
University of Massachusetts Amherst

From the SelectedWorks of Laura Vandenberg

March 14, 2012

Hormones and Endocrine-Disrupting Chemicals:
Low-Dose Effects and Nonmonotonic Dose
Responses
Laura Vandenberg, University of Massachusetts - Amherst
Theo Colborn
Tyrone B. Hayes
Jerrold J. Heindel
David R. Jacobs Jr., et al.

Available at: https://works.bepress.com/laura_vandenberg/2/

http://www.umass.edu
https://works.bepress.com/laura_vandenberg/
https://works.bepress.com/laura_vandenberg/2/


Hormones and Endocrine-Disrupting Chemicals:
Low-Dose Effects and Nonmonotonic Dose Responses

Laura N. Vandenberg, Theo Colborn, Tyrone B. Hayes, Jerrold J. Heindel,
David R. Jacobs, Jr., Duk-Hee Lee, Toshi Shioda, Ana M. Soto, Frederick S. vom Saal,
Wade V. Welshons, R. Thomas Zoeller, and John Peterson Myers

Center for Regenerative and Developmental Biology and Department of Biology (L.N.V.), Tufts University, Medford,
Massachusetts 02155; The Endocrine Disruption Exchange (T.C.), Paonia, Colorado 81428; Laboratory for Integrative
Studies in Amphibian Biology (T.B.H.), Molecular Toxicology, Group in Endocrinology, Energy and Resources Group,
Museum of Vertebrate Zoology, and Department of Integrative Biology, University of California, Berkeley, California 94720;
Division of Extramural Research and Training (J.J.H.), National Institute of Environmental Health Sciences, National Institutes
of Health, U.S. Department of Health and Human Services, Research Triangle Park, North Carolina 27709; Division of
Epidemiology and Community Health (D.R.J.), School of Public Health, University of Minnesota, Minneapolis, Minnesota
55455; Department of Preventive Medicine (D.-H.L.), School of Medicine, Kyungpook National University, Daegu 702-701,
Korea; Molecular Profiling Laboratory (T.S.), Massachusetts General Hospital Center for Cancer Research, Charlestown,
Massachusetts 02129; Department of Anatomy and Cellular Biology (A.M.S.), Tufts University School of Medicine, Boston,
Massachusetts 02111; Division of Biological Sciences (F.S.v.S.) and Department of Biomedical Sciences (W.V.W.), University
of Missouri-Columbia, Columbia, Missouri 65211; Biology Department (T.Z.), University of Massachusetts-Amherst,
Amherst, Massachusetts 01003; and Environmental Health Sciences (J.P.M.), Charlottesville, Virginia 22902

For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in
particular the dogma of “the dose makes the poison,” because EDCs can have effects at low doses that are not
predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmono-
tonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of
human exposures or effects observed at doses below those used for traditional toxicological studies. We review the
mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC
literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship be-
tween dose and effect where the slope of the curve changes sign somewhere within the range of doses examined.
We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of
examples fromthecell culture,animal, andepidemiology literature.We illustrate thatnonmonotonic responsesand
low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs
influencecertainhumandisorders isnolongerconjecture,becauseepidemiological studiesshowthatenvironmental
exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic
dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus,
fundamental changes in chemical testing and safety determination are needed to protect human health. (Endocrine
Reviews 33: 378–455, 2012)
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I. Introduction

This review focuses on two major issues in the study
of endocrine-disrupting chemicals (EDCs): low-

dose exposures and nonmonotonic dose-response curves
(NMDRCs). These concepts are interrelated, and
NMDRCs are especially problematic for assessing poten-
tial impacts of exposure when nonmonotonicity is evident
at levels of exposure below those that are typically used in
toxicological assessments. For clarity of presentation,
however, we will first examine each of the concepts
separately.

A. Background: low-dose exposure
It is well established in the endocrine literature that

natural hormones act at extremely low serum concentra-
tions, typically in the picomolar to nanomolar range.
Many studies published in the peer-reviewed literature
document that EDCs can act in the nanomolar to micro-
molar range, and some show activity at picomolar levels.

1. What is meant by low dose?
In 2001, at the request of the U.S. Environmental Pro-

tection Agency (EPA), the National Toxicology Program

(NTP) assembled a group of scientists to perform a review
of the low-dose EDC literature (1). At that time, the NTP
panel defined low-dose effects as any biological changes 1)
occurring in the range of typical human exposures or 2)
occurring at doses lower than those typically used in stan-
dard testing protocols, i.e. doses below those tested in
traditional toxicology assessments (2). Other definitions
of low dose include 3) a dose below the lowest dose at
which a biological change (or damage) for a specific chem-
ical has been measured in the past, i.e. any dose below the
lowest observed effect level or lowest observed adverse
effect level (LOAEL) (3), or 4) a dose administered to an
animal that produces blood concentrations of that chem-
ical in the range of what has been measured in the general
human population (i.e. not exposed occupationally, and
often referred to as an environmentally relevant dose be-
cause it creates an internal dose relevant to concentrations
of the chemical measured in humans) (4, 5). This last def-
inition takes into account differences in chemical metab-
olism and pharmacokinetics (i.e. absorption, distribution,
and excretion of the chemical) across species and reduces
the importance of route of exposure by directly comparing
similar blood or other tissue concentrations across model
systems and experimental paradigms. Although these dif-
ferent definitions may seem quite similar, using just a sin-
gle well-studied chemical like bisphenol A (BPA) shows
how these definitions produce different cutoffs for expo-
sure concentrations that are considered low dose (Table
1). For many chemicals, including EDCs, a large number
of studies meet the criteria for low-dose studies regardless
of whether the cutoff point for a low dose was based on the
range of typical human exposures, doses used in tradi-
tional toxicology, or doses that use an internal measure of
body burden.

Whether low doses of EDCs influence disease is a ques-
tion that now extends beyond the laboratory bench, be-
cause epidemiological studies show that environmental
exposures to these chemicals are associated with disorders
in humans as well (see for examples Refs. 6–16). Although
disease associations have historically been observed in in-
dividuals exposed to large concentrations of EDCs after

TABLE 1. Low-dose definitions and cutoff doses: BPA and DEHP as examples

Chemical
Estimated range of
human exposures Doses below the NOAEL

Doses below the
LOAEL

Administered doses
(to animals) that

produce blood levels in
typical humans

BPA 0.4–5 �g/kg � d (679) No NOAEL was ever established
in toxicological studies (38)

�50 mg/kg � d (38) �400 �g/kg � d to rodents and
nonhuman primates (4, 253)

DEHP 0.5–25 �g/kg � d (680) �5.8 mg/kg � d (681, 682) �29 mg/kg � d (681, 682) Unknown

Estimates of human exposure are made from consumer product consumption data but do not take into account that there are unknown sources of these chemicals.
DEHP, Bis(2-ethylhexyl) phthalate.
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industrial accidents (17–19) or via occupational applica-
tions (20–22), recent epidemiological studies reveal links
between environmentally relevant low concentrations and
disease prevalence. With the extensive biomonitoring
studies performed by the U.S. Centers for Disease Control
and Prevention (CDC) (23, 24) and similar environmental
surveys performed in Europe (25) and elsewhere (www.
statcan.gc.ca/concepts/hs-es/measures-mesures-eng.htm),
knowledge about environmental exposures to EDCs and
their associations with human health disorders has in-
creased substantially.

Low-dose effects have received considerable attention
from the scientific and regulatory communities, especially
when examined for single well-studied chemicals like BPA
(4, 27–32). The low-dose literature as a whole, however,
has not been carefully examined for more than a decade.
Furthermore, this body of literature has been disregarded
or considered insignificant by many (33, 34). Since the
NTP’s review of the low-dose literature in 2001 (2), a very
large body of data has been published including 1) addi-
tional striking examples of low-dose effects from expo-
sures to well-characterized EDCs as well as other chemi-
cals, 2) an understanding of the mechanisms responsible
for these low-dose effects, 3) exploration of nonmonoto-
nicity in in vivo and in vitro systems, and 4) epidemiolog-
ical support for both low-dose effects and NMDRCs.

2. Is the term low dose a misnomer?

Endogenous hormones are active at extremely low
doses, within and below the picomolar range for endog-
enous estrogens and estrogenic drugs, whereas environ-
mental estrogen mimics are typically active in the nano-
molar to micromolar range (for examples, see Refs.
35–38), although some show effects at even lower con-
centrations (39–41). Importantly, the definitions above
do not take into account the potency or efficacy of the
chemical in question, a topic that will be discussed in
greater detail below. Instead, low dose provides an oper-
ational definition, in which doses that are in the range of
human exposure, or doses below those traditionally tested
in toxicological studies, are considered low. To be clear,
none of these definitions suggest that a single concentra-
tion can be set as a low dose cutoff for all chemicals. Using
the above definitions, for some chemicals, low doses could
potentially be in the nanogram per kilogram range, but for
most chemicals, doses in the traditional micro- and milli-
gram per kilogram range could be considered low doses
because traditional approaches to testing chemicals typi-
cally did not examine doses below the milligram per ki-
logram dose range.

B. Background: NMDRCs
We have defined low-dose studies according to the def-

initions established by the NTP panel of experts (2). How-
ever, because the types of endpoints that are typically ex-
amined at high doses in toxicological studies are often
different from the types of endpoints examined in low-
dose studies, one cannot assume that an effect reported in
the low-dose range is necessarily different from what
would be observed at higher doses. For example, low
doses of a chemical could affect expression of a hormone
receptor in the hypothalamus, an endpoint not examined
in high-dose toxicology testing, and high doses could sim-
ilarly affect this same endpoint (but are likely to be unre-
ported because high doses are rarely tested for these types
of endpoints). Thus, the presence of low-dose effects
makes no assumptions about what has been observed at
higher concentrations. (As discussed elsewhere, for the
majority of chemicals in commerce, there are no data on
health effects and thus no established high- or low-dose range.)
Therefore, low-dose effects could be observed at the lower end
of a monotonic or linear dose-response curve.

In contrast, the definition of a NMDRC is based upon
the mathematical definition of nonmonotonicity: that the
slope of the dose-response curve changes sign from posi-
tive to negative or vice versa at some point along the range
of doses examined (42). Often NMDRCs have a U- or
inverted U-shape (43); these NMDRCs are thus also often
referred to as biphasic dose-response curves because re-
sponses show ascending and descending phases in relation
to dose. Complex, multiphasic curves have also been ob-
served (41, 44, 45). NMDRCs need not span from true low
doses to high (pharmacologically relevant) doses, al-
though experiments with such a broad dose range have
been performed for several EDCs; the observation of non-
monotonicity makes no assumptions about the range of
doses tested. Examples of NMDRCs from in vitro cell
culture and in vivo animal experiments, as well as epide-
miological examples, are presented in detail later in this
review (see Sections III.C.1–3). Additional examples of
NMDRCs are available in studies examining the effects of
vitamins and other essential elements on various end-
points (see for example (46); these will not be examined in
detail in this review due to space constraints.

NMDRCs present an important challenge to tradi-
tional approaches in regulatory toxicology, which as-
sume that the dose-response curve is monotonic. For all
monotonic responses, the observed effects may be linear
or nonlinear, but the slope does not change sign. This
assumption justifies using high-dose testing as the stan-
dard for assessing chemical safety. When it is violated,
high-dose testing regimes cannot be used to assess the
safety of low doses.
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It should be noted that both low dose and nonmono-
tonicity are distinguished from the concept of hormesis,
which is defined as a specific type of response whereby
“the various points along [the dose response] curve can be
interpreted as beneficial or detrimental, depending on the
biological or ecological context in which they occur” (47).
Estimations of beneficial or adverse effects cannot be as-
certained from the direction of the slope of a dose-response
curve (48–50). In their 2001 Low Dose Peer Review, the
NTP expert panel declined to consider whether any effect
was adverse because “in many cases, the long-term health
consequences of altered endocrine function during devel-
opment have not been fully characterized” (2). There are
still debates over how to define adverse effects (51–53), so
for the purposes of this review, we consider any biological
change to be an effect. Importantly, most epidemiological
studies are by definition examining low doses (unless they
are focusing on occupationally exposed individuals), and
these studies typically focus on endpoints that are accepted
to be adverse for human health, although some important
exceptions exist (54–56).

Finally, it is worth noting that any biological effect,
whether it is observed to follow linear relationships with
administered dose or not, provides conclusive evidence
that an EDC has biological activity. Thus, other biological
effects are likely to be present but may remain undetected
or unexamined. Many EDCs, including those used as pes-
ticides, were designed to have biological effects (for ex-
ample, insecticides designed to mimic molting hormone).
Thus, the question of whether these chemicals have bio-
logical effects is answered unequivocally in their design;
the question is what other effects are induced by these
biologically active agents, not whether they exist.

