
Illinois Wesleyan University

From the SelectedWorks of Lawrence N. Stout

2010

Categorical Approaches to Non-Commutative
Fuzzy Logic
Lawrence N. Stout, Illinois Wesleyan University

Available at: https://works.bepress.com/lawrence_stout/1/

http://www.iwu.edu
https://works.bepress.com/lawrence_stout/
https://works.bepress.com/lawrence_stout/1/


Fuzzy Sets and Systems 161,2010, pp. 2462-2478 
Elsevier, www.elsevier.com/locate/fss 

Categorical Approaches to Non-Commutative Fuzzy Logic 

Lawrence Neff Stout 

Abstract 

In this paper we consider what it means for a logic to be non-commutative, how 

to generate examples of structures with a non- commutative operation * which 

have enough nice properties to serve as the truth values for a logic. Inference in 

the propositional logic is gotten from the categorical properties (products, 

coproducts, monoidal and closed structures, adjoint functors) of the categories of 

truth values. We then show how to extend this view of propositional logic to a 

predicate logic using categories of propositions about a type A with functors 

giving change of type and adjoints giving quantifiers. In the case where the 

semantics takes place in Set (L) (Goguen's category of L-fuzzy sets), the categories 

of predicates about A can be represented as internal category objects with the 

quantifiers as internal functors. 

Keywords: Fuzzy logic; Noncommutative residuated lattices; Quantales; Higher 

order fuzzy logic. 

1. Introduction 

Over the course of our careers several researchers in fuzzy set theory have had the opportunity to visit Ulrich Hohle at 
his garden house for extended intensive research in such topics as categorical foundations of fuzzy sets, fuzzy topology, 
sheaf theory, and generalizations to quantale based mathematics. This contribution stems from two such visits: when 
I was on sabbatical in 1999 and again in 2006. The shaping of my own research direction has been enriched through 
fruitful conversation with Ulrich in Tokyo, at several Linz seminars, and when he visited Illinois Wesleyan University 
when he was on sabbatical. That is not to say that he agrees with the directions taken in my work; because I am interested 
in generalizations of mainstream fuzzy set theory where the * operation is usually not idempotent, I have found that 
the otherwise fruitful development of quantale based categories using an idempotent * which parallel sheaf theory (the 
direction of much of Ulrich's recent work) is not the direction I want to take. I tend to prefer generalizations of the 
Goguen category rather than the Higgs category at this point in my career. The results there are easier, apply to more 
general structures, and as a result may be more shallow. With this apology, let us consider categorical approaches to 
non-commutative fuzzy logic. 



1.1. Why non-commutative logic? 

First, let us specify what we mean by non-commutative logic: 

Definition 1. A non-commutative logic is a logic equipped with a form of conjunction for which ¢*l/J is not equivalent 
to l/J*¢. 

Situations outside of mathematics giving rise to non-commutative conjunctions include 

• In ordinary language a commutative and between clauses indicates independence, while a non-commutative and 
indicates a pragmatic dependence [ 19]. 

• Tense logics: and then is non-commutative. 
• Semantics of parallel programming: sequential execution is a non-commutative and while parallel execution (where 

all processes are required to complete before the computation can continue) is a commutative and. 
• Quantum mechanics makes use of non-commutative observables. 

Situations within mathematics giving rise to non-commutative conjunctions include 

• Logics based on function composition. 
• Lambek calculus [12] modeling sentence structure using concatenation as a non-commutative operation. 
• Logics based on formal matrix multiplication. 
• Fuzzy logics using pseudo-t-norms on the unit interval, and the weaker logics which result from removing the bottom 

of the lattice (as in [3,4, 10,9,8]). 
• Quantales, often based on closed linear subspaces of C* -algebras, the non-commutative and given by closure of the 

product subspace [ 18, 16]. 
• Linear logics [5,23]. 

My object in this paper is to provide a coherent categorical picture of the variety of non-commutative logics, 
both propositional and predicate, and show how an internal higher order logic can be given using categories of 
fuzzy sets. 

1.2. What does it take to be a logic? 

We want logic to be about sound inference: reasoning from premises to conclusions which are at least as true as 
the premises were. For this we need a notion of degrees of truth, structured so we can encode what we mean by "at 
least as true as". One way to capture that is with a category V whose objects are truth values and whose morphisms 
indicate valid inference. A value 'P is at least as true as a value <1> if there is a morphism a : <1> ---+ 'P. There can be 
multiple morphisms from <1> to 'P, each indicating a way to make the inference. Transitivity of inference shows up 
as composition of morphisms and the identities give trivial inferences. Categorical reasoning will then use universal 
mapping properties or adjunctions to derive morphisms giving more complicated inference. 

Logic, as opposed to rhetoric, usually does not deal with the details of how individual inferences are made, only with 
how they get combined to give proofs. As a result we often do not want to work with the category of inferences V but 
rather with a transitive directed graph 9 with vertices given by the objects of V and an edge from <1> to 'P expressing 
the existence of a morphism from <1> to 'P in V. If there is an edge in 9 we will write <1>1 f---'P. 

Even this keeps track of more information than we usually require from degrees of truth. If we have <1>1 f---'P and 'PI f---<1> 
we will usually think of the two truth values as giving the same information and thus being equivalent. Those objects 
of 9 which are linked in both directions to <1> form a clique (a complete graph with edges in both directions). The graph 
P has as its vertices the cliques in 9 and an edge from [<1>] to ['P] precisely if there is an edge in 9 from a vertex in [<1>] 
to a vertex in ['P] (transitivity says if this is true for one pair of representatives it will be true for any such pair). We will 
usually write this without the square brackets to avoid complicating the notation unnecessarily. This will give a partial 
order: decliqueification gains us anti symmetry, identities give us the reflexive law, and composition and the resulting 
transitivity gives the transitive law. Because we have not imposed size restrictions it is possible that this is a partially 
ordered proper class rather than a partially ordered set. For P we will write <1>F'P if there is an edge from <1> to 'P. 

