]

3. (a) (1− x)(5− x)(9− x))

(c) (1− x)((5− x)(9− x)− 48)

4. (a)

Eigenvalue eigenvector
1 [1,0,0]
5 [1,2,0]
9 [3,6,4]

(c)

Eigenvalue eigenvector
1 [1,0,0]

7− 2
√

13 [0,−1−
√

13, 4]

7 + 2
√

13 [0,−1 +
√

13, 4]

6. If λ is an eigenvalue for M with eigenvector ~v then λn is an eigenvalue
for Mn with the same eigenvector.

8. If 0 is an eigenvalue of L then L is not invertable because the eigenvector
for 0 is a nonzero member of the kernel of L, so L is not one to one.
If L is not invertable then the rank nullity theorem tells us that the
kernel must be nontrivial, giving an eigenvector for 0.

Section 13.2

1. 2− i, 2 + i, 4

3. 1, 2 + i, 2− i, 3

5. 3, 2±
√

7

7. −1

9. 0, 1
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11.

 0 0 2
1 0 1
0 1 −2

 ∼
 −2 0 0

0 −1 0
0 0 1

Using the basis ([−1, 0, 1], [−2, 1, 1], [2, 3, 1])

so that

 −2 0 0
0 −1 0
0 0 1

 =

 1
3
−2

3
4
3

−1
2

1
2
−1

2
1
6

1
6

1
6

 0 0 2
1 0 1
0 1 −2

 −1 −2 2
0 1 3
1 1 1


13. The only eigenvalue of this matrix is 1. The vector [1,−2, 1] is an

eigenvector. If we extend to a basis by taking ([1,−2, 1], [0, 1, 0], [0, 0, 1])
we get the matrix 1 0 0

2 1 0
−1 0 1

 0 0 1
1 0 −3
0 1 3

 1 0 0
−2 1 0
1 0 1

 =

 1 0 1
0 0 −1
0 1 2


If we now restrict our attention to the lower right corner we get[

−1 0
1 1

] [
0 −1
1 2

] [
−1 0
1 1

]
=

[
1 1
0 1

]
This tells us that  0 0 1

1 0 −3
0 1 3

 ∼
 1 1 1

0 1 1
0 0 1


Section 13.3

1. (a)

n Approximate λ Approximate eigenvector
1 3 [1,−1

3
]

3 -2.77778 [−0.76, 1]
20 -3.82843 [−0.414212, 1]

(c)

n Approximate λ Approximate eigenvector
1 5 [0.6, 0, 1]
3 4.3333 [.582418,−.131868, 1]
20 4.2924 [.547514,−.197375, 1]

Chapter 14
Section 14.1
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1. All that remains to be proved in detail are the axioms< f |g >=< g|f >
and < kf |g >= k < f |g > and < f |g + h >=< f |g > + < f |h >.

< f |g >=

∫ 1

−1

f(x)g(x)dx =

∫ 1

−1

g(x)f(x)dx

by commutativity in R.

< kf |g >=

∫ 1

−1

kf(x)g(x)dx = k

∫ 1

−1

f(x)g(x)dx = k < f |g >

by the linearity of the integration process.

< f |g + h > =

∫ 1

−1

f(x)(g(x) + h(x))dx

=

∫ 1

−1

f(x)g(x) + f(x)h(x)dx

=

∫ 1

−1

f(x)g(x)dx+

∫ 1

−1

f(x)h(x)dx

= < f |g > + < f |h > .

3. (a)

〈~a|~b+ ~c〉 = [1, 2, 4] · ([3, 7, 1] + [2, 0,−1])

= [1, 2, 4] · [5, 7, 0] = 19

〈~a|~b〉+ 〈~a|~c〉 = [1, 2, 4] · [3, 7, 1] + [1, 2, 4] · [2, 0,−1]

= 21− 2 = 19

(b) ‖~a‖ ‖~b‖ =
√

1239 ≈ 35.19943181 and 〈~a|~b〉2 = 21

(c) k = 2
5

5. < x+ c|1 >=
∫ 1

−1
x+ cdx = x2

2
+ cx

∣∣∣∣ 1
−1

= 2c = 0 when c = 0.

7. (a)

∫ 1

−1

x3 − 2x2 + x− 2 dx = −4
2

3

(b)

∫ 1

−1

x3 − 2x2 + x− 2√
1− x2

dx = −3π
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(c) 1

Section 14.2

1.