C. Low-dose studies: a decade after the NTP
panel’s assessment

In 2000, the EPA requested that the NTP assemble a
panel of experts to evaluate the scientific evidence for low-
dose effects and dose-response relationships in the field of
endocrine disruption. The EPA proposed that an indepen-
dent and open peer review of the available evidence would
allow for a sound foundation on which the EPA could
“determine what aspects, if any, of its standard guidelines
for reproductive and developmental toxicity testing
[would] need to be modified to detect and characterize
low-dose effects” (2). The NTP panel verified that low-
dose effects were observed for a multitude of endpoints
for specific EDCs including diethylstilbestrol (DES),
genistein, methoxychlor, and nonylphenol. The panel
identified uncertainties around low-dose effects after ex-
posure to BPA; although BPA had low-dose effects on
some endpoints in some laboratories, others were not

found to be consistent, leading the panel to conclude that
it was “not persuaded that a low-dose effect of BPA has
been conclusively established as a general or reproducible
finding” (2).

Since the NTP’s review of low-dose endocrine disruptor
studies, only a few published analyses have reexamined
the low-dose hypothesis from a broad perspective. In
2002, R. J. Witorsch (57) analyzed low doses of xenoes-
trogens and their relevance to human health, considering
the different physiologies associated with pregnancy in the
mouse and human. He proposed that low doses of endo-
crine disruptors would not likely affect humans because,
although low-dose effects had been observed in rodents,
the hormonal milieu, organs controlling hormonal re-
lease, and blood levels of estrogen achieved are quite dif-
ferent in humans. There are, of course, differences in hor-
mones and hormone targets between rodents and humans
(58), but the view that these differences negate all knowl-
edge gained from animal studies is not supported by evo-
lutionary theory (59–61). This human-centered stance ar-
gues against the use of animals for any regulatory testing
(62) and runs counter to the similarities in effects of EDCs
on humans and animals; rodents proved to be highly pre-
dictive of the effects of DES on humans (63, 64). In a
striking example, studies from mice and rats predicted that
gestational exposure to DES would increase mammary
cancer incidence decades before women exposed in utero
reached the age where this increase in risk was actually
observed (65–67).

In 2007, M. A. Kamrin (68) examined the low-dose
literature, focusing on BPA as a test case. He suggested that
three criteria were required to support the low-dose hy-
pothesis. First is reproducibility, which he defined as “the
same results are seen from the same causes each time a
study is conducted.” Furthermore, he proposed that the
dose response for the effects must be the same from study
to study. Second is consistency, which he defined as the
results all fitting into a pattern, whereby the results col-
lected from multiple species and under variable conditions
all show the same effect. And third is proper conduct of
studies, which he defined as including the appropriate con-
trols and performance under suitable experimental con-
ditions as well as the inclusion of multiple doses such that
a dose-response curve can be obtained.

Although we and others (69–72) agree with the use of
these criteria (reproducibility, consistency, and proper ex-
perimental design), there are significant weaknesses in the
logic Kamrin employed to define these factors. First, sug-
gesting that reproducibility is equivalent to the same re-
sults obtained each time a study is conducted is unrealistic
and not a true representation of what is required of rep-
lication. As has been discussed in other fields, “there is no
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end to the ways in which any two experiments can be
counted as the same — or different . . . All experiments are
the same in respect of their being experiments; they are all
different by virtue of being done at different places, at
different times, by different people, with different strains
of rat, training regime, and so on” (73).

Furthermore, according to the Bradford-Hill criteria, a
set of requirements accepted in the field of epidemiology
to provide adequate evidence of a causal relationship be-
tween two factors, a single negative result (or even several
studies showing negative results) cannot negate other
studies that show adverse effects (74). Essentially, all sci-
entists know that it is very easy for an experiment to find
no significant effects due to a myriad of reasons; it is more
difficult to actually find effects, particularly when using
highly sophisticated techniques (69).

Second, the concept of consistency as a pattern that can
be derived from all results is one we will use below, using
a weight-of-evidence (WoE) approach and several specific
examples. However, Kamrin’s proposed idea that every
study must show the same effect has the same weaknesses
as discussed for the proposed definition of reproducibility
and does not acknowledge the obvious differences in many
species and strains. It also suggests that the identifica-
tion of a single insensitive strain could negate any num-
ber of positive studies conducted with appropriate an-
imal models (75).

And finally, Kamrin suggested that only studies with
appropriate controls should be used for analyses, a crite-
rion we agree should be followed. However, his own scru-
tiny of the low-dose animal literature fails to do so (68). He
also suggested that studies use multiple doses so that a
dose-response curve can be obtained. Although studies
using a single dose can be informative, we agree that dose-
response relationships provide important information to
researchers and riskassessors alike.However, this require-
ment is not helpful if there is an insistence on observing a
linear response; as we discuss in depth in this review, there
are hundreds of examples of nonmonotonic and other
nonlinear relationships between dose and endpoint. These
should not be ignored.

In 2004, Hayes (76) reviewed the available literature
concerning the effects of atrazine on amphibian develop-
ment, with a specific focus on the effect of ecologically
relevantdosesof thisEDConmalformationsof thegonads
and other sexually dimorphic structures; in the case of
aquatic exposures, it can be difficult to determine what a
cutoff for a low dose would be; thus, Hayes focused on
studies examining the effects of atrazine at levels that had
been measured in the environment. He reviewed the re-
sults produced by several labs, in which it was indepen-
dently demonstrated that low concentrations of atrazine

produced gonadal abnormalities including hermaphrodit-
ism, males with extra testes, discontinuous gonads, and
other defects. Hayes’ work also clearly addressed the so-
called irreproducibility of these findings by analyzing the
studies that were unable to find effects of the pesticide; he
noted that the negative studies had multiple experimental
flaws, including contamination of the controls with atra-
zine, overcrowding (and therefore underdosing) of exper-
imental animals, and other problems with animal hus-
bandry that led to mortality rates above 80%.

In 2006, vom Saal and Welshons (77) examined the
low-dose BPA literature, identifying more than 100 stud-
ies published as of July 2005 that reported significant ef-
fects of BPA below the established LOAEL, of which 40
studies reported adverse effects below the 50 �g/kg � d safe
dose set by the EPA and U.S. Food and Drug Administra-
tion (FDA); all of these studies would be considered low
dose according to the NTP’s definition (2). The authors
proposed that these examples should be used as evidence
to support the low-dose hypothesis. Furthermore, this
publication detailed the similarities among the studies that
were unable to detect any effects of low doses of BPA and
established a set of criteria required to accept negative
studies. We have adapted the criteria detailed by Hayes
(76) and vom Saal and Welshons (77) to produce a set of
requirements for low-dose studies; these criteria are de-
scribed in some detail below.

D. Why examine low-dose studies now?
The developmental origins of health and disease hy-

pothesis originated from studies showing that fetal DES
exposure could cause severe malformations and cancers of
the reproductive tract, and other studies demonstrating
that fetal malnutrition could lead to adult diseases includ-
ing metabolic syndrome, diabetes, and increased stroke
incidence (78–81). Since that time, the developmental or-
igins of health and disease hypothesis has been extended to
address whether diseases that are increasing in prevalence
in human populations could be caused by developmental
exposures to EDCs (67, 82–85). Evidence from the animal
literature has been tremendously informative about the
effects of EDC exposures early in development and has
driven new hypotheses to be tested in epidemiology studies
(86). Studies including several discussed in this review pro-
vide supportive evidence that the fetal and neonatal peri-
ods are specifically sensitive to chemicals that alter endo-
crine signaling and that EDCs could be contributing to a
range of diseases.

Strong, reliable, and reproducible evidence documents
the presence of low concentrations of EDCs and other
chemicals in human tissues and fluids, as well as in envi-
ronmental samples (28, 87–89). These studies indicate
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that samples collected from humans and the environment
typically contain hundreds of contaminants, usually in the
parts-per-billion (ppb) range (90, 91). The obvious ques-
tion with potentially large public health implications is
whether these concentrations are so low as to be irrelevant
to human health. The fact that epidemiological analyses
(reviewed in Section III.C.3) repeatedly find associations
between the measured concentrations in human samples
and disease endpoints suggests it is inappropriate to as-
sume the exposures are too low to matter. That is espe-
cially the case given the empirical data (reviewed in Section
II.A) from animal and cell culture experiments showing
effects can be caused by concentrations comparable (and
sometimes below) what is measured in humans and
also the detection of NMDRCs in some of those same
experiments.

In the human biomonitoring field, large databases such
as the CDC’s National Health and Nutrition Examination
Survey (NHANES) have allowed researchers to make
comparisons between groups of individuals with various
exposure criteria; some of these studies will be addressed
in detail in subsequent sections of this review. Although by
definition these databases examine low-dose exposures,
their use has been the subject of significant debate. Because
of the large number of chemicals that have been measured
(�300 in the most recent NHANES by the CDC) and the
large number of health outcomes and other disease-related
data collected from the individuals that donated biological
samples, it has been argued that the number of possible
associations that could be made would lead to a significant
number of false positives (92); thus, associations could be
found simply because of extensive data dredging. This has
led some to suggest that these studies as a whole should be
rejected (93, 94).

In response to these criticisms, epidemiologist Jan Van-
denbroucke (95) notes, “researchers do not mindlessly
grind out one analysis after another”; the examination of
these databases for associations between chemical expo-
sures and health effects does not entail the statistical com-
parison between all possible factors, calculated as some
8800 comparisons in the CDC’s NHANES database (92).
Instead, epidemiologists typically focus on a select number
of comparisons that address relationships between chem-
icals and diseases identified a priori (96, 97), often because
of mechanistic data obtained in laboratory animals or in
vitro work with human and animal cells and tissues. Re-
peated findings of links between EDC exposures and dis-
eases in epidemiological analyses of biomonitoring data
based on a priori hypotheses suggests these relationships
should not be rejected as a statistical artifact and, instead,
should be the basis for significant concern that low-dose
effects can be detected in the general population (85, 98).

E. Mechanisms for low-dose effects
The endocrine system is particularly tuned to respond

to very low concentrations of hormone, which allows an
enormous number of hormonally active molecules to co-
exist in circulation (38). As a ligand-receptor system, hor-
mones act by binding to receptors in the cell membrane,
cytosol, or the nucleus. The classical effects of nuclear
hormone receptors influence gene expression directly, al-
though rapid nongenomic actions at membrane-associ-
ated receptors are now well documented and accepted.
Membrane receptors are linked to different proteins in the
cell, and binding to these receptors typically changes
cellular responses in a rapid fashion (99), although the
consequence of a rapid signaling event could be the ac-
tivation of a nuclear transcription factor, leading to
responses that take longer to detect. Peptide hormones
can also influence gene expression directly (see Refs.
100 and 101 for examples).

There are several means by which the endocrine system
displays specificity of responses to natural hormones.
Many hormone receptors are expressed specifically in a
single or a few cell types (for example, receptors for TSH
are localized to the thyroid), whereas some (like thyroid
hormone receptors) are found throughout the body (102).
For receptors that are found inmultiple cell types, different
effects are produced in part due to the presence of different
coregulators that influence behaviors of the target genes
(103–105). And finally, some hormones have multiple re-
ceptors [for example estrogen receptor (ER)� and ER�],
which are expressed in different quantities in different cell
types and organs and can produce variable effects on gene
expression or cellular phenomena (cell proliferation vs.
apoptosis) (102, 106).

The typical physiological levels of the endogenous hor-
mones are extremely low, in the range of 10–900 pg/ml for
estradiol, 300–10,000 pg/ml for testosterone, and 8–27
pg/ml for T4 (see Table 2). Importantly, steroid hormones
in the blood are distributed into three phases: free, repre-
senting the unconjugated, unbound form; bioavailable,
representing hormones bound to low-affinity carrier pro-
teins such as albumin; and inactive, representing the form
that is bound to high-affinity binding proteins such as
SHBG or �-fetoprotein (38) (Fig. 1A). When the circulat-
ing levels in blood are corrected for the low fraction of the
hormones that are not bound to serum binding proteins,
the free concentrations that actually bring about effects in
cells are even lower, for example 0.1–9 pg/ml for estradiol.
Concentrations of active hormones will vary based on the
age and physiological status of the individual (i.e. plasma
testosterone levels are less than 1 ng/ml in male children
but increase to approximately 5–7 ng/ml in adulthood;
during menses, estradiol levels are typically less than 100
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pg/ml, but just before ovulation, they spike to 800 pg/ml;
etc.) (107, 108). Of course, it should be noted that active
concentrations of natural hormones vary somewhat from
species to species and can even vary between strains of the
same species (109).