Notice that all of the structures V, g, and P are categories and that there are obvious underlying functors V ---+ 9 ---+ P. 
Notice also that the category P is skeletal: the only isomorphisms are identities. 



Tradition in many valued (n :::2) logic is for at least one of the truth values to be designated, giving a notion of "true". 
Often, but not always, the largest truth value is the single designated one. In situations with a classical conjunction 
(making P a A-semilattice) the designated values form a filter: if cJ> is designated and cJ>F lJI then lJI should be designated 
as well and the conjunction of two designated values should be designated. This makes it possible to look at tautologies, 
expressions which get a designated value no matter what the values of the propositional variables are. Independence 
of axioms in a system is often shown by constructing many valued logics where all but the axiom being shown to 
be independent give tautologies. A complete propositional logic is one which allows derivation of an inference from 
nothing (or perhaps from a designated value) to each of the tautologies. In general this tells us much less than saying 
which inferences will be valid, though in classical logic tautologies do capture the whole story. 

If we think of many valued logics as measuring some degree of vagueness, then giving two filters �T in P and �..l 
in pop such that �T U �..l = P and �T n �..l = 0 provides a way to pass to a crisp two valued logic. We often ask 
that the resulting logic be classical. 

Logic takes place at several orders: Propositional logic tells us what happens in a single one of the categories V(A), 
y (A), or P( A); quantification tells us what happens as we change type; higher order internal logic calls for representation 
of one of these categories of propositions about an object A as an internal category object with the functors arising from 
a map f : A ---+ B giving internal functors between the category objects. 

2. Propositional categorical logic 

We start by seeing how categorical structures on the categories V(A), y(A), or P(A) give the propositional connectives 
and the rules of inference we need for proofs in this context. 

2.1. Classical connectives in a categorical context 

Identities in these categories give us the basic axioms: 

In V: cJ>�cJ> 

In y: cJ> If--cJ> 

In P: cJ> FcJ> 

The existence of composition gives a rule of inference: 

cJ> � lJI lJI fJ � 
---+ .::, 

In V 

cJ> afJ � 
composition 

---+ .::, 

cJ>lf--lJI lJIlf--5 
In y cut 

cJ>lf--5 

cJ>FlJI lJIF5 
In P 

cJ>F5 
cut 

Since it is common to allow a known truth to be inferable from anything (assuming that we are not working in a 
relevance logic) it makes sense to ask for a terminal and designate the terminal object in a category of truth values as 
designating true. 

The usual rules for A-introduction and A-elimination suggest that the categorical equivalent will be a pairwise 
product. Similarly, the rules for v introduction and v elimination suggest pairwise coproducts. 



A covariant functor F : V ---+ V gives rise to an inference 

In V ([J�tp 

F(([J) � F(tp) 
Ffunctor 

In 9 
([JI f-tp 

Ffunctor 
F( ([J)If-F(tp) 

In P 
([JFtp 

F( ([J)F F(tp) 
Ffunctor 

and similarly for a contravariant functor. 
A pair of adjoint functors F, G : V ---+ V with F-1G will give inferences 

In V 

In 9 

In P 

([J � G(tp) F(([J) � tp 
and F-1G 

F(([J) � tp ([J � G(tp) 

([Jlf-G(tp) F( ([J)If-tp 
and F-1G 

F( ([J)If-tp ([Jlf-G( tp) 

([JFG(tp) F(([J)Ftp 
and F-1G 

F( ([J)F tp ([JFG(tp) 

Classical negation gives a contravariant functor --, : V ---+ vop which is adjoint to itself when viewed as --, : vop ---+ V. 
Since functors which are right adjoints must preserve products we get 

(since the coproduct in V is the product in VOP). And similarly we get 

2.2. Non-classical connectives 

Consideration of other kinds of conjunctions will come from additional operations leading up to a monoidal structure 
on the category V. Following Mac Lane [15, p. 157], we start with a bifunctor 0 : V x V ---+ V. This makes both AO
and -OA into functors from V to itself. There is no requirement that they be the same functor, hence no requirement 
that AOB = BOA. From functoriality on both sides and bifunctoriality we get rules 

tp f3 ,.... tp f3 ,.... ([J�tp ,.... f3 Y ----+ b ----+ b b ----+ 
In V 

([JO tp i�f3 ([J05 tpO ([J f3�<p 50 ([J ([J05 � tpOY 

In 9 
tplf-5 tplf-5 ([JI f-tp 51f-Y 

([JO tpl f-([J05 tpO ([JI f-50 ([J ([J051 f-tpOY 

tpF5 tpF5 ([JFtp 5FY 
In P 

([JO tpF([J05 tpO([JF50([J ([J05FtpOY 



A kind of closedness condition asks for right adjoints to these two functors. Following the notation in the Lambek 
calculus (where these first appear in a logical, or at least proof theoretic, context for use in linguistics [12]) we will write 
eI>\- for the right adjoint to eI>D- and -leI> for the right adjoint to -DeI>. If we use * for the analogous conjunction 
we label the right adjoints as eI> � - and - ./ eI>. The adjointness conditions then give the following rules: 

eI>DP � 3 P � eI>\3 eI>DP � 3 eI> � 31P 
In V \I 

eI>DP L 3 
\E II f3 IE 

P � eI>\3 eI> � 31P eI>DP ---=+ 3 

In Q 
eI>*Plf--3 Plf--eI> � 3 eI>* PI f--3 eI>lf--3./ P 

Plf--eI> � 3 � I eI>*Plf--3 � E eI>lf--3./ p
./ I eI>*Plf--3 ./ E 

eI>*P'F3 P'FeI> � 3 eI>*P'F3 eI>'F3./ P 
In P P'FeI> � 3 � I eI>*P'F3 � E eI>'F3./ p