~b1 = [1, 1]

~b1∗ =
[1, 1]

‖[1, 1‖

= [
1√
2
,

1√
2

]

~b2 = [0, 1]− ([0, 1] · [ 1√
2
,

1√
2

])[
1√
2
,

1√
2

]

= [0, 1]− [
1

2
,
1

2

= [−1

2
,
1

2
]

~b2∗ = [− 1√
2
,

1√
2

].

3.

~b1 = [1, 1]/
√

3 = [
1√
3
,

1√
3

] (B.1)

~b2 =
[0, 1]− 〈[1,1]|[0,1]〉

3
[ 1√

3
, 1√

3
]

‖[0, 1]− 〈[1,1]|[0,1]〉
3

[ 1√
3
, 1√

3
]‖

= [− 2√
6
,

1√
6

] (B.2)

5. {[1, 0, 1], [2, 1,−2], [1,−4, 1]} will do

7.

p1 = 1

p2 = x−
∫∞

0
x e−xdx∫∞

0
e−xdx

1

= x− 1!

0!
1

= x− 1
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p3 = x2 −
∫∞

0
x2 e−xdx∫∞

0
e−xdx

1−
∫∞

0
(x3 − x)e−xdx∫∞

0
(x2 − 2x+ 1)e−xdx

(x− 1)

= x2 − 2!

0!
1− 3!− 1!

2!− 2 1! + 0!
(x− 1)

= x2 − 2− 5(x− 1)

= x2 − 5x+ 3

9. 1, x− 1, x2 − 4x+ 2

Section 14.3

1. 1√
2
[1/
√

2, 0,−1/
√

2] + 1√
3
[1/
√

3, 1/
√

3, 1/
√

3] = [5
6
, 1

3
, −1

6
]

3. [11
9
, 16

9
, 7

9
]

5. 3(sin(1)− cos(1))x

Chapter 15
Section 15.1

1. (a) {[1, 0, 0]}⊥ = {[0, h, k]|h, k ∈ R}
(c) {[1, 1, 0], [0, 1, 1]}⊥ = {[h,−h, h]|h ∈ R}
(e) (Span{[1, 1, 0], [0, 1, 1]})⊥ = {[h,−h, h]|h ∈ R}

3. By definition if ~x ∈ A⊥ and ~a ∈ A then < ~a|~x >= 0, but < ~a|~x >=<
~x|~a >, so ~a ∈ (A⊥)⊥ . Thus A ⊆ A⊥⊥

5. If A < B then if < ~v|~x >= 0 for all ~x ∈ B, it is certainly true that
< ~v|~x >= 0 for all ~x ∈ A, since ~x ∈ A ⇒ ~x ∈ B. This shows B < A .

Section 15.2

1. (a) Orthogonal

(c) Not orthogonal

3. (a) yes

(c) yes
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absorption, 16
algebraically closed, 110
angle between vectors, 82
associative law

for linear transformations, 213
for matrices, 212

associative laws, 16
associativity, 92, 340

basis, 18, 19, 178
brick function, 135

canonical form, 39
for 2 by 2 matrices, 76
rational, for orthogonal matrices,

334
Cauchy-Schwarz inequality, 85, 295
Cayely-Hamilton theorem, 336
characteristic polynomial, 62, 271
closure, 16, 92, 340
code

error correcting, 111
Hamming (8,4), 115

code
Hamming (7,4), 112

codomain, 24, 102
column, 35
column rank, 227
column space, 48, 132, 227
commutative laws, 16
commutativity, 92, 340

companion matrix, 248
complex numbers: C, 109
composition, 31

of linear transformations, 32
coordinates with respect to a basis,

179

determinant, 35, 50, 256
and invertability, 259
effect of row operations, 258
expansion by minors, 265

diagonalization, 280
dimension, 182
direct sum, 339
direct sum U ⊕W , 139
direction cosines, 83
distributive, 92, 340
distributive law, 16

fo linear transformations, 216
for matrices, 212

domain, 23, 102
dot product, 79

algebraic definition, 82
geometric definition, 80

dual space, 122
dynamical system, 65

eigenvalue, 61
of linear transformation, 269
of matrix, 269

eigenvalues

387
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of block upper triangular matrix,
276

of upper triangular matrix, 276
eigenvector, 61
elementary row operation

matrices for, 220
elementary row operations, 143

Ri ↔ Rj Interchange, 144
Rj+rRi Add r times row i to row

j, 144
equal

vectors in R2, 12

field, 92
R, 16

finite dimensional, 180
fixed point, 72
formal power series, 100
forward difference operator 4, 109
Fourier series, 314
function, 23
function space, 97
fundamental theorem of algebra, 110