There are several reasons why endogenous hormones
are able to act at such low circulating concentrations: 1)
the receptors specific for the hormone have such high af-
finity that they can bind sufficient molecules of the hor-
mone to trigger a response, 2) there is a nonlinear rela-
tionship between hormone concentration and the number
of bound receptors, and 3) there is also a nonlinear rela-
tionship between the number of bound receptors and the
strongest observable biological effect. Welshons and col-
leagues (38) describe how hormone concentration influ-
ences receptor occupancy: “receptor occupancy is never
determined to be linear in relation to hormone concentra-
tion . . . At concentrations above the Kd [the dissociation
constant for receptor-ligand binding kinetics], saturation
of the response occurs first, and then at higher concentra-
tions, saturation of receptors is observed.” What this
means is that at low doses of hormone, a 10-fold increase
in hormone concentration can have a 9-fold increase in
receptor occupancy, whereas at high doses of hormone, a
10-fold increase in hormone concentration produces a less
than 1.1-fold increase in receptor occupancy (38) (Fig.
1B). Thus, even moderate changes in hormone concen-
tration in the low-dose range can produce substantial
changes in receptor occupancy and therefore generate
significant changes in biological effects. Welshons et al.
(38) also note that a near-maximum biological response
can be observed without a high rate of receptor occu-
pancy, a situation that was previously termed the spare
receptor hypothesis (110, 111); that is, the response mech-
anism saturates before all of the receptors are saturated.

The presence of spare receptors is the basis for saying that
these receptor systems are tuned to detect low concentra-
tions that lead to occupancy of 0.1–10% of total recep-
tors. Within this range of low receptor occupancy, there is
high proportionality between changes in the free hormone
concentration and changes in receptor occupancy, and a
change in receptor occupancy by a ligand for the receptor
is required to initiate changes in receptor-mediated re-
sponses (38).

There are additional reasons why natural hormones are
active at low doses: 4) hormones have a strong affinity for
their receptors (relative to affinity for other receptors) be-
cause many hormones are secreted from a single gland or
site in the body but must have effects throughout the body
in multiple tissues and 5) blood concentrations of hor-
mones are normally pulsatile in nature, with the release of
one hormone often controlled by the pulsatile release of
another hormone (112, 113), and both the frequency and
the amplitude of pulses modulate the biological response;
hormones are also influenced by circadian rhythms, with
dramatic differences in hormone secretion depending on
the time of day (114, 115).

For many years, the mechanisms by which some envi-
ronmental chemicals acted at low doses were not well un-
derstood. In 1995, the National Research Council ap-
pointed the Committee on Hormonally Active Agents in
the Environment to address public concerns about the po-
tential for adverse effects of EDCs on human health (116).
At the time, work on understanding the mechanisms by
which EDCs exert their effects was in its infancy, and in the
executive summary, the committee stated, “Lack of
knowledge about a mechanism does not mean that a re-
ported effect is unconfirmed or unimportant, nor does
demonstration of a mechanism document that the result-
ing effects are unique to that mechanism or are pervasive

TABLE 2. Ranges of endogenous hormones in humans (from Ref. 108)

Hormone
Free concentration

(females)
Total concentration

(females)
Free concentration

(males)
Total concentration

(males)

Cortisol 20–300 ng/ml 20–300 ng/ml
Estradiol 0.5–9 pg/ml (adult female) �20 pg/ml (prepubertal) 10–60 pg/ml (adult)

20–800 pg/ml (premenopausal)
�30 pg/ml (postmenopausal)

Progesterone 0.2–0.55 ng/ml (prepubertal) 0.1–0.4 ng/ml (prepubertal)
0.02–0.80 ng/ml (follicular phase) 0.2–2 ng/ml (adult)

0.90–4 ng/ml (luteal phase)
�0.5 ng/ml (postmenopausal)

Insulin 0–250 pmol/liter 0–250 pmol/liter
GH 2–6 ng/ml 2–6 ng/ml
Prolactin 0–15 ng/ml 0–10 ng/ml
Testosterone 9–150 pg/ml (adult) 0.3–250 ng/ml
Thyroid

hormone
8–30 pg/ml (10–35 pM) 8–30 pg/ml (10–35 pM)

TSH 0.5–5 �U/ml 0.5–5 �U/ml
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in natural systems.” Since that time, a tremendous amount
of work has been dedicated to understanding the molec-
ular mechanisms of action of EDCs, and in particular the
mechanisms responsible for low-dose effects.

1. General mechanisms for EDC action
As discussed above, the endocrine system evolved to

function when unbound physiologically active ligands
(hormones) are present at extremely low doses (117). Be-
cause of shared receptor-mediated mechanisms, EDCs
that mimic natural hormones have been proposed to fol-
low the same rules and therefore have biological effects at
low doses (38, 118). Similarly, EDCs that influence in any
way the production, metabolism, uptake, or release of
hormones also have effects at low doses, because even
small changes in hormone concentration can have biolog-
ically important consequences (38, 119).

The estrogen-response mechanisms have been exten-
sively studied with regard to the effects of endogenous
estrogens and estrogenic drugs. In classical, genomic es-
trogen action, when endogenous estrogens bind to ER,
those receptors bind to estrogen response element se-
quences or to a number of other response element sites
adjacent to the genes directly responsive to estrogens; this
binding influences transcription of estrogen-sensitive
genes (120). Xenoestrogens produce the same reactions;
these chemicals bind to ERs, which then initiate a cascade
of molecular effects that ultimately modify gene expres-
sion. Therefore, for the actions of estrogenic EDCs, mo-
lecular mechanisms and targets are already known in some
detail. Similar mechanisms are induced by the binding of
androgens to the androgen receptor, or thyroid hormone
agonists to the thyroid hormone receptor, among others.

Figure 1.

Figure 1. Characteristics and activities of natural hormones. A, This schematic depicts a typical relationship of three phases of circulating
hormones: free (the active form of the hormone), bioavailable (bound weakly to proteins such as albumin), and inactive (bound with high affinity
to proteins such as SHBG). These three phases act as a buffering system, allowing hormone to be accessible in the blood, but preventing large
doses of physiologically active hormone from circulating. With EDCs, there may be little or no portion maintained in the inactive phase. Thus, the
entirety or majority of a circulating EDC can be physiologically active; the natural buffering system is not present, and even a low concentration of
an EDC can disrupt the natural balance of endogenous hormones in circulation. B, Schematic example of the relationship between receptor
occupancy and hormone concentration. In this theoretical example, at low concentrations, an increase in hormone concentration of x (from 0 to
1x) causes an increase in receptor occupancy of approximately 50% (from 0 to 50%, see yellow box.) Yet the same increase in hormone
concentration at higher doses (from 4x to 5x) causes an increase in receptor occupancy of only approximately 4% (from 78 to 82%, see red box).
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Additionally, there are EDCs that act as antagonists of
these hormone systems, binding to a receptor, but not
activating the receptor’s typical response, and preventing
the binding or activity of the endogenous ligand. Finally,
many EDCs bind to the receptor and trigger a response
that is not necessarily the same as that triggered by the
endogenous estrogens; these are termed selective ER mod-
ulators (SERMs). Ultimately, all of these actions occur at
the level of the receptor.

Many studies have been dedicated to the understanding
of which EDCs bind to which nuclear hormone receptors
and how the binding affinities compare to the natural ste-
roid. Thus, many of these chemicals have been classified as
weak hormones. Yet studies have shown that, for exam-
ple, the so-called weak estrogens like BPA can be equally
potent as endogenous hormones in some systems, causing
biological effects at picomolar levels (30, 38, 41, 121).
Both endogenous estrogens and EDCs can bind to ER as-
sociated with the cell membrane [membrane-associated
ER (mER)� and mER�] that are identical to the nuclear
ER (122–124), and a transmembrane ER called G-protein
coupled receptor 30 that is structurally dissimilar to the
nuclear ER and encoded by a distinct gene (125, 126). In
many cells, 5–10% of total ER� and ER� are localized to
the plasma membrane (124); these membrane-associated
receptors are capable of nongenomic steroid action in var-
ious cell types (30, 121, 127); thus, rapid and potent effects
are well documented for many EDCs including BPA, DES,
endosulfan, dichlorodiphenyldichloroethylene (DDE),
dieldrin, and nonylphenol, among others (41, 128–130).

Finally, EDCs have other effects that are not dependent
on binding to either classical or membrane-bound steroid
hormone receptors. EDCs can influence the metabolism of
natural hormones, thus producing differences in the
amount of hormone that is available for binding either
because more (or less) hormone is produced than in a typ-
ical system or because the hormone is degraded faster (or
slower) than is normal. Other EDCs influence transport of
hormone, which can also change the amount of hormone
that is available for receptor binding. And EDCs can also
have effects that are independent from known endocrine
actions. One example is the effect of endogenous hor-
mones and EDCs on ion channel activity. BPA, dichloro-
diphenyltrichloroethane (DDT), DES, nonylphenol, and
octylphenol have all been shown to disrupt Ca2� channel
activity and/or Ca2� signaling in some cell types (131–
134). This example illustrates how both natural hormones
and EDCs can have hormonal activity via binding to nu-
clear hormone receptors but may also have unexpected
effects via receptor-mediated actions outside of the clas-
sical endocrine system.

2. Mechanisms of EDC-induced low-dose actions
The various mechanisms by which EDCs act in vitro

and in vivo provide evidence to explain how these chem-
icals induce effects that range from altered cellular
function, to abnormal organ development, to atypical be-
haviors. Just as natural hormones display nonlinear rela-
tionships between hormone concentration and the num-
ber of bound receptors, as well as between the number of
bound receptors and the maximal observable biological
effect, EDCs obey these rules of binding kinetics (38).
Thus, in a way, EDCs exploit the highly sensitive endo-
crine system and produce significant effects at relatively
low doses.

To gain insight into the effects of natural hormones and
EDCs on gene expression profiles, it is possible to calculate
doses that produce the same effect on proliferation of cul-
tured cells, i.e. the quantitative cellular response doses,
and determine the effect of those doses on transcriptomal
signature profiles. When this is done for estradiol and
EDCs with estrogenic properties, the affected estrogen-
sensitive genes are clearly different (135). However, an
interesting pattern emerges: comparing profiles among
only the phytoestrogens shows striking similarities in the
genes up- and down-regulated by these compounds; pro-
file comparisons between only the plastic-based estrogens
also show similarities within this group. Yet even more
remarkable is what occurs when the doses are selected not
based on cell proliferation assays but instead on the ability
of estradiol and estrogen-mimics to induce a single estro-
gen-sensitive marker gene. When doses were standardized
based on marker gene expression, the transcriptomal sig-
nature profiles were very similar between estradiol and
estrogen mimics (135). Taken together, these results sug-
gest that the outcomes of these experiments are contex-
tual to the normalization parameter and that marker
gene expression and cell proliferation are not superim-
posable. This indicates that the biological level at which
the effects of chemicals are examined (i.e. gene expres-
sion, cellular, tissue, organ, or organismal) can greatly im-
pact whether low-dose effects are observed and how these
effects are interpreted.

There are several other mechanisms by which low-dose
activities have been proposed. One such possibility is that
low doses of EDCs can influence the response of individ-
uals or organs/systems within the body to natural hor-
mones; thus, the exposed individual has an increased sen-
sitivity to small changes in endogenous steroids, similar to
the effects of intrauterine position (see Ref. 136 and Sec-
tion I.F). In fact, several studies have shown that exposure
to EDCs such as BPA during perinatal development can
influence the response of the mammary gland to estrogen
(137, 138) and the prostate to an estrogen-testosterone
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mixture similar to the concentrations produced in aging
men (139–142). There is also evidence that EDCs work
additively or even synergistically with other chemicals and
natural hormones in the body (143–145). Thus, it is plau-
sible that some of the low-dose effects of an EDC are ac-
tually effects of that exogenous chemical plus the effects of
endogenous hormone.

Finally, it should be noted that during early devel-
opment, the rodent fetus is largely, but not completely
(146), protected from estrogen via the binding activity
of �-fetoprotein, a plasma protein produced in high
levels by the fetal liver (147). Some estrogen-like EDCs,
however, bind very weakly to �-fetoprotein, and there-
fore, it is likely that this protein does not provide pro-
tection to the fetus during these sensitive developmental
periods (36, 148). Furthermore, because EDCs may not
bind to �-fetoprotein or other high-affinity proteins in
the blood (148 –150) and can have a higher binding
affinity to proteins like albumin (compared with natural
estrogens) (36, 149), the balanced buffer system in place
for endogenous hormones may be disturbed (Fig. 1A).
Thus, whereas only a portion of endogenous hormones
are bioavailable, the entirety of a circulating EDC could
be physiologically active.

The effects of hormones and EDCs are dependent on
dose, and importantly, low (physiological) doses can be
more effective at altering some endpoints compared with
high (toxicological) doses. There are many well-charac-
terized mechanisms for these dose-specific effects includ-
ing signaling via single vs. multiple steroid receptors due to
nonselectivity at higher doses (30), receptor down-regu-
lation at high doses vs. up-regulation at low doses (151,
152), differences in the receptors present in various tissues
(153, 154), cytotoxicity at high doses (155), and tissue-
specific components of the endocrine-relevant transcrip-
tional apparatus (104, 105). Some of these factors will be
addressed in Section III.B in the section dedicated to
NMDRCs.