./ I eI>*P'F3 ./ E 

Strict monoidal categories are also required to have a two sided unit in the form of an object U such that ADU = 

UDA = A and require that D be strictly associative. In Mac Lane's definition of a monoidal category these requirements 
are relaxed to ask for natural transformations cx, A, p giving isomorphisms CXA,B,C : AD(BDC) ----+ (ADB)DC, AA : 

UDA ----+ A, and PA : ADU ----+ A which satisfy coherence conditions making all of the diagrams which should 
commute. These become axiom schemes when translated into the logic. 

In V: AD(BDC) a�c (ADB)DC UDA�A ADU�A 

InQ: A*(B*C)lf--(A*B)*C U*Alf--A A*Ulf--A 

In P: A*(B*C)'F(A*B)*C U*A'FA A*U'FA 

The definition of a monoidal closed category in Eilenberg and Kelly [2, p. 475] actually only asks for the adjoint for 
-DeI>, rather than asking for both sides to have adjoints. Some of the logics we consider later have adjoints on only 
one side. 

2.3. Possible properties of non-commutative conjunctions 

Possible axioms for a binary operation * on a poset to be considered as a possible kind of conjunction (obviously we 
are not asking for all of these to hold) can be grouped as follows: 

Basic properties needed for a conjunction include: 

• Right functoriality: If a�b then a*c�b*c. This says that the operation -*c gives a functor; this is sometimes stated 
as "non-decreasing". 

• Left functoriality: If a�b then c*a�c*b. 
• Associativity: a*(b*c) = (a*b)*c. 

To get an implication we want 

• Autonomous: -*a has right adjoint -./ a (Right Residuation) and a*- has right adjoint a � - (Left Residua-

tion) 

this in tum is closely related to 

• Right distributivity over V: V(ai*b) = (V ai)*b. This also expresses right lower semi-continuity. 
• Left distributivity over V: V (b*ai) = b*(V ai). This also expresses left lower semi-continuity. 
• Right distributivity over /\: /\(ai*b) = (/\ ai)*b. This also expresses right upper semi-continuity. 



• Left distributivity over /\: /\ (b*ai) = b*(/\ ai). This also expresses left upper semi-continuity. 
• Preservation of..1 on right: ..1*a = ..1 and on left: a*..1 = ..i. 

Logics arising from monoidal structures will have 

• Right unit: There is a u with a*u = a. 
• Left unit: There is a u with u*a = a. 

It is often desirable for that unit to be the top of the lattice. In quantales this has a weak form given by 

• Right sided: a* T �a strictly if a* T = a. 
• Left sided: T *a�a strictly if T *a = a. 

The quantale is said to be two sided if it is both right and left sided; again this can be strict. 
Additional axioms often encountered include 

• Idempotency: a*a = a. 
• Right divisibility: If x > y then there is a z so that y = x*z. 
• Left divisibility: If x > y then there is a z so that y = z*x. 
• Involutivity: Equipped with an order preserving involution 0* so that (a*b)* = b**a* (recently studied by Rohle 

[11]). 

Some order based properties which are of interest are captured in the following possible axioms: 

• Dualizing element: There is an element d with d / (a \.t d) = d = (d / a) \.t d. This is cyclic if a \.t d = d / a 
for every a. (This axiom is added to make a quantale a Girard quantal. If ° is a dualizing element in a commutative 
BL-algebra then we have an MV algebra.) 

• When the top element of the lattice is a unit for * on the relevant side and we have residuation we get 
o Right Recovering order y / x = T if and only if x �y 
o Left Recovering order x \.t y = T if and only if x�y 

Constellations of these properties have been named in the literature: 

Definition 2 (Pavelka [i7l). A residuated lattice is a lattice (not necessarily complete) with an operation * which is 
autonomous (so both residuations exist) often one assumes commutativity of * as well. 

Definition 3 (Rosenthal [18 l). A quantale is a complete lattice with an operation * which is associative and satisfies 
both right and left distributive laws over V. A right Gelfand quantale is right sided and idempotent. 

Definition 4. In Goguen [6] a quantale which is a distributive lattice is called a complete lattice ordered semigroup 
(closg for short). 

Most examples of closg's considered in the literature are commutative. These have both implications coming from 
right adjoints for both - /\ a and -*a. 

Definition 5. An operation * on the unit interval [0, 1] is 

• A t-norm if it is commutative, associative, functorial, and has 1 as a unit. Upper and lower semicontinuity are given 
by relevant distributive laws. 

• A pseudo-t-norm [3] if it is functorial, associative, and has 1 as a two sided unit. Proper pseudo-t-norms are not 
commutative. 

Definition 6. A BL-algebra [7] is a bounded lattice with an operation * which is functorial, commutative, associative, 
two sided, autonomous, prelinear, and has /\ expressible in terms of * and � .  

A pseudo-BL-algebra [8] is a bounded lattice with an operation * which is functorial, associative, two sided, 
autonomous (both p \.t q and q / p exist), prelinear using either implication, and has /\ expressible in terms of * and 
either implication. If we only ask for / we get a post-BL algebra. If we only ask for \.t we get a pre-BL algebra. 



Definition 7. A flea [10] is a lattice with a top and an operation * which is functorial, associative, two sided, autonomous, 
and prelinear. 