Gauss-Jordan elimination, 152
pseudocode, 152

Gaussian Elimination with backsolv-
ing, 141

Gaussian elimination with backsolv-
ing

pseudocode, 150
Gibbs overshoot, 317
Gram Schmidt Orthogonalization Pro-

cess, 300
Gram Schmidt Orthonormalization, 301

Haar scaling functions, 318
Haar wavelets, 318

homogeneous linear differential equa-
tion, 125

homogeneous system
of linear equations, 49

homogeneous system of equations, 159

identity, 16, 92, 340
linear transformation, 40
matrix, 41

identity for scalars, 16
identity matrix, 43
image, 24, 47

of a linear transformation, 122
index of nilpotence, 249
inner product

Hermite, 293
Laguerre, 294
Tchebyshev, 294
dot product, 290
Legendre , 291
weighted dot product:, 291

inner product space, 289
inverse

of a matrix, 54
of linear transformation, 217
of matrix, 218
of matrix, finding, 222

inverses, 16, 92, 340
invertable

linear transformation, 217
matrix, 218

kernel, 123
kernel, Ker(L), 49

least squares, 312
length

of a vector in R2, 14
Leslie matrix, 201
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linear combination, 45, 46, 129
linear difference equations, 61
linear differential equations, 61
linear transformation, 23, 102

stretch, 24
definite integral, 106
differentiation, 106
evaluation at a point, 106
inclusion of a subspace, 126
projection, 103
reflection, 29
rotation, 28

linearly dependent set, 172
linearly independent set, 172
lower triangular matrix, 232
LU decomposition, 232

matrix, 35
tridiagonal, 268

matrix for a linear transformation, 197,
198

minimal spanning set, 133
multiplication

of a linear transformation by a
scalar, 32

of a matrix by a scalar, 41
of matrices, 40, 210
scalar time linear transformation,

207
scalar times matrix, 207
scalar times vector, 13

multiplication
matrix times vector, 198

nilpotent, 249
norm, 290
nullity

of a linear transformation, 226

one-to-one, 49, 217
onto, 47, 217
operation counts, 154
orthogonal complement, 324, 344
orthogonal matrix, 332
orthogonal polynomials, 303
orthogonal transformation, 328, 344
orthogonal vectors, 89
orthonormal, 301

parallel, 21
parallel vectors, 13
parallelogram law, 12
partial fractions, 165
pivot, 151
positive definiteness, 290, 342
power method, 285
product

matrix times vector, 37, 104
projection, 88
projection of a vector onto a subspace,

307

QR factorization, 332
quadratic form, 215

R[x, y], 97
R[x], 96
R[x]3, 96
random walks, 164
rank

of a linear transformation, 226
Rank-Nullity Theorem, 226
row, 35
row operations

elementary, 55
rRi Multiply row i by r, 144

row rank, 227
row reduced echelon form, 148
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row space, 132, 227

scalar, 13
similar matrices, 39
Simpson’s rule error, 162
span, 45
Span(S), 46
Span(S), 45, 130
spanning set, 47, 157
stochastic matrix, 72
subspace, 44, 117

Im(L), 122
Ker(l), 123

sum
of linear transformations, 34, 207
of matrices, 207
vectors in R2, 13

sum of subspaces, 137
support of a function, 136
symmetric matrix, 215
system of equations

inconsistent, 147
redundant, 147

translation, 35
transpose, 198
transpose of a matrix, 332
triangle inequality, 296
triangularization of a matrix, 281
trigonometric polynomials, 314

upper triangular matrix, 232

vector
in R2, 14

vector space
Hom(V ,W), 205
Rn, 95

of linear transformations Hom(V ,W),
121

function space, 97
of matrices , 98
over R, 16
polynomials: F [x], 96

vector space
of continuous functions, 120
of differentiable functions, 121
over a field, 94

Z2, 110
zero vector, 14
Zorn’s Lemma, 193