F. Intrauterine position and human twins: examples of
natural low-dose effects

Hormones have drastically different effects at differ-
ent periods of development. In a now classical Endo-
crinology paper, Phoenix and colleagues (156) showed
that hormone exposures during early development, and
in particular fetal development, had organizational ef-
fects on the individual, whereby the developing organs
were permanently reorganized by exposure to steroids.
Permanent, nonreversible masculinization of the devel-
oping body plan by androgen exposure in utero is an
example. These organizational effects are in contrast to
the effects of the same hormones, at similar or even

higher doses, on adults. The effects of steroids on indi-
viduals after puberty have been termed activational, be-
cause the effects on target organs are typically transient;
withdrawal of the hormone returns the phenotype of the
individual to the preexposed state (157), although this
is not always the case (158).

One of the most striking examples of the ability of low
doses of hormones to influence a large repertoire of phe-
notypes is provided by the study of intrauterine position-
ing effects in rodents and other animals. The rodent uterus
in particular, where each fetus is fixed in position along
a bicornate uterus with respect to its neighbors, is an
excellent model to study how hormones released from
neighboring fetuses (159) can influence the develop-
ment of endocrine-sensitive endpoints (31). Impor-
tantly, differences in hormonal exposures by intrauter-
ine position are relatively small (see Fig. 2) (160). Thus,
even a small magnitude in differences of hormonal ex-
posures is sufficient to generate effects on behavior,
physiology, and development.

The earliest studies of intrauterine position compared
behavioral characteristics of females relative to their po-
sition in the uterus (161–164); male behavior was also
affected by intrauterine position (161, 165–167). Subse-
quent studies of intrauterine position showed that posi-
tion in the uterus influenced physiological endpoints (157,
160–162, 168–174) as well as morphological endpoints
in female rodents (160, 161, 163, 164, 175–177). Male
physiology and morphological endpoints were similarly
affected by intrauterine position (165, 167, 177–179).

The endocrine milieu of the uterine environment has
been implicated in these effects because differences in hor-
monal exposure have been observed based on intrauterine
position (Fig. 2). The production of testosterone in male
mice starting at approximately d 12 of gestation allows for
passive transfer of this hormone to neighboring fetuses
(159, 160, 180). Thus, fetuses positioned between two
male neighbors have slightly higher testosterone expo-
sures compared with fetuses positioned between one male
and one female or two female neighbors (168, 181–183).
These data indicate that very small differences in hormone
exposures during fetal development are capable of influ-
encing a variety of endpoints, many of which become ap-
parent only during or after puberty. Furthermore, small
differences in hormone exposures may be compounded by
other genetic variations such as those normally seen in
human populations.

Intrauterine effects have been observed in animals with
both large litters and singleton or twin births including
ferrets, pigs, hamsters, voles, sheep, cows, and goats (136,
184, 185). But perhaps the most compelling evidence for
intrauterine effects comes from human twin studies. Many
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studies have found that the sex of the fetuses impacts the
phenotype of one or more of the twins, with significant
evidence suggesting that male twins strongly influence a
female co-twin; endpoints including sensation seeking
(186), ear superiority (187, 188), brain and cerebellum
volume (189), masculine/feminine behaviors and aggres-
sion levels (190–192), handedness (193, 194), reproduc-
tive fitness (192, 195), finger length ratios (196), risk for
developing eating disorders (197), and birth weight (198)
were all affected in females with a male twin. From these
studies, many authors have concluded that testosterone
from male fetuses influences developmental parameters in
female twins; typically, male same-sex twins do not dis-
play altered phenotypes for these endpoints. Yet impor-
tantly, limited studies indicate that female twins can in-
fluence their uterine pairs, with some behaviors affected in
male co-twins (191); breast cancer incidence in women
and testicular cancer in men have also been shown to be
influenced by having a female co-twin (83, 199, 200).

Although the mechanisms for these intrauterine effects
are not completely understood, very small differences in
hormone exposures have been implicated, making the ef-
fects of twin gestations a natural example of low-dose

phenomena. In the human fetus, the adrenals
produce androgens that are converted to estro-
gen by the enzyme aromatase, specifically in
the placenta. In a human study designed to
compare hormone levels in the amniotic fluid,
maternal serum, and umbilical cord blood of
singleton male and female fetuses, significant
differences were observed in the concentra-
tions of testosterone, androstenedione (A4),
and estradiol (201). Specifically, amniotic fluid
concentrations of testosterone and A4 were ap-
proximately twice as high in male fetuses,
whereas estradiol concentrations were slightly,
but significantly, higher in female fetuses. Yet,
interestingly, there were no differences for any
of the hormones in maternal serum, similar to
findings in mice that litters with a high propor-
tion of males or females did not impact testos-
terone, estradiol, or progesterone serum levels
in mothers (180). In umbilical cord serum, con-
centrations of A4 and estradiol were higher in
males compared with females (201), although
it must be noted that these samples were col-
lected at parturition, long after the fetal period
of sexual differentiation of the reproductive
organs.

Several studies have specifically compared
steroid hormone levels in maternal and umbil-
ical cord blood samples collected from same-

sex and opposite-sex twins. Male twins, whether their
co-twin was a male or a female, had higher blood concen-
trations of progesterone and testosterone compared with
female twins (202). Furthermore, for both sexes, dizygotic
twins had higher levels of these hormones, as well as es-
tradiol, compared with monozygotic twins. Fetal sex had
no effect on maternal concentrations of testosterone, pro-
gesterone, or estrogen, suggesting that any differences ob-
served in fetal samples are due to contributions from the
fetuses’ own endocrine systems and the placental tissue
(203). Yet an additional study conducted in women car-
rying multiple fetuses (more than three) indicates that
both estradiol and progesterone concentrations in ma-
ternal plasma increase with the number of fetuses, and
when fetal reduction occurs, these hormone levels re-
main elevated (204).

It has been proposed that low-dose effects seen in dif-
ferent intrauterine positions in litter-bearing animals
could be an evolutionary adaptation, whereby the geno-
types of the fetuses are relatively similar but a range of
phenotypes can be produced via differential hormone ex-
posures (136, 168). For example, female mice positioned
between two females are more docile and thus have better

Figure 2.

Figure 2. Intrauterine position produces offspring with variable circulating hormone
levels. Fetuses are fixed in position in the bicornate rodent uterus, thus delivery via
cesarean section has allowed for study of the influence of intrauterine position on
behaviors, physiology, and organ morphology. Illustrated here are the differences in
estradiol (E2) and testosterone (T) concentrations measured in male and female
fetuses positioned between two male neighbors (2M), two female neighbors (2F), or
neighbors of each sex (1MF). Direction of blood flow in the uterine artery (dark
vessel) and vein (light vessel) is indicated by an arrow (159).
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reproductive success when resources are plentiful, but fe-
males positioned between two males are more aggressive
and therefore are more successful breeders under stressful
conditions (161, 171, 175). In this way, a mother produces
offspring with variable responses to environmental con-
ditions, increasing the chances that her own genetic ma-
terial will continue to be passed on. Yet although there is
evidence to suggest that a variable intrauterine environ-
ment is essential for normal development (171), intrauter-
ine positional effects appear to have little effect on off-
spring phenotypes in inbred rodent strains (168, 205).
This result may be related to the link between genetic di-
versity and hormone sensitivity (206, 207), suggesting
that outbred strains are the most appropriate for studying
endocrine endpoints and are also most similar to the ef-
fects of low doses of hormones on human fetuses.

Finally, it has been proposed that similar mechanisms
are used by the developing fetus in response to natural
hormones via intrauterine position and EDCs with hor-
monal activity (136). To this end, several studies have
examined the effects of both exposure to an EDC and
intrauterine position or have considered the effect of in-
trauterine position on the response of animals to these
chemicals (174, 176, 181, 208, 209). For example, one
study found that intrauterine position affected the mor-
phology of the fetal mammary gland, yet position-specific
differences were obliterated by BPA exposure (176). Ad-
ditional studies suggest that prostate morphology is dis-
rupted by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
exposure in males positioned between two females, but
this chemical does not affect prostate morphology in males
positioned between two males (181). Finally, male rodents
positioned between two males have higher glucose intol-
erance than males positioned between two females, yet
when these males are given a diet high in phytoestrogens,
glucose tolerance is dramatically improved in the males
positioned between two males, whereas their siblings po-
sitioned between two females do not benefit (209). What
is clear from these studies is that low doses of natural
hormones are capable of altering organ morphology,
physiology, and reproductive development, similar to the
effects of EDCs.

It has been suggested that the endocrine system allows
for homeostatic control and that the aim of the endocrine
system is to “maintain normal functions and development
in the face of a constantly changing environment” (210).
Yet studies from intrauterine position, together with stud-
ies of EDCs (see Sections II.C–F), clearly indicate that the
fetal endocrine system cannot maintain a so-called ho-
meostasis and is instead permanently affected by expo-
sures to low doses of hormones.

II. Demonstrating Low-Dose Effects Using a
WoE Approach

A. Use of a WoE approach in low-dose EDC studies
In 2001, the NTP acknowledged that there was evi-

dence to support low-dose effects of DES, genistein, me-
thoxychlor, and nonylphenol (2). Specifically, the NTP
expert panel found that there was sufficient evidence for
low-dose effects of DES on prostate size; genistein on brain
sexual dimorphisms, male mammary gland development,
and immune responses; methoxychlor on the immune sys-
tem; and nonylphenol on brain sexual dimorphisms, thy-
mus weight, estrous cyclicity, and immune responses. Us-
ing the NTP’s definitions of low dose (i.e. effects occurring
in the range of typical human exposures or occurring at
doses lower than those typically used in standard testing
protocols), we propose that most if not all EDCs are likely
to have low-dose effects. Yet an important caveat of that
statement is that low-dose effects are expected for partic-
ular endpoints depending on the endocrine activity of the
EDC, and not for any/all endocrine-related endpoints. For
example, if a chemical blocks the synthesis of a hormone,
blood levels of the hormone are expected to decline, and
the downstream effects should then be predicted from
what is known about the health effects of low hormone
levels. In contrast, if a chemical binds a hormone receptor,
the effects are expected to be very complex and to be both
tissue specific and dose specific. Finally, most EDCs in-
teract with multiple hormone pathways, or even multiple
hormone receptors, making the expected effects even more
complex and context specific (211–213).

Table 3 summarizes a limited selection of chemicals
that have evidence for low-dose effects, with a focus on in
vivo animal studies. As seen by the results presented in this
table, low-dose effects have been observed in chemicals
from a number of classes with a wide range of uses in-
cluding natural and synthetic hormones, insecticides, fun-
gicides, herbicides, plastics, UV protection, and other in-
dustrial processes. Furthermore, low-dose effects have
been observed in chemicals that target a number of endo-
crine endpoints including many that act as estrogens and
antiandrogens as well as others that affect the metabolism,
secretion, or synthesis of a number of hormones. It is also
clear from this table that the cutoff for low-dose effects is
not only chemical specific but also can be effect dependent.
And finally, although this table is by no means compre-
hensive for all EDCs or even the low-dose effects of any
particular chemical, the affected endpoints cover a large
range of endocrine targets.

Several EDCs have been well studied, and the number
of publications focusing on low-dose effects on a partic-
ular developmental endpoint is high; however, other
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chemicals are less well studied with fewer studies pointing
to definitive low-dose effects on a given endpoint. In fact,
there are a significant number of EDCs for which high-
dose toxicology testing has been performed and the no
observed adverse effect level (NOAEL) has been derived,
but no animal studies in the low-dose range have been

conducted, and several hundred additional EDCs where
no significant high- or low-dose testing has been per-
formed (see Table 4 for examples). Balancing the large
amount of data collected from some well-studied chemi-
cals like BPA and atrazine with the relative paucity of data
about other chemicals is a difficult task.

TABLE 3. EDCs with reported low-dose effects in animals (or humans, where stated)

Chemical Use EDC action Low-dose cutoff Affected endpoint Refs.

Aroclor 1221
(PCB mixture)

Coolants, lubricants,
paints, plastics

Mimics estrogens, antiestrogenic
activity, etc.