In general fuzzy logics assume two sidedness and prelinearity because the model in mind is based on operations on 
the unit interval. Logics with values in a quantale usually do not assume two sidedness, though they may assume left 
sidedness, and do not assume that the unit is the top of the lattice. We will see later that for predicate calculus we will 
want completeness of the lattice. 

When * satisfies a distributive law over V and preserves the bottom of the lattice we get a residuation giving an 
implication. Hajek uses & for the conjunction and ---+ and � for the two implications (his p ---+ q is our q / p and 
his p�q is our p '\.. q). I have trouble distinguishing his implication symbols visually in the text of his paper [8]. He 
notes that subscripted arrows have been used elsewhere for other purposes. Furthermore, there is not an agreed upon 
convention about whether which side the * is on or which divisibility property one has determines what is left and what 
is right. My hope is that the notation used here (with its historical roots in Lambek's work in linguistics) will avoid 
some of the possible confusions and will be clearer for the mildly visually impaired. 

Hajek gives his logics [7,10,9,8] for Fuzzy Logic in terms of implication with only a few references to *. His versions 
of the axioms are numbered A1-A 7 in [7]. He works in a setting where the top element of the lattice is a two sided 
unit, so properties of implication which give tautologies describe what happens in the order. He allows an inference 
from Tlf-p '\.. q to Tlf-q / p (and vice versa) which holds because both are equivalent to plf-q when the top is a two 
sided unit. Note that this is not the same as allowing the inferences p '\.. qlf-q / p and q / plf-p '\.. q. 

Several of the non-commutative logics we consider do not have this property. As a result we will not have the rule 
for replacing one implication with another and we will state further properties in inference form. If T is the unit for * 
then the central inference can be replaced with implication and we require that the result be true, that is to say, equal 
to T. 

• Transitivity of inference: If we have plf-q and qlf-r we want to conclude plf-r This is built into the categorical 
semantics, but its expression as in terms of implications is rather problematic in the non-commutative case. In the 
commutative case Hajek [7] uses AI: 

(p ---+ q) ---+ ((q ---+ r) ---+ (p ---+ r)) 

which actually mixes in some commutativity with the transitivity. For a non-commutative * in [8] he uses the tautology 
form of 

o A1br: (q / p)If-((q / r) / (p / r)) 
o A 1bl: (p '\.. q)If-((r '\.. p) '\.. (r '\.. q)) 

• * Removal p*qlf-p and p*qlf-q. These are the inference forms of Hajek's A2. These follows from one-sidedness 
and functoriality. Together they will give p*q 1 f-p 1\ q. 

• Expression of 1\: These are also forms of divisibility using implication. On the left side: p*(p '\.. q) = P 1\ q and 
right side: p 1\ q = (q / p)*p in Hajek's terms this becomes 

o A41: p*(p '\.. q)lf-q*(q '\.. p) 
o A4r: (q / p)*plf-(p / q)*q 

• Currying: These express the adjointness in the residuation: 
o A5ar: (r / q) / plf-r / (p*q) 
o A5al: (q '\.. (p '\.. r))If-((p*q) '\.. r) 
o A5br: r / (p*q)If-(r / q) / p 
o A5bl: ((p*q) '\.. r)If-((q '\.. (p '\.. r)) 

• Prelinearity: (x / y) v (y / x) = T = (x '\.. y) v (y '\.. x) which Hajek expresses using 
o A6r: r / (q / p)lf-r / (r / (p / q)) and 
o A61: ((p '\.. q) '\.. r)If-(((q '\.. p) '\.. r) '\.. r) 

• Existence of ..l: A 7: ..ll f-p 
• Expression of v: A8: 

o p V q = (( q / p) '\.. q) 1\ ((p / q) '\.. p) and 
o p v q = (q / (p '\.. q)) 1\ (p / (q '\.. p)) 



We can use non-commutative logics to demonstrate the independence of axioms: 

Example 1. Consider the linear order 0 < -! < � < � < 1 with 1 as the designated value. Define the non-commutative 
operation * by the table 

* 0 1 1 1 1 
"2 "3 4 

0 0 0 0 0 0 
1 0 1 1 1 1 

"2 i 4 
1 0 1 1 1 

t t t i t 
i 

0 
i t t t 

4 0 4 4 4 4 

A direct calculation shows that this gives an associative operation which distributes over max. 
Since the linear order is a complete lattice we can produce tables for the right and left residuation using the formulas 

b /' a = max{xlx* a::::;b} and a � b = max{xla* x::::;b} 

This gives the implications 

/' 0 1 1 1 1 � 0 1 1 1 1 
"2 "3 4 "2 "3 4 

0 1 1 1 1 1 0 1 1 1 1 1 

1 0 1 1 1 1 1 0 1 1 1 1 
"2 i t and "2 i t 1 0 1 1 1 0 1 1 

t "3 i t "3 t 
i 

0 1 1 "3 i 
0 1 1 1 "2 

4 0 1 1 1 4 0 1 1 1 1 

In [ 1 ]  a proof of A3 from the other axioms of BL is given. This depends heavily on using the form of axiom A l  in 
Hajek's book [7] rather than the form used in [8]. Using � this example shows the independence of commutativity 
from Hajek's other axioms for his logic BL with the alternate form for A l  given by Albl :  it satisfies axioms Albl, A21, 
A41, A5al, A5bl, A61, A 71, and quasi-linearity, and does not satisfy A31. 

3. New logics from old 

Let us suppose that we start by giving names to elements and operation which may be available to us in our starting 
structure: (L, ::::; , 1\, v, /\, V, *, vi, �, ::::}, T , ..1, u, 0*, -'). Typical starting places might ask that (L, T , ..1, 1\, v) be 
a bounded lattice or that (L, ::::;, *, vi, �) be an ordered semigroup with residuation on both sides. Reference to V or 

/\ assumes that our structure is cocomplete or complete. 

3.1. Composition logics 

3.1.1. Allfunctions 
First let us consider the set L L of all functions from L to L under composition. This set has order and any operations 

on L all defined pointwise. The following proposition summarizes the direct consequences of the definitions: 

Proposition 1. With no assumptions L L 

1. has an associative composition which is rarely commutative; 
2. has an order with the constant function with value T as largest element and the constant ..1 as smallest element; 
3. both T 0 f = T and ..1 0 f = ..1, though the similar equations with the composition on the other side require 

preservation properties for the functions being considered; 
4. 0 is right functorial: If f::::;g then f 0 h::::;g 0 h. Left functoriality will require restriction to order preserving maps 

from L to L instead of all maps; 
5. has the identity function idL as two sided unit; 



6. composition satisfies several right distributive laws: 
• (V fi)og=V(fiog) 
• (l\ fi)og=l\(fiog) 
• (f 0 g) 0 h = (f 0 h) 0 (g 0 h)for any operation 0 defined on L 

The related left distributive laws all require that the functions in question preserve the relevant operation on L. I n  
addition left functoriality requires that the functions in question preserve the order; 

• there is a right residuation giving g V f given by 

g V f(A) = V{h(A)lh 0 f�g} 

the value of this at x is given by V{z�xlf(x)�g(z)} . 

Absence of left functoriality makes all of the forms of A 1 fail. In general the resulting structure does not satisfy 
quasilinearity, recovery of the order, or recovery of /\ even in the case where L is a chain. 

This lattice ends up having the unit somewhere in the middle. That makes the transition between natural deduction 
or categorical style proof theory and a Hilbert style deductive system problematic since knowing that ¢�t/I is distinct 
from knowing that t/I V ¢ = T. The asymmetry between what happens on the left (generally nothing nice) and what 
happens on the right (in the previous proposition) is also rather ugly. To correct for these deficiencies it is useful to 
restrict the functions being considered. 

3.1.2. Structure preserving maps below the identity 
Suppose we have a complete lattice L. Let S be the set of functions f : L --+ L such that 

1. f preserves order; 
2. f�idL; 
3. V(f(li)) = f(V Ii). 

Such a structure will have composition as an operation which is functorial on both sides, is associative, satisfies both 
distributivity axioms over V, is strictly two sided (since we have forced the two sided unit to be the top of the lattice), 
is autonomous (both residuations exist), has both right and left order recovery from the implication. 

Proposition 2. If L is linearly ordered then the composition operator on the lattice of V -preserving functions less than 
the identity satisfies both right and left quasilinearity: 

(f � g) v (g � f) = idL 

and 

(f V g) v (g V f) = idL 

Proof. This follows from the calculations 

(f � g)(x) = (V{hlf 0 h�g}) (x) = V{z�xlf(z)�g(x)} 

and 

(g V f)(x) = (V{hlh 0 f�g}) (x) = V{z�xlf(x)�g(z)} 

Notice that if f(x)�g(x) both of these give x. In a linear order L for each x we either have f(x)�g(x) or g(x)�f(x), 
so one of (f � g)(x) = x or (g � f)(x) = x holds and one of (f V g)(x) = x or (g V f)(x) = x holds. D 



A small example of this structure which we can consider explicitly is 

Example 2. Consider the set of increasing functions f : {O, 1 ,  2} ---+ {O, 1 ,  2} which have the property that f(x)..sx. 
This forms a lattice using the operations 

(f 1\ g)(x) = min(f(x),g(x» and (f v g)(x) = max(f(x),g(x» 

The identity function is the largest element in this lattice. Composition of functions gives us a non-commutative 
operation which distributes over 1\ and thus has residuations on both sides, one adjoint to composition on the right and 
one adjoint to composition on the left. This is a small example (there are only five such functions) so we can give tables 
for the operations: 

The Hasse diagram for the lattice is 

0 12 

? � 
002 0 1 1 

� ? 
001 

t 
000 

The non-commutative monoidal structure is given by 

0 000 001 01 1 002 012 
000 000 000 000 000 000 
001 000 000 000 001 001 
01 1 000 001 01 1 001 0 1 1 
002 000 000 000 002 002 
012 000 001 01 1 002 012 

The residuations giving adjoints to - 0 a and a 0 - are 

/ 000 001 0 1 1 002 0 12 '\. 000 001 01 1 002 012 
000 012 002 002 000 000 000 012 012 012 012 012 
001 0 12 0 12 002 0 1 1 001 

and 
001 01 1 0 12 012 012 0 12 

01 1 012 002 012 01 1 01 1 01 1 000 002 012 002 012 
002 0 12 0 12 002 0 12 002 002 0 1 1 0 1 1 01 1 012 0 12 
012 012 0 12 0 12 0 12 0 12 012 000 001 01 1 002 012 

A direct computation from these tables then shows that each of the following forms of the axioms gives a tautology 
(i.e. the value is always 012, the top of the lattice): On the right we get A1br, A2r, A5ar, A5br, A6r, and A7r. On the 
left we get A 1bl, A21, A5al, A5bl, A61, and A71. 

The following do not give tautologies: AIr, All, A4r, and A41. 

3.2. Matrix logics 

Matrix multiplication over IR is the second example most students see of a non-commutative operation in ordinary 
mathematics (though one could claim that as seen in linear algebra this is just another coding of function composition, 
hence really the first example they see taken in another light). The formal operation of matrix multiplication can be 
carried out with other operations than addition and mUltiplication of numbers to get associative, functorial operations 
useable in logic. 