0.1–1 mg/kg (produces human blood levels) Brain sexual dimorphisms 683, 684

Atrazine Herbicide Increases aromatase expression 200 �g/liter (334, 335) Male sexual
differentiation/development

See this
review

BPA Plastics, thermal
papers, epoxy
resins

Binds ER, mER, ERR�, PPAR�, may
weakly bind TH receptor and AR

400 �g/kg � d (produces human blood
concentrations)

Prostate, mammary gland, brain
development and behavior,
reproduction, immune
system, metabolism

See this
review

Chlordane Insecticide Binds ER 100 ng/g (produces human blood levels) Sexually dimorphic behavior 685
Chlorothalonil Fungicide, wood

protectant
Aromatase inhibitor 164 �g/liter (environmental concentrations,

EPA)
Corticosterone levels

(amphibians)
686

Chlorpyrifos Insecticide Antiandrogenic 1 mg/kg � d (EPA) Acetylcholine receptor binding
(brain)

687

DDT Insecticide Binds ER 0.05 mg/kg (EPA) Neurobehavior 688
DES Synthetic hormone Binds ER 0.3–1.3 mg/kg � d (dose typically

administered to pregnant women)
Prostate weight 689

Dioxin (TCDD) Industrial byproduct Binds AhR 1 �g/kg � d (397) Spermatogenesis, immune
function and oxidative stress,
tooth and bone
development, female
reproduction, mammary
gland, behavior

See this
review

Genistein Phytoestrogen Binds ER 50 mg/kg (EPA) Brain sexual dimorphisms 690
Heptachlor Insecticide Induces testosterone hydroxylases 0.15 mg/kg � d (EPA) Immune responses 691
Hexachlorobenzene Fungicide Modulates binding of ligand to

TRE, weakly binds AhR
0.08 mg/kg � d (EPA) Anxiety and aggressive

behaviors
692

Maneb Fungicide Inhibits TSH release, may bind
PPAR�

5 mg/kg � d (EU Commission) Testosterone release 693

Methoxychlor Insecticide Binds ER 5 mg/kg � d (WHO) Immune system 694, 695
4-Methylbenzylidine

camphor
UV screen Weakly estrogenic 10 mg/kg � d (Europa) Sexual behavior 696

Methyl paraben Preservative Estrogenic 1000 mg/kg � d (EFSA) Uterine tissue organization 697
Nicotine Natural alkaloid in

tobacco
Binds acetylcholine receptors,

stimulates epinephrine
Human use of nicotine substitutes Incidence of cryptorchidism

(humans)
698

Nonylphenol Detergents Weakly estrogenic 15 mg/kg � d (EPA) Testosterone metabolism 699
Octylphenol Rubber bonding,

surfactant
Weakly binds ER, RXR, PRGR 10 mg/kg � d (700) Testes endpoints 701

Parathion Insecticide 0.2 mg/kg � d (WHO) Cognitive and emotional
behaviors

702

PBDE-99 Flame retardant Alters TH synthesis 0.3 mg/kg � d (EPA) TH levels in blood 703
PCB180 Industrial lubricant,

coolant
Impairs glutamate pathways,

mimics estrogen
Examined normal human populations Diabetes (humans) 704

PCB mixtures Coolants, lubricants,
paints, plastics

Binds AhR, mimic estrogens,
antiestrogenic activity, etc.

Each at environmentally relevant levels TH levels 705

Perchlorate Fuel, fireworks Blocks iodide uptake, alters TH 0.4 mg/kg � d (436) TSH levels (humans) See this
review

Sodium fluoride Water additive (to
prevent dental
caries), cleaning
agent

Inhibits insulin secretion, PTH, TH 4 mg/liter water (EPA standard) Bone mass and strength 706

Tributyltin oxide Pesticide, wood
preservation

Binds PPAR� 0.19 mg/kg � d (EPA) Obesity 707

Triclosan Antibacterial agent Antithyroid effects, androgenic and
estrogenic activity

12 mg/kg � d (Europe SCCP) Altered uterine responses to
ethinyl estradiol

708

Vinclozolin Fungicide Antiandrogenic 1.2 mg/kg � d (EPA) Male fertility 709

EDC action indicates that for some chemicals, an effect is observed (i.e. estrogenic, androgenic), but for many EDCs, complete details of receptor binding are
unavailable or incomplete. Low-dose cutoff means the lowest dose tested in traditional toxicology studies, or doses in the range of human exposure, depending on the
data available. Affected endpoint means at least one example of an endpoint that shows significant effects below the low-dose cutoff dose. This list is not
comprehensive, and the lack of an endpoint on this table does not suggest that low doses do or do not affect any other endpoints. AR, Androgen receptor; EFSA,
European Food Safety Authority; ERR, estrogen related receptor; PCB, polychlorinated biphenyl; PPAR�, peroxisome proliferator-activated receptor-�; PRGR,
progesterone receptor; RXR, retinoid X receptor; SCCP, Scientific Committee on Consumer Products; TH, thyroid hormone; TRE, thyroid response element; WHO, World
Health Organization.
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WoE approaches have been used in a large number of
fields to determine whether the strength of many publica-
tions viewed as a whole can provide stronger conclusions
than any single study examined alone. Although the term

‘weight of evidence’ isused inpublicpolicyand the scientific
literature, there is surprisingly little consensus about what
this term means or how to characterize the concept (214).
Historically, risk assessors have used qualitative ap-

TABLE 4. Select examples of EDCs whose potential low-dose effects on animals remain to be studied

Chemical Use EDC action Low-dose cutoff

Antiseptics and preservatives
Butyl paraben Preservative (cosmetics) Estrogenic, antiandrogenic 2 mg/kg � d (EPA)
Propyl paraben Antimicrobial preservative found

in pharmaceuticals, foods,
cosmetics, and shampoos

Estrogenic activity LOAEL 10 mg/kg � d,
NOEL 6.5 mg/kg � d
(Europa)

Cosmetics and personal care
products

2,4-Dihydroxybenzophenone UV absorber in polymers,
sunscreen agent

Estrogenic activity Not identified

3-Benzylidene camphor UV blocker used in personal care
products

Estrogenic activity 0.07 mg/kg � d (710)

4,4�-Dihydroxybenzophenone UV light stabilizer used in
plastics, cosmetics, adhesives,
and optical fiber

Estrogenic activity Not identified

Benzophenone-2 Used in personal care products
such as aftershave and
fragrances

Estrogenic activity, changes in T4,
T3, and TSH levels, alterations
in cholesterol profile

NOEL 10–333 mg/kg � d
(711)

Benzophenone-3 UV filter Estrogenic, PPAR� activator 200 mg/kg � d (Europa)
Multiple use (other)

Melamine Flame-retardant additive and rust
remover; used to make
laminate, textile, and paper
resins; metabolite of
cyromazine

Affects voltage-gated K� and
Na� channels and Ca2�

concentrations in hippocampal
neurons

63.0 mg/kg � d (FDA)

Resorcinol Used in the manufacturing of
cosmetics, dyes, flame
retardants, hair dye
formulations, pharmaceuticals,
skin creams, and tires

Alters T4 and TSH levels 80.00 mg/kg � d
(Europa)

Pesticides
Aldrina Insecticide Estrogenic activity 0.025 mg/kg � d

(Health Canada)
Alachlor Herbicide Decreases serum T4, binds PR,

weakly binds ER
1 mg/kg � d (EPA)

Amitrole Herbicide Decreases thyroid hormone 0.12 mg/kg � d (FAO)
Bitertanol Fungicide Alters aromatase 30 mg/kg � d (EPA)
Carbendazim Fungicide Affects FSH, LH, and testosterone

levels; alters spermatogenesis
and Sertoli cell morphology

8 mg/kg � d (712)

Diazinon Insecticide Alters glucocorticoids 0.065 mg/kg � d (CDC)
Endrina Insecticide Stimulates glucocorticoid

receptor
0.025 mg/kg � d (CDC)

Fenoxycarb Insecticide Alters acetylcholinesterase 260 mg/kg � d (CDC)
Mirexa Insecticide Decreases testosterone levels 0.075 mg/kg � d (CDC)
Zineb Fungicide Alters T4 and dopamine levels LOAEL 25 mg/kg � d

(EPA)
Ziram Fungicide Alters norepinephrine levels 1.6 mg/kg � d (EPA)

Resins
Bisphenol F Used in polycarbonates Alters T4, T3, and adiponectin

levels, has estrogenic activity
LOAEL 20 mg/kg � d

(713)
Styrene Precursor to polystyrene Alters dopamine 200 mg/kg � d (EPA)

PPAR�, peroxisome proliferator-activated receptor-�; PR, progesterone receptor.
a These chemicals were identified in the 1990s as part of the dirty dozen, 12 chemicals that were acknowledged to be the worst chemical offenders because of their
persistence in the environment, their ability to accumulate through the food chain, and concerns about adverse effects of exposures to wildlife and humans. These
chemicals were banned by the Stockholm convention and slated for virtual elimination. Yet there is still very little known about the low-dose effects of these chemicals,
likely in the range of past and current human and/or wildlife exposures.
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proaches (i.e. professional judgment to rank the value of
different cases) and quantitative approaches (i.e. scoring
methods to produce statistical and mathematical determi-
nations of chemical safety), but it has been argued that
these methods lack transparency and may produce find-
ings that are unrepeatable from one risk assessor to an-
other (215, 216). Whatever the method used, when EDCs
are being assessed, it is important to use the principles of
endocrinology to establish the criteria for a WoE ap-
proach. We do this in Section II.B, identifying three key
criteria for determining whether a study reporting no ef-
fect should be incorporated into a WoE approach. It also
should be noted that in epidemiology, the term ‘weight of
evidence’ is typically not used, but the concept is actuated
by meta-analysis, formally and quantitatively combining
data across studies, including a plot of individual and
pooled study findings and also a measure of heterogeneity
of findings between studies.

For some well-studied chemicals, there are large num-
bers of studies showing both significant effects, and ad-
ditional studies showing no effects, from low-dose expo-
sures. In these cases, extensive work is needed to deal with
discordant data collected from various sources; studies
showing no effect of low-dose exposures must be balanced
in some way with those studies that do show effects. As
stated by Basketter and colleagues (217), “it is unwise to
make a definitive assessment from any single piece of in-
formation as no individual assay or other assessment . . .
is 100% accurate on every occasion . . . This means that
from time to time, one piece of conflicting data has to be
set aside.” WoE approaches in EDC research have typi-
cally dealt with datasets that have some conflicting stud-
ies, and these conflicts are even more difficult to sort out
when studies have attempted to directly replicate pub-
lished findings of adverse effects (see for example Refs.
218–221).

Most previously published WoE analyses have exam-
ined chemicals broadly (asking questions such as, “Does
BPA produce consistent adverse effects on any end-
point?”) (see Ref. 222). This can lead to problems includ-
ing those encountered by the NTP expert panel, which
found that there was some evidence for low-dose effects of
BPA on certain endpoints but mixed findings for other
endpoints. For example, the panel noted that some studies
found low-dose effects of BPA on the prostate, but other
studies could not replicate these findings. In Section II.B,
we address criteria that are needed to accept those studies
that are unable to detect low-dose effects of chemicals;
these criteria were not used by the NTP in 2001, but they
are essential to address controversies of this sort and per-
form WoE analyses using the best available data. In the
sections that follow, we employed a WoE approach to

examine the evidence for low-dose effects of single chem-
icals on selected endpoints or tissues, also paying attention
to when in development the EDCs in question were
administered.

B. Refuting low-dose studies: criteria required for
acceptance of studies that find no effect

Over the past decade, a variety of factors have been
identified as features that influence the acceptance of low-
dose studies (69, 71, 76, 77, 90, 205, 223, 224). In fact, the
NTP low-dose panel itself suggested that factors such as
strain differences, diet, caging and housing conditions,
and seasonal variation can affect the ability to detect low-
dose effects in controlled studies (2). In particular, three
factors have been identified; when studies are unable to
detect low-dose effects, these factors must be considered
before coming to the conclusion that no such effects exist.

1. Negative controls confirm that the experimental system
is free from contamination

Although all scientific experiments should include neg-
ative (untreated) controls, this treatment category is par-
ticularly important for EDC research. When a study fails
to detect low-dose effects, the observed response in control
animals should be compared with historical untreated
controls; if the controls deviate significantly from typical
controls in other studies, it may indicate that these animals
were, in fact, treated or contaminated in some way or that
the endpoint was not appropriately assessed (77, 205,
225). For example, if an experiment was designed to mea-
sure the effect of a chemical on uterine weight, and the
control uteri have weights that are significantly higher
than is normally observed in the same species and strain,
these animals may have been inadvertently exposed to an
estrogen source, or the uteri may not have been dissected
properly by the experimenters. In either case, the study
should be examined carefully and likely cannot be used to
assess low-dose effects; of course, untreated controls
should be monitored constantly because genetic drift and
changes in diet and housing conditions can also influence
these data, thus explaining changes from historical con-
trols. Importantly, several types of contamination have
been identified in studies of EDCs including the leaching
of chemicals from caging or other environmental sources
(226, 227), the use of pesticide-contaminated control sites
for wildlife studies and contaminated controls in labora-
tory studies (76), and even the use of food that interferes
with the effects of EDCs (224, 228). It is also important to
note that experiments must consider the solvent used in the
administration of their test chemical, and thus good neg-
ative controls should test for effects of the solvent itself.
Using solvent negative controls helps prevent false posi-
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tives as well as the possibility that the vehicle could mask
the effects of the chemical being studied.

2. Positive controls indicate that the experimental system is
capable of responding to low doses of a chemical acting on
the same pathway

Many studies do not include a positive control, either
because of the size and cost of the experiment when in-
cluding an additional treatment or because an appropriate
positive control has not been identified for the endpoint
being examined. If the experiment detects an effect of the
chemical in question, the exclusion of a positive control
does not necessarily affect the interpretation of the results;
instead, it can be appropriately concluded that the test
chemical is significantly different from unexposed (but
similarly handled/treated) negative controls. However, if
the study fails to detect low-dose effects of a test chemical,
no convincing conclusion can be made; in this case, a pos-
itive control is required to demonstrate that the experi-
mental system was capable of detecting such effects (71,
75, 77, 205).

Several issues must be considered when addressing
whether the positive control confirms the sensitivity of the
assay. First, an appropriate chemical must be selected, and
it must be administered via the appropriate route, i.e. if the
test chemical is administered orally, a positive control that
is orally active, such as ethinyl estradiol, should be used;
if the test chemical is administered sc, a positive control
that is active via this route, such as 17�-estradiol, is most
appropriate. The use of 17�-estradiol in studies that use
oral exposures is particularly inappropriate (see Ref. 229)
for example) because this hormone, like most natural ste-
roids, has very low oral activity (77). Second, the positive
control chemical must be examined, and effective, at ap-
propriately low doses. Thus, if the test chemical is 100
times less potent than the positive control, a dose of the
positive control 100 times lower than the test com-
pound must produce effects (69, 71, 205). For example,
studies that report effects of ethinyl estradiol only at
doses that are hundreds of times higher than the dose
that is effective in contraceptives (230) are not capable
of detecting low-dose effects of test chemicals. Without
appropriate and concurrent positive and negative con-
trols, studies that fail to detect low-dose effects of test
chemicals should be rejected.

3. Species and animal strains that are responsive to EDCs
must be used

The NTP expert panel specifically noted that “because
of clear species and strain differences in sensitivity, ani-
mal-model selection should be based on responsiveness to
endocrine-active agents of concern (i.e. responsive to pos-

itive controls), not on convenience and familiarity” (2). An
analysis of the BPA literature clearly showed that many of
the studies that failed to detect effects of low doses used the
Charles River Sprague-Dawley rat (75); this strain was
specifically bred to have large litters (231), and many gen-
erations of inbreeding have rendered the animal relatively
insensitive to estrogens (205). The NTP expert panel noted
the lack of effects of BPA on Sprague-Dawley rats and
concluded that there were clear differences in strain sen-
sitivity to this chemical (2). Importantly, this may not be
true for Sprague-Dawley rats that originate from other
vendors, indicating that animal origin can also influence
EDC testing.

Many studies in mice (138, 206, 207, 232–234) and
rats (232, 235–239) have described differences displayed
between two (or more) animal strains to a natural hor-
mone or EDC. Often these differences can be traced to
whether a strain is inbred or outbred. Genetically diverse
strains are generally found to be more sensitive to estro-
gens (206). Importantly, well-controlled studies demon-
strate that strain differences in response to estrogen treat-
ment may be organ dependent or may even differ between
levels of tissue organization within the same organ. For
example, the Sprague-Dawley rat is more sensitive to ethi-
nyl estradiol than other strains when measured by uterine
wet weight. However, when other endpoints were mea-
sured, i.e. height of cells in the uterine epithelium, the
Sprague-Dawley rat was indistinguishable from the DA/
Han rat; instead, the Wistar rat had the most heightened
response (237). Additionally, there are data to indicate
that strain differences for one estrogen may not be appli-
cable for all estrogenic chemicals. In comparing the re-
sponses of DA/Han, Sprague-Dawley, and Wistar rats to
other xenoestrogens, additional differences were observed
including a greater increase in uterine wet weight of DA/
Han and Sprague-Dawley rats but not Wistar rats after
exposure to 200 mg/kg BPA; increased uterine epithelium
thickness was observed in Wistar and Sprague-Dawley
rats but not DA/Han rats after exposure to 200 mg/kg
octylphenol (237). Attempts have been made, at times suc-
cessfully, to map the differences in strain response to ge-
netic loci (240). However, it appears that strains with dif-
ferences in response that manifest in some organs do not
have divergent responses in other organs, a phenomenon
that is not explained by genetic differences alone. For these
reasons, the NTP’s recommendation that scientists use an-
imals that are proven responsive to EDCs (2) must be
observed.

4. Additional factors?
Additional factors have also been identified as influen-

tial in the ability (or inability) to detect low-dose effects in

Endocrine Reviews, June 2012, 33(3):378–455 edrv.endojournals.org 393



EDC studies. Although these factors must be considered
when interpreting studies and using a WoE approach,
some issues that were previously identified as essential
factors in the design of studies (i.e. route of administra-
tion) have more recently been disputed (241).

The first factor is the use of good laboratory practices
(GLP) in the collection of data. When assessing the EDC
literature for risk assessment purposes, the FDA and Eu-
ropean Food Safety Authority (EFSA) have given special
prominence to studies that complied with GLP guidelines,
essentially giving scientific priority to industry-funded
studies because that group typically conducts GLP
guideline studies (33, 242). Because GLP guidelines are
designed only to control data collection, standards for
animal care, equipment, and facility maintenance, and
they do not ensure that studies were designed properly
with the appropriate controls, it has been argued that
the use of GLP methods is not appropriate or required
for EDC studies (69).

GLP studies are typically large, with dozens of animals
studied for each endpoint and at each time point. Thus, it
has been concluded that these studies are better simply
because they are larger. Yet small studies designed with the
use of power analysis, statistical tools that allow research-
ers to determine a priori the number of animals needed to
determine significant differences based on effect size, are
equally capable of detecting effects while reducing the
number of animals used (69). GLP studies also typically
(but not necessarily) rely upon standardized assays, which
are not generally considered contemporary tools and are
often shown to be incapable of detecting adverse effects on
endpoints that employ modern tools from molecular ge-
netics and related disciplines. Furthermore, some fields of
EDC research have no GLP studies (243). Finally, there is
no published evaluation of whether studies performed un-
der GLP are more capable of providing accurate results.
The priority given to GLP studies therefore does not ap-
pear to have been justified based on any comparative anal-
ysis. Thus, as long as studies include appropriate measures
of quality assurance, they need not be performed under
GLP standards to provide reliable and valuable informa-
tion, and many GLP studies are inadequate to assess im-
portant and relevant endpoints. Instead, the most valuable
studies consider the factors presented above, along with
appropriate dose selections and choice of endpoint.

The second factor worth considering is the source of
funding for studies. In several fields, significant contro-
versy has been produced based on the results obtained
from independent scientists compared with results ob-
tained from scientists affiliated with the chemical industry
(75, 76). Funding source per se should not dictate the
outcome of a research study, but that does not mean that

researchers are not subject to underlying biases. In our
own WoE analyses, presented in Sections II.C–G, we do
not discount studies merely because they were conducted
with industry funds, nor do we lend higher weight to stud-
ies conducted in independent or government laboratories;
if a study, regardless of funding, finds no effect of a chem-
ical, it is given weight only if the three criteria described in
Sections II.B.1–3 (successful and appropriate negative
and positive controls and appropriate choice of animal
model) were met.

To perform a WoE evaluation, we identified some basic
information about the chemical in question, the dose that
would be considered a low-dose cutoff, and the studies in
support of and against low-dose effects. We then consid-
ered whether the majority of studies found effects of low
doses of a chemical on a single endpoint in question. If
studies did not find low-dose effects, we considered
whether they adhered to the criteria discussed above for
proper design of an EDC low-dose study. In particular, we
considered whether appropriate animal strains as well as
positive and negative controls were used. With regard to
animal strain, as discussed briefly in Section II.B.3, there
is variability between animal strains that can significantly
influence the ability to detect effects of EDCs; using in-
sensitive strains to produce negative data cannot refute
positive data in a sensitive strain. In several cases, it was
easy to conclude that there was a strong case for low-dose
effects because there were no studies finding no effects at
low doses or because all of the negative studies were in-
appropriately designed. For other chemicals, a significant
number of studies found effects on the endpoint being
considered, but other (adequately designed) studies re-
futed those findings. Under those circumstances, we de-
termined whether the findings of harmful effects came
from multiple laboratories; when they did, we cautiously
concluded that there was evidence for low-dose effects.
Below (Sections II.C–G), we present five examples where
a significant number of studies were available examining
low-dose effects of an EDC on a single particular
endpoint.

C. BPA and the prostate: contested effects at low doses?
As discussed briefly above, BPA is one of the best-stud-

ied EDCs, with more than 200 published animal studies,
many of which focused on low doses (29, 31). The effects
of this chemical on wildlife species have also been de-
scribed in detail (28). BPA is found in a myriad of con-
sumer products, and it leaches from these items under
normal conditions of use (4). It has also been regularly
detected in air, water, and dust samples. The majority of
individuals in industrialized countries have BPA metabo-
lites in their urine, and trends indicate increasing expo-
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sures in developing nations like China (87, 244). Although
it was long suspected that most human exposures origi-
nate from BPA contamination of food and beverages, a
study comparing the excretion of BPA metabolites with
the length of time spent fasting suggests that there are also
likely to be significant exposures from sources other than
food and beverages (245). BPA has recently been shown to
be used in large quantities in thermal and recycled papers
and can enter the skin easily via dermal absorption (246–
248). Thus, despite the large amount of information avail-
able on BPA sources, our understanding of how these
sources contribute to total human exposures remains
poor; these studies also point to significant gaps in current
knowledge about BPA metabolism in humans (243).

BPA binds to the nuclear and membrane ER, and thus
most of the effects of this chemical have been attributed to
its estrogenic activity (27). However, there is evidence that
it can activate a number of additional pathways, including
thyroid hormone receptor, androgen receptor, as well as
peroxisome proliferator-activated receptor-� signaling
pathways (249–252). The cutoff for a low dose has been
set at several different concentrations depending on which
studies and definitions are used (see Table 1). The EPA
calculated a reference dose for BPA of 50 �g/kg � d based
on a LOAEL of 50 mg/kg � d (38). More recent pharma-
cokinetic scaling experiments have estimated that expo-
sures to approximately 400 �g/kg � d produce blood con-
centrations of unconjugated BPA in the range of human
blood concentrations (4). Thus, for the two WoE analyses
of the BPA literature we conducted, doses of 400 �g/kg � d
or lower were considered low dose; pharmacokinetic stud-
ies from nonhuman primates support the appropriateness
of this dose for approximating human exposure levels
(253). Furthermore, because this dose is below the toxi-
cological LOAEL, it is a conservative cutoff for low-dose
studies (see Refs. 3 and 38 and Table 1).

One of the most well studied and hotly debated exam-
ples of a low-dose effect comes from the BPA literature;
regulatory agencies and scientists have addressed several
times whether low doses of BPA during fetal and perinatal
development affect the rodent prostate (118, 205, 254,
255). In 1997, the first study on BPA and the prostate
determined that fetal exposure to low doses (2 and 20
�g/kg � d administered orally to pregnant mice) increased
the weight of the adult prostate compared with unexposed
male offspring (256). Since that time, several additional
studies have verified that prostate weight is affected by
fetal exposure to similar low doses (257–259). Studies
have also shown that low doses of BPA affect androgen
receptor binding activity in the prostate (257), tissue or-
ganization, and cytokeratin expression in the gland (260–
262) as well as the volume of the prostate and the number

and size of dorsolateral prostate ducts (208). Several re-
cent studies have also examined whether low doses of BPA
(10 �g/kg � d) influence the incidence of adult-onset pros-
tatic intraepithelial neoplasia (PIN) lesions. Perinatal BPA
exposure, whether administered orally or sc to pups, in-
creases the incidence of PIN lesions in response to a mix-
ture of testosterone and estradiol in adulthood (139, 141,
263); this hormonal cocktail was designed to mimic the
endocrine changes associated with aging in men that also
typically accompany the onset of prostate cancer. In ad-
dition to the effects of BPA on PIN lesions, these low doses
also produced permanent alterations in the epigenome of
exposed males, with prostates displaying completely
unmethylated sequences in genes that are hypermethy-
lated in unexposed controls (140, 263). In examining
these studies, although the same effects of BPA on the
prostate were not observed in all studies, there is an
obvious trend demonstrating that low doses of BPA dur-
ing early development significantly affect several as-
pects of prostate development.

Since the initial report showing effects of low doses on
the prostate, approximately nine studies, including several
designed specifically to replicate the original positive
study, have shown no effects of low doses on the prostate
(264–272); every one of these studies examined the pros-
tate weight, and Ichihara et al. (264) also examined the
effects of BPA on PIN lesions (without hormonal treat-
ment) and the response of the prostate to a chemical car-
cinogen. Three of these studies failed to include a positive
control of any kind (264, 268, 270); three studies used
DES as a positive control but found no effect from expo-
sure to this potent xenoestrogen (265–267) (i.e. the pos-
itive control failed); another study used 17�-estradiol as a
positive control, inappropriately administered orally, and
found no effects of this hormone on the prostate (271); and
two studies used an estrogenic positive control (ethinyl
estradiol) and found effects from its exposure, but only at
inappropriately high doses (269, 272). These two studies
clearly showed that the positive control dose was too high,
because rather than increase the weight of the prostate (as
seen after low doses of estrogens in other studies), the
positive control decreased the weight of the adult prostate
(269, 272).

Although this topic was once considered controversial,
using a WoE approach, it is clear that there is strong ev-
idence in support of low-dose effects of BPA on the de-
velopment of the prostate. The evidence clearly shows that
several endpoints, including prostate weight, were af-
fected in similar ways in multiple studies from several dif-
ferent labs at doses below 400 �g/kg � d; most effects were
seen at doses below 50 �g/kg � d. Furthermore, PIN lesions
were reported after neonatal exposure to 10 �g/kg � d with
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hormonal treatment in adulthood. No appropriately con-
ducted studies contest this evidence. Therefore, the WoE
analysis demonstrates that low doses of BPA significantly
alter development of the rodent prostate. The NTP’s re-
view of the BPA literature in 2008 indicated that this
agency agrees that there is now significant evidence that
low-dose BPA adversely affects development of the pros-
tate (273).

D. BPA and the mammary gland: undisputed evidence
for low-dose effects

The mammary gland is a conspicuous choice to exam-
ine the effects of estrogenic compounds because this organ
depends on estrogen for proper development at several
critical periods in life (274). The fetal gland expresses ER
in the mesenchymal compartment, and just before birth,
the epithelium becomes ER positive as well (275). At pu-
berty, estrogen is responsible for ductal elongation and
overall development of the gland, allowing the epithelium
to fill the stromal compartment in preparation for preg-
nancy and lactation. Although BPA is an example of a
chemical that has been classified as a weak estrogen be-
cause it binds with a much lower affinity to ER� compared
with 17�-estradiol, even weak estrogens are known to
affect the development of the mammary gland during early
development (276).

In the first study to examine the effects of BPA on the
mammary gland, prepubertal rats were exposed to rela-
tively high doses (100 �g/kg � d or 54 mg/kg � d) for 11 d.
After even this short exposure, mammary gland architec-
ture was affected in both dose groups, with increased num-
bers of epithelial structures and, in particular, structures
that suggest advanced development (277). BPA exposure
also altered proliferation rates of mammary epithelium
and cell cycle kinetics, with an increased number of cells in
S-phase and a decreased number of cells in G1. Although
relatively high doses of BPA were examined, this initial
study indicated that the prepubertal and pubertal gland
could be sensitive to BPA.

Many additional studies have examined another criti-
cal period, the fetal and neonatal periods, which are sen-
sitive to environmental estrogens (78, 276, 278). Mice
exposed prenatally to low doses of BPA via maternal treat-
ment (0.25 �g/kg � d) displayed altered development of
both the stromal and epithelial compartments at embry-
onic d 18, suggesting that exposures affect tissue organi-
zation during the period of exposure (176). In addition,
similar low doses produced alterations in tissue organiza-
tion observed in puberty and throughout adulthood, long
after exposures ended, and even induced pregnancy-like
phenotypes in virgin females (137, 279–282). Female
mice exposed to BPA in utero displayed heightened re-

sponses to estradiol at puberty, with altered morphology
of their glands compared with animals exposed to vehicle
in utero (138). Another study demonstrated that perinatal
BPA exposure altered the mammary gland’s response to
progesterone (283). Remarkably, all of these effects were
observed after maternal exposures to low doses (0.025–
250 �g/kg), suggesting that the gland is extremely sensitive
to xenoestrogen exposures. These studies are in contrast to
one that examined the effects of higher doses (0.5 and 10
mg/kg � d) when BPA was administered for 4 d to the dam,
which reported advanced development of BPA-exposed
glands before puberty but no effects in adulthood (284).

Adult exposure to BPA is only now being examined in
the mouse mammary gland model. A recent study exam-
ined the effects of BPA on mice with mutations in the
BRCA1 gene. This study reported that 4 wks of exposure
to a low dose of BPA altered the tissue organization of the
mammary gland in ways that are similar to the effects
observed after perinatal exposure (285). This study fo-
cused on altered development of the gland during expo-
sure; additional studies are needed to determine whether
these effects are permanent or whether normal mammary
morphology could be achieved by cessation of BPA
exposure.

Another obvious endpoint is the effect of BPA exposure
on mammary cancer incidence. Several studies indicate
that exposure to BPA in utero produces preneoplastic
(281, 286, 287) and neoplastic lesions (286) in the gland
in the absence of any other treatment. Additionally, other
studies show that females exposed to BPA during the peri-
natal period are more sensitive to mammary carcinogens,
decreasing tumor latency and increasing tumor incidence
(287–290). These studies are also supported by subse-
quent studies examining gene and protein expression,
which show that low-dose BPA specifically up-regulates
expression of genes related to immune function, cell pro-
liferation, cytoskeletal function, and estrogen signaling
and down-regulates apoptotic genes (282, 288, 289, 291).

Postnatal BPA exposures also influence mammary can-
cer incidence; animals exposed lactationally to BPA from
postnatal d 2 until weaning displayed decreased tumor
latency and increased tumor multiplicity after treatment
with DMBA [7,12-dimethylbenz(a)anthracene], a carcin-
ogen (292). This study suggested that BPA exposure led to
increased cell proliferation and decreased apoptosis in the
gland and shifted the period where the gland is most sus-
ceptible to mammary carcinogens, a result that has im-
portant implications for human breast cancer. Finally, an
additional study examined the effects of adult BPA expo-
sure on mammary cancer; this study demonstrated that
low doses of BPA accelerate the appearance of mammary
tumors in a tumor-prone mouse strain (293). Interestingly,
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high doses did not have this effect; thus, this study is also
an excellent example of a NMDRC.

Two studies of BPA and the mammary gland seem to
contradict this body of literature, but both examined ex-
tremely high doses. In the first study, Nikaido et al. (294)
exposed female mice to 10 mg/kg BPA from postnatal d
15–18. Mammary glands from these animals were exam-
ined at 4, 8, and 24 wk of age, and no differences were
observed in the exposed animals relative to controls. Al-
though the lack of effects reported in this study could be
due to the high dose employed, they could also be related
totherelativelyshortexposureperiodduringthepreweaning
phase. In the second study, Yin and colleagues (295) ex-
amined the effects of BPA during the first few days after
birth (0.1 or 10 mg BPA, equivalent to approximately 10
and 1000 mg/kg) on the incidence of mammary tumors
after exposure to a mammary carcinogen at puberty. Sim-
ilar to the study described above, this one also examined
the effects of BPA after a relatively short period of expo-
sure (only three injections administered between postnatal
d 2 and 6). Although the study showed that BPA affected
tissue organization, there was no change in the incidence
of tumors in BPA-exposed females. Because both of these
studies examined both high doses and relatively short pe-
riods of exposure, it is difficult to compare them directly
to the studies finding effects of BPA on the mammary
gland after longer exposures to lower doses; at the very
least, they cannot refute studies suggesting that BPA alters
development of this gland.

In summary, the WoE clearly shows that low-dose BPA
exposure affects development of the mammary gland,
mammary histogenesis, gene and protein expression in the
gland, and the development of mammary cancers. In fact,
this example of low-dose effects produced remarkably
similar effects across more than a dozen studies conducted
in several different labs. These results are also consistent
with the effects of low-dose BPA exposure on mammary
epithelial cells in culture (reviewed in Ref. 30). Although
epidemiology studies examining the influence of BPA on
breast cancer rates have proven to be inconclusive at best
(296), to replicate the animal studies discussed above, ep-
idemiologists must collect information about prenatal and
neonatal exposures and relate them to adult breast cancer
incidence. These types of studies would take decades to
conduct (67) and should take into consideration the effects
of other estrogens, because their effects can be additive or
even synergistic (143, 144, 297).

Although our analyses of BPA have focused on its ef-
fects on the mammary gland and prostate (see Sections
II.C–D), it is worth noting that several other endpoints
have strong data to support the hypothesis that BPA has
low-dose effects. In a recent review using similar WoE

approaches, Hunt and colleagues (298) focused on those
studies that examined the effects of BPA on the oocyte,
specifically scrutinizing studies that reported effects, or no
effects, on meiotic aneuploidy and other alterations in the
intracellular organization and chromosome abnormali-
ties. Similar to what has been observed with the prostate
and mammary gland, the effects observed in the oocyte are
variable from study to study, but overall consistent, and
suggest that BPA exposure produces defects in these cells.

A large number of studies have also focused on the
effects of BPA on the brain and behavior, with the most
significant effects on sexually dimorphic regions of the
brain and behaviors (299–307). Other affected behaviors
include social behaviors, learning and anxiety, and ma-
ternal-neonate interactions (reviewed in Refs. 29 and
308). The NTP expert panel statement concluded that
there were significant trends in these behavioral data and
wrote that there was some concern that BPA could have
similar effects in humans (273). Low-dose effects have also
been reported for BPA in the female reproductive tract
(309, 310), immune system (311, 312), maintenance of
body weight and metabolism (313, 314), fertility (315–
317), and the male reproductive tract (259, 318) (see Refs.
29 and 319 for comprehensive reviews).

E. Another controversial low-dose example: atrazine
and amphibian sexual development

Atrazine is an herbicide that is applied in large volumes
to crops, and there is concern that agricultural runoff of
this chemical can affect nontarget animal species, espe-
cially amphibians that live and reproduce in small ponds
and streams where significant amounts of atrazine have
been regularly measured (320–322). It is the most com-
monly detected pesticide in ground and drinking water.
Atrazine induces aromatase expression in cells and ani-
mals after exposure (323); this ultimately causes an in-
crease in the conversion of testosterone to estrogen (324,
325). This effect has been reported in all vertebrate classes
examined: fish, amphibians, reptiles, birds, and mam-
mals, including human cell lines (see Ref. 326 for re-
view). Another well-documented effect of atrazine is
that it decreases androgen synthesis and activity, again,
in every vertebrate class examined (326). In addition,
endocrine-disrupting effects of atrazine occur through a
number of other mechanisms, including antiestrogenic
activity (327), altered prolactin release (328), and in-
creased glucocorticoid release from the adrenal glands
(329, 330), among others (327).

Because of atrazine’s indirect effect on estrogen levels,
one relevant endpoint that has been given attention is the
effect of this chemical on gonad differentiation in various
amphibian species. The early gonad is bipotential, and in
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mammals, the expression of genes on the Y-chromosome
is needed to masculinize the undifferentiated gonad; when
this does not occur, the gonad develops into ovarian tissue.
In Xenopus laevis frogs (and some other animals like
birds), the opposite is true: females are heterogametic (i.e.
ZW-chromosomes) and males have two of the same chro-
mosomes (i.e. ZZ). In X. laevis, the W-chromosome is the
dominant one, containing a gene, DM-W, which induces
aromatase expression (331). Thus, having a W-chromo-
some is needed to produce estrogen; without the conver-
sion of testosterone to estrogen, the frog develops as a male
(332). Changes in sex ratio and gonadal morphology are
therefore good indicators that an estrogen, or a chemical
that up-regulates aromatase and indirectly increases es-
trogen levels, is present (76).

Determining a low-dose cutoff for atrazine is not a sim-
ple task. Although the safe limit of 3 �g/liter in drinking
water was set by the EPA, actual levels in the environment
often exceed this concentration (333), and levels in ponds
and streams can reach 100 �g/liter (322) or more. In tra-
ditional toxicology studies examining several amphibian
species, the LOAEL was set at 1.1 mg/liter, and the no
observed effect level (NOEL) was 200 �g/liter (334, 335).
Thus, using the definitions of low dose established by the
NTP (2), we consider any treatment at or below 200 �g/
liter to be a low dose.

In 2002, one of the first published studies to connect
atrazine exposures to altered gonadal morphology exam-
ined X. laevis frogs exposed to 0.01–200 �g/liter through-
out larval development (336). All doses from 0.1–200 �g/
liter produced gonadal malformations including the
presence of multiple gonads and hermaphroditism. Sev-
eral other reports showed similar effects of low doses on
gonadal phenotypes including studies that report the pro-
duction of hermaphrodites and intersex frogs, males with
ovotestes, and males with testicular oocytes (337–343).
Additional studies showed that low-dose atrazine expo-
sure (0.1–200 �g/liter in the water) during sexual differ-
entiation caused testicular dysgenesis, testicular resorp-
tion, and testicular aplasia in male frogs (343, 344), and
others indicated effects on sex ratios (339, 342, 345, 346).
Importantly, these effects were not all observed at the same
atrazine concentration, and the studies were conducted in
several different species, with some reporting effects at low
doses but no effects at higher doses (341) and others re-
porting effects in some but not all species (339). Examin-
ing these studies as a whole, there is clearly a pattern of
effects that are reproducible from study to study, and they
collectively support the hypothesis that atrazine disrupts
sex hormone concentrations.

To date, five peer-reviewed studies have reported no
effects of atrazine on sex ratios, gonadal morphology, the

incidence of testicular abnormalities or testicular oocytes,
gonad size, or the incidence of intersex phenotypes (347–
351). Little can be ascertained from these negative studies,
however, because four did not include any positive con-
trol, suggesting that the frogs used in those studies may
have been incapable of responding to atrazine or any
other hormonal treatment (347–350). Additionally, one
of those studies reported testicular oocytes in the control
frogs, suggesting either that the negative control popula-
tion was contaminated with atrazine (or another EDC or
hormone), or that an inappropriate strain of X. laevis was
selected for the experiments (347). Only one study re-
mains that did not find any effects of atrazine; this study
used an appropriate positive control (17�-estradiol) and
found effects of that hormone on sex ratios and the inci-
dence of intersex gonads (351). An EPA expert panel
noted, however, that this study used a strain of X. laevis
that was obtained from a new, unexamined population of
frogs from Chile and suggested that this strain may be
insensitive to environmental chemicals. Furthermore, the
panel called for additional analysis of the data in this
study, including the statistical approaches; they suggested
that an independent laboratory should evaluate the his-
topathological results; and they requested that atrazine
metabolites be measured (352). The panel also proposed
that these experiments should be repeated with an estab-
lished X. laevis strain. Taking together the results of those
studies that found effects of atrazine on sexual differen-
tiation, and this one negative study, the WoE for the case
of low-dose atrazine on sexual differentiation is clearly in
support of adverse effects of this chemical.

Just as epidemiological studies have found links be-
tween EDCs and human diseases, ecological field studies
have examined whether exposure to atrazine in natural
environments affects the development of wild amphibians
(343, 353–358). These studies have many of the same con-
straints as those observed in epidemiology: a paucity of
data on early life exposures (including exposure levels of
controls), limitations on the total number of EDCs that
can be measured in environmental and biological samples,
and a lack of causative relationships that can be estab-
lished between exposures and effects. For these reasons,
studies that found relationships between atrazine expo-
sure (or concentrations in environmental samples) and ef-
fects on one or more aspect of sexual differentiation (343,
353–355) are considered weak, but significant, evidence
for low-dose effects. The presence of several studies sug-
gesting a relationship between low-dose exposure to atra-
zine in the wild and altered sexual differentiation indicates
a plausible causal relationship. Because the ecological and
laboratory data show similar effects of atrazine on go-
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nadaldevelopment, this strengthens the conclusionsofour
WoE that low doses of atrazine cause harm to amphibians.

Feminization of males after atrazine exposure is not
restricted to amphibians; exposure of zebrafish to low
doses increased the ratio of female to male fish and in-
creased expression of aromatase (359). Close to a dozen
additional studies also report that environmentally rele-
vant doses of atrazine can up-regulate aromatase, decrease
testosterone, and/or increase estrogen levels in a large
number of species (reviewed in Ref. 119), suggesting that
low-dose effects of atrazine may be more widespread than
their effects on the gonads of amphibians. Other studies
indicate that low-dose atrazine affects the immune system
and stress responses of salamanders (360–362), survivor-
ship patterns of several frog species (363), and thyroid
hormone and plasma ion concentrations in salmon (364).

An important factor to consider when examining the
effects of atrazine on different animal models is the diffi-
culty in identifying an appropriate low, environmentally
relevant dose for all species. Aquatic animals can be
housed in water containing levels of atrazine found in wild
habitats, yet no toxicokinetic studies are available to de-
termine what administered dose produces the levels of
atrazine metabolites, typically in the parts-per-million or
ppb range (365, 366), measured in human samples. There
are also no blood or urine measurements in exposed ro-
dents to compare with human levels; thus, extrapolations
across species are estimates at best.

Keeping this qualification in mind, exposures in the
range of 25–100 mg/kg � d during development have been
shown to alter mammary gland development (367, 368),
estrous cyclicity (369), serum and intratesticular testos-
terone concentrations (370), timing of puberty in males
and prostate weight (371), and immune function (372) in
rodents. Lower doses of atrazine metabolites (0.09–8.73
mg/kg � d) altered development of the mammary gland
(373), male pubertal timing and prostate development
(374). Identifying the range of doses administered to an-
imals that produce the levels of atrazine and its metabolites
measured in human blood and urine is an essential re-
search need to pursue low-dose studies in rodents and
other mammals.

F. Dioxin and spermatogenesis: low-dose effects from
the most potent endocrine disruptor?

Dioxin, or TCDD, is formed as a byproduct of indus-
trial processes as well as during waste incineration. Be-
cause TCDD is extremely toxic to some animals, with 1
�g/kg capable of killing 50% of guinea pigs, it has been
labeled the most toxic chemical on earth (375). But inter-
estingly, other animals are less sensitive to lethal effects of
TCDD, with an LD50 of approximately 1000 �g/kg in

hamsters, and studies also suggest that humans are not a
hypersensitive species for lethality (376). Additionally,
there are differences in the half-life of TCDD in different
animals; in rodents, the half-life is 2–4 wks, but in hu-
mans, the half-life is approximately 10 yrs, and additional
factors influence TCDD pharmacokinetics including the
exposure level and the amount of body fat present (377–
379). In cell cultures, doses as low as 10�11

M are toxic,
with decreased viability observed even in cells maintained
in nonproliferative states (380).

TCDD binds to the aryl hydrocarbon receptor (AhR),
and differences in the affinity for the receptor may be re-
sponsible for differences in sensitivity between species
(381). The Kd (dissociation constant for receptor-ligand
binding kinetics) in human samples typically ranges from
3–15 nM, but in samples from rodents, the Kd is less than
1 nM (382). Importantly, there are also nongenomic path-
ways affected by TCDD that are mediated by AhR that are
typically altered within minutes of TCDD exposure and
therefore without changes in transcription (383). Yet
many studies suggest that important differences exist be-
tween species regarding binding affinity of TCDD for AhR
and the toxicity of this chemical, but that other adverse
effects, including those related to the endocrine-disrupting
activities of TCDD, occur at similar doses (or body bur-
dens) across animal species (384, 385). Thus, it is plausible
that AhR affinity alone can predict some, but not all, ef-
fects of TCDD and related chemicals.

The mechanisms responsible for many of the endo-
crine-disrupting activities of TCDD are currently not well
understood. Knocking out AhR disrupts morphogenesis
of several organ systems even in the absence of a ligand like
TCDD, suggesting that this receptor plays important roles
in early development (386). AhR is translocated to the
nucleus after loss of cell-cell contacts and is often localized
to the nucleus in embryonic cells, suggesting that it could
have ligand-independent effects on development and/or
that endogenous ligands could be present during early de-
velopment (387). When TCDD is present, AhR translo-
cates to the nucleus and dimerizes with ARNT, the aro-
matic hydrocarbon receptor nuclear translocator (388).
Although the (currently unidentified) physiological acti-
vators of AhR are likely to induce rapid on/off signaling
via AhR, TCDD and related compounds appear to main-
tain activation of AhR, and the presence of TCDD pre-
vents the normal action of the AhR signaling pathway in
the maintenance of homeostasis (389). This induces
changes in the expression of genes and promotes the pro-
duction of toxic metabolites. These effects may be respon-
sible for some of the endocrine-related endpoints affected
by TCDD exposure. Additionally, recent studies have
shown complex and intricate interactions between the
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AhR and ER signaling pathways (390), suggesting that
dioxin may also have indirect effects on some ER-medi-
ated endpoints via AhR signaling.

Teratogenic effects of TCDD have been well docu-
mented after high-dose (391, 392) and low-dose expo-
sures (393). These studies show that almost every organ
and system in the body is affected by this chemical. High
doses that did not produce lethality caused severe weight
loss, intestinal hemorrhaging, alopecia, chloracne, ede-
mas, and severe liver damage. Sadly, there are now several
examples in humans of accidental exposures after the in-
dustrial release of TCDD where a number of individuals
have been exposed to large doses (389, 394) as well as a
few documented intentional poisonings (395). The toler-
ated daily intake level was set at 1–4 pg/kg � d, although
the doses consumed by nursing infants are likely to exceed
these levels by a factor of 10 (375). Adult exposures usu-
ally result from the consumption of contaminated foods,
and because TCDD is lipophilic, it is concentrated in the
fat component of breast milk and therefore passed in large
quantities from a nursing mother to her infant.

Using classical toxicology methods, the effects of single
TCDD doses were examined in adult male rats, specifi-
cally focusing on the effects of this chemical on the number
of spermatids per testis and the integrity of the testicular
germinal epithelium (396). In one of the earliest studies,
Chahoud and colleagues (397) determined a LOAEL of 3
�g/kg � d and set the NOAEL at 1 �g/kg � d for effects on
the testes. Because there are significant differences in the
toxicity of TCDD between animal models, and different
endpoints have different identified NOAELs, we have se-
lected the 1 �g/kg � d identified by Chahoud et al. as the
cutoff for low-dose studies of this compound. This cutoff
is based on the NTP’s definition of low dose as occurring
at doses lower than those tested in traditional toxicology
assessments (2). However, it is important to acknowledge
that body burdens that mimic those observed in human
populations are likely the best indicators of low doses for
TCDD (384), and thus we recommend that future studies
determine body burdens after administration of TCDD for
the specific strain, origin, and species of animal being
tested to ensure that truly low doses, relevant to human
populations, are being tested.

Several recent epidemiological studies have indicated
that relatively high exposures to TCDD during early life
(due to industrial release of high amounts of the chemical)
can permanently affect semen quality and sperm count in
men (398). Yet epidemiology studies also clearly show
that the timing of TCDD exposure can vastly influence the
effect of this chemical on spermatogenesis; exposures dur-
ing perinatal life significantly reduced sperm parameters,
but exposures during puberty increased sperm counts; ex-

posures in adulthood had no effect on sperm parameters
(399). Thus, it is also important for animal studies to focus
on exposures during critical periods for development of
the male reproductive tract and spermatogenesis in
particular.

We are aware of 18 studies that have examined the
effects of low doses (�1 �g/kg � d) of TCDD during peri-
natal development on male fertility endpoints in adult-
hood. The endpoints assessed vary, including epididymal
sperm counts, ejaculated sperm number, daily sperm pro-
duction, sperm transit rate, and percent abnormal sperm,
and the sensitivity of these endpoints appears to impact the
ability to detect low-dose effects in different studies (400,
401) (Table 5). In total, 16 rodent studies examined the
effect of low-dose TCDD on epididymal sperm count; 12
showed significant effects on this endpoint (402–413),
whereas the other four did not (414–417). Of the five
studies that examined ejaculated sperm counts, four stud-
ies (404, 405, 408), including one examining rhesus mon-
keys (418), showed effects of low-dose TCDD, i.e. a sig-
nificant decrease in sperm counts; one study found no
effect (417). Daily sperm production was a less-sensitive
endpoint, with four studies showing significant decreases
after prenatal exposure to low doses (402, 403, 407, 409)
and four studies showing no effects (406, 412, 413, 416);
sperm transit rate was examined in only two studies, al-
though both showed significant decreases in sperm tranfer
rates (403, 410); and finally, three studies determined that
low-dose TCDD produced abnormalities in sperm ap-
pearance or motility (414, 415, 419), but one study was
not able to replicate these findings (417).

When examining the TCDD literature as a whole, the
WoE strongly suggests that prenatal exposure to low doses
of TCDD affects sperm-related endpoints in adulthood
(Table 5). In all, only two studies were unable to detect any
effect of TCDD on the sperm endpoints assessed, although
both studies found effects of TCDD on other endpoints
including the weight of the adult prostate (416) and the
timing of puberty (417). No study on TCDD used a
positive control, likely due to a paucity of information
on the mechanisms of dioxin action, but this raises ob-
vious questions about the ability of these experimental
systems to detect effects on spermatogenesis. Finally,
some of the inability to detect effects of TCDD could be
due to the use of insensitive strains, because 1000-fold
differences in sensitivity have been reported for differ-
ent rodent strains (420).

Even though we have focused the majority of our at-
tentionon the effectsof low-doseTCDDexposureon sper-
matogenesis, it should be noted that low doses of this
chemical affect a multitude of endpoints in animals, alter-
ing immune function (421, 422), indicators of oxidative
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stress (423–425), bone and tooth development (426,
427), female reproduction and timing of puberty (428–
430), mammary gland development and suceptibility to
cancers (431), behaviors (432, 433), and others. In several
cases, lower doses were more effective at altering these
endpoints than higher ones (423, 424, 426, 433). Epide-
miology studies of nonoccupationally exposed individuals
also indicate that serum TCDD levels may be linked to
diseases in humans as well (434). Mean serum TCDD lev-
els have decreased by a factor of 7 over a 25-yr period
(1972–97) in several industrial nations (435), but results
from both animal and epidemiological studies suggest that
even the low levels detected now could have adverse effects
on health-related endpoints.

G. Perchlorate and thyroid: low-dose effects in humans?
A significant challenge with observing low-dose effects

of EDCs in the human population is that human chemical
exposures are multivariate along the vectors of time,
space, and sensitivities. In addition, chemicals can exert
effects on several systems simultaneously. Therefore, as-
sociations in human studies between exposures and dis-
ease are difficult to reconcile with experimental studies in
animal model systems. For this reason, the literature de-
scribing the potential impacts of perchlorate contamina-
tion on the human population is potentially clarifying be-
cause to the best of our knowledge, perchlorate exerts only
a single effect, and the pharmacology of perchlorate ex-
posures has been studied in human volunteers (436). This

TABLE 5. Summary of low-dose