Given L, form L [n,n], the set of n by n matrices with entries in L. Then using the relations and operations on L we 
can define many operations and relations componentwise: 

• Order: M �p if and only if mi,j �Pi,j for all iJ. 
• M 1\ P and M v P are computed componentwise. 
• V {Mi} and 1\ {Mi} are computed componentwise 
• The matrix with all entries ..1 is the smallest in L [n.n] and the matrix with all entries T is the largest. 
• Any additional operation on L induces an operation on L [n,n] componentwise satisfying the same equations and 

thus the same axioms. 

Proposition 3. If (L, T, ..1, 1\, v, :j:, 0) is a lattice with binary operations :j: and 0 such that :j: is associative and 
commutative and 0 is associative and distributes over :j: on both sides then matrix multiplication defined as usual with 
:j: replacing + and 0 replacing multiplication gives an operation which is associative. If both :j: and 0 preserve order, 
1\, 1\, V, or V, so will matrix multiplication. 

3.3. Words with concatenation 

Let L be a partially ordered set. We consider three kinds of words with lexicographical order: 

• All words of non-zero finite length L + . Concatenation of two such words is again such a word. If L has a least element 
..1 then the word of length 1 given by ..1 is the smallest element of L +. There is no largest word even if L has a top. 
If L is totally ordered (satisfying trichotomy) then so will L + be. 

• All words of finite length. This is L *. The empty word it will be the smallest. There is no largest word. Concatenation 
of two words of finite length is again a word of finite length, so no modifications of common notions are needed. If 
L is totally ordered, so is L *. 

• All words of either finite or infinite length: L:j:. Concatenation works for words of finite length with no problem. If 
a is of infinite length, then aT = a no matter what T is. If a is finite and T is infinite then aT puts a at the head of T. 
The empty word is the bottom of L:j:. If L has a top T then L:j: also has a top, given by the infinite word TT .... 

• All words of length n or less: L *n Concatenation involves truncation to achieve the constraint on length. Here again 
we get the empty word as the bottom of L *n and the n-tuple TT . . .  T as the top. 
Now in all of these cases concatenation is left functorial but not right functorial. The problem with right functoriality 

(a�Tlf--an�T1r) comes when the smaller word is a truncation of the larger word and the first letter in the tail of the 
longer word is smaller than the first letter in n. The empty word is a two sided unit in all of these except L + (which 
does not have an empty word). 

If L is a lattice then L M and L:j: are also lattices. If a and T are comparable we already know how to find a 1\ T and 
a v T. If they are not comparable there is a first place in which they differ. To find a 1\ T take the common head, then 
the minimum of the next entries, then pad with T. To find a V T take the common head, then the maximum of the next 
entries and then nothing. This approach to finding a V T also works for L * and L +, though in those cases a 1\ T is not 
always defined. Concatenation distributes on the left over both 1\ and v, but need not distribute on the right (here again 
the problem comes if T is a truncated part of a and the first letter of n has the wrong relationship with the first letter of 
the relevant tail of a). 

If L has arbitrary suprema then so will L *n and L:j: but not L * or L +. If the family can be turned into a chain it is 
clear what to do, if not then there is a first place where the family of entries does not include a maximum. Take the 
supremum there and quit. Here again concatenation on the left will preserve arbitrary sups though concatenation on 
the right may not. 

3.4. I nfinite sequences with shuffle 

Here we take L a lattice and look at L N with the shuffle of two functions given by 

{ f(n/2) if n is even (f 0 g)(n) = g((n _ 1 )/2) if n is odd 



Notice that 10) g and g 0) I are distinct and that there is no unit. The only idempotent elements are constant sequences. 
If we use the lexicographic order, then L N is a lattice: /\, v, and any large max or min are found as in L:j:. The shuffle 

is both right and left functorial and both right and left distributive over any suprema that exist. 
Now, LN is also a lattice with order, /\, v, and any large max or min found as in pointwise. The shuffle is both right 

and left functorial and both right and left distributive over any suprema that exist. 

3.5. Categorical semantics 01 non-commutative propositional logic 

Categorical semantics for first order logic is covered extensively in [22], so I will be brief here and concentrate on a 
sequent calculus related to the logic given by the rules for deduction given above (which have more of the character of 
natural deduction). 

The rather wide variety of choices available for properties of a (usually non-commutative) conjunction * means that 
we will need to specify what rules we allow when we explore semantics of non-commutative logics. In addition, study 
of tautologies is not sufficient for capturing inference in cases where T is not a two sided unit. As a result our semantics 
will be more complex than the usual semantics for propositional logic. 

In order to define well formed formulas we need first to specify the available connectives: 

• In V we allow x, +, oa, O-L, 0, 1 ,  D, /, \, U when we have products, coproducts, exponential adjoints, self-adjoint 
negation, an initial object, a terminal object, a tensor, a right adjoint to -Da, a right adjoint to aD-, and a unit for 
the monoidal structure, respectively. 

• In 9 and P we allow /\, v, =}, -', ..l, T, *, /, �, U as underlying structures. 

The rules of inference of the logic then arise from universal mapping properties, functoriality, and adjointness. 

Definition 8. We can then define wffs in V as 

1 .  Propositional variables : a, b, c, . . . . 
2. O-ary connectives 0, 1, U if they are in the language of the logic. 
3. For any wff w we get a wff (w)-L if O-L is in our logic. 
4. For any wffs wand v we get the wffs (w x v), (w+v) , (WV), (wDv), (w/v) , and (w\v) if the logic has the desired 

connective. 

Similarly, in 9 and P we get wffs as 

1 .  Propositional variables : a, b, c, . . . . 
2. O-ary connectives ..l, T, U if they are in the language of the logic. 
3. For any wff w we get a wff -,w if -, is in our logic. 
4. For any wffs wand v we get the wffs (w /\ v), (w v v), (v =} w), (w*v), (w / v), and (w � v) if the logic has the 

desired connective. 

Definition 9. An interpretation of a wff w in 

• a category W is the object constructed by assigning objects to each variable and then computing connectives in W: 
1. variables a,b,c get assigned objects [a], [b] , [c]; 
2. O-ary connectives O,I,U if they are in the language of the logic get assigned the initial object [0] = ..l, the terminal 

object [1] = T and the unit for the D operation [U] , respectively; 
3. for any wff w we get a wff [(w)-L] = [w]-L; 
4. for any wffs wand v we get the wffs [(w x v)] = [w] x [v], [(w+v)]=[w]+[v], [(WV)]=[w] [v1, [(wDv)] = ([w ]D[v]), 

[(w/v)]=[w]/[v], and [(w\v)] = [w] \[v]; 
• a graph 7-{ or poset Q is the vertex obtained by assigning vertices to each variable and then computing the connectives 

using the operations on the appropriate poset or graph. 

U sing underlying structure functors an interpretation at the category level gives rise to interpretations at the graph and 
poset levels. 



The notion of semantic entailment of sequents comes from 

Definition 10. If A and Ll are sets of wffs then for any interpretation of all of the wffs in A and Ll we get a notion of 
truth of the sequent 

• in V : A � Ll is true in the interpretation if whenever there are maps in V taking h. : r:x ---+ A for every A E A and 
g c5 : b ---+ {3 for every bEll then there is a map h : r:x ---+ {3. Note that if the category has both products and coproducts 
this says there is a map n A ---+ U Ll ; 

• in Q : AI f---Ll is true in the interpretation if whenever r:xl f---A for all A E A and bl f---{3 for every bEll then r:xl f---{3; 

• in P : AFLl is true in the interpretation if whenever r:xFA for all A E A and bF{3 for every bEll then r:xF{3. 

We say that these sequents are valid if they are true in every interpretation. 

Notice that if A and Ll consist of single wffs then the sequent entailment is just inference. If the we have strict two 
sidedness then whenever all of the expressions in A are tautologies (expressed as Tlf---A) then the supremum of the truth 
values of the b would also have to be T. For a Ll = {bo} this would say that bo is a tautology as well. 

An interpretation will make a sequent valid if the desired map or edge does in fact exist in the category, graph, or 
poset which is the target of the interpretation. 

Next we need to say what a proof in the categorical logic looks like. For simplicity I will work in Q. 

Definition 11. A proof of an inference 4;1 hjJ is a tree with root 4;1 hjJ the leaves of which are axioms (of the form r:xl f---r:x 

or from associativity or commutativity axioms) and each branch of which is an instance of a rule of inference. 

Example 3. In the logic of quantales we have connectives /\, V, *, '\t, and./, axioms from the associativity of * and 
inference rules from the universal mapping properties, functoriality, and adjointness relations. 

Here is a proof of (q ./ p)lf---r ./ (p*(q '\t r)): 

where P is 

q./ plf---q./ p 

(q ./ p)*plf---q 
./ E 

q '\t rlf---q '\t r 
------------- functoriality '\t E 
((q ./ p)*p)*(q '\t r)lf---q*(q '\t r) q*(q '\t r)lf---r --------------��-------- cut 

((q ./ p)*p)*(q '\t r)lf---r 

Here the axioms 

q '\t rlf---q '\t rand q ./ plf---q ./ p 

come from the identities and the axiom 

is associativity of *. 

With the notion of a proof within a categorical logic we can define what it means for a sequent to be provable: 

Definition 12. We say Af-4; if there is a proof of r:x1f---4; when leaves of the proof are allowed to either be axioms or 
inferences of the form r:xlf---A for A E A. 

We say Af-Ll if whenever blf---{3 for all bEll we have Af-{3. 



3.6. Soundness and completeness 

Soundness of our propositional logic says that if Af--J then for any interpretation AFJ is true. Completeness says 
that if every interpretation makes AFJ true then Af--J. 

Theorem 4 (Soundness). Any categorical logic defined using universal mapping properties, junctoriality, monoidal 
structure, and adjointness is sound. 

Proof. This is mostly a matter of checking that the maps posited in an interpretation in a category give us the axioms 
and inferences in our proof technique. For axioms of the form ¢If--¢ this is the identity required by the definition of a 
category. Axioms of the form 0::1 f--A are part of the definition of the interpretation of the sequent. Our inference rules 
reflect exactly the morphisms guaranteed to exist by the categorical structures specified. If we have terminal objects, 
initial objects, associativity of *, or units these will give additional axioms as starting places for our proofs; axioms 
which are guaranteed to be true by the definition of an interpretation. D 

Completeness will also follow as in [13]. What we need to do is produce the free category on the symbols in our 
sequent which has the desired structure. 

4. Predicate logic with non-commutative * 

As mentioned earlier and developed at length in [22] a categorical form of semantics for predicate calculus takes 
this picture and spreads it out over a category of types: 

Let T be a category with objects represented by capital letters A, B, C, . . .  and morphisms given by lower case letters 
j, g, h, . . . . We assume that T has a terminal object T. T will be our category of types. We then give a contravariant 
functor from T to the category of categories: 

For each object A in T we have a category V(A) and graphs yeA) and peA). For each j : A -+ B we have functors 
r making the following diagram commute: 

V(A) 1* V(B) +--

vt tv 
yeA) 

j* y(B) +--

vt tv 
peA) 1* 

PCB) +--

A 
j 

B --+ 

When we impose additional structures on our categories of predicates about A we will ask for the functors r to preserve 
the additional structure. 

Following Lawvere [14] and the common practice in topos theory we get quantifiers by asking for adjoints to these 
functors: :3 r-lj*-N j. Since we have not specified how we get the r functors, only that they are present and preserve 
the structures of interest, the existence of these adjoints is an additional condition. It frequently imposes completeness 
and cocompleteness constraints on the logical structures. 

Once we have the adjoints we get rules for each j : A -+ B: 

1. Since these are functors we get rules of inference 

¢If--AI/J ¢If--AI/J ¢If--BI/J 
:3 j(¢)lf--B:3 j(l/J) Y j(¢)lf--BY j(l/J) j*(¢)lf--Aj*(I/J) 

2. The adjointness gives rules of inference: 



where the double line indicates a reversible inference, giving both rules for introduction and elimination of 
quantifiers. 

Example 4. As an example of such a situation we let T be the category of sets and let C be a category. We can construct 
a categories of C-valued fuzzy sets and get V(A) to be a category with much of the structure of C defined pointwise. 
An object of V(A) is an assignment to each element of A an object of C. Morphisms are then A-indexed families of 
morphisms in C. Essentially all of the kinds of structure considered in this paper will be inherited on V(A) from those 
ofC. 

Given a function f : A ---+ B we get the functor f* : V(B) ---+ V(A) by taking the object with b-coordinate h(b) to 
the object of V(A) with a-coordinate h(f(a)). The action on morphisms is componentwise. 

In order to get a left adjoint to f* we need for the category C to be cocomplete. The value of:1 f at an object g : A ---+ C 
of V(A) will take b to the coproduct of all of the objects g (a) which havef(a)=b. The right adjoint tof* will have value 
V f(g)(b) given by the product of those objects g (a) which havef(a)=b. 

Example 5. Another approach using fuzzy sets would take a complete lattice with a second conjunction * and construct 
the Goguen category Set (L) with objects pairs (A, a : A ---+ L) and maps f : (A, a) ---+ (B, [3) given by functions 
f : A ---+ B with a(a)s[3(f(a)) for all a E A to use as the category of types. We can then take 9(A, a) to be the 
subcategory of Set(L)/(A, a) consisting of those maps into (A, a) with underlying set map an isomorphism. We can 
then think of P(Aa) as consisting of the fuzzy sets (A, a') with a'(a)sa(a) for all a E A (the unbalanced subobjects 
of (A, a)). As noted in [20,21] these lattices inherit many of the structures from L, though the unit, the top, and thus 
one sidedness may be lost. If f : (A, a) ---+ (B, [3) then 

and 

f*(B,[3')(a) = [3'(f(a)) 1\ a(a) 
:1 f(A,a')(b) = V a'(a) 

{alf(a)=b} 

{ /\ a'(a) 
V f(A,a')(b) = {alf(a)=b} 

[3(b) 

if there is such an a 

otherwise 

5. Representation using internal categories 

If we want to do higher order logic in a category we need to find a way to represent all of this structure internally. For 
logics based in Sets where the categories of predicates about a set are small everything is automatically internal. In topoi 
the subobject lattices are represented internally as category objects using exponentials of the subobject representer Q. 

5.1. Predicate representation 

If we take L to be a quantale with T as left sided unit which satisfies left recovering order, then we can represent the 
lattice of unbalanced subobjects of a fuzzy set (A, a) as a category object in Set (L). The object of objects will be 

U(A,a) = ({f : A ---+ L},� : fH /\ ( f(a) � a(a)) 
aEA 

and the object of morphisms will be 

M(A,a) = ({(f, g : A ---+ L)},( : (f, g)H /\ ( f(a � g(b)) 1\ �(f) 1\ �(g)) 
aEA 

with the projections giving the domain and codomain maps, diagonal giving the inclusion of identities, and composition 
given by projection. Global sections (i.e. maps from ({s}, T) to U(A, a) in Set (L)) recover the category of predicates 
about (A, a). 



Given a map f : (A, a) ---+ (B, /1) we can internalize the functorsJ*, 3 f' and V f as maps f* : U((B, /1)) ---+ U((A, a)), 

3 f : U((A, a)) ---+ U((B, /1)) and V f : U((A, a)) ---+ U((B, /1)) which are internal functors. Here 

f*(h : B ---+ L)(a) = h(f(a)) 

and 

3f(g : A ---+ L)(b) = v g(a), V f(g : A ---+ L)(b) = /\ g(a) 
{alf(a)=b} {alf(a)=b} 

making the whole first order logic internal to Set (L). 

5.2. Subobject representation and internal second order logic 

Unbalanced subobjects of a fuzzy set (A, a) have only a weak form of subobject representation. For any unbalanced 
subobject there is a characteristic map such that 

(A,a') 

+ 
(A,a) 

x 
----+ 

(L,idd 

+ 
(L,T) 

is a pullback, but such characteristic maps need not be unique. This means that we cannot use the exponential adjoint 
in the category Set(L) to get an internal higher order logic uniquely represented. 

We need a way to represent membership as an object in P( (A, a) x U  (A, a)). Fortunately there is an obvious candidate: 

S(A,a) : (a , f)r--:t f(a) 

which will allow us (in further work) to express an internal higher order logic using the representation of predicates on 
(A, a) as internal category objects and the quantifiers as internal functors. 

Also left for further investigation is the connection between the approaches given here and those developed by 
Meseguer. The author thanks the anonymous referee for pointing out that large literature. 
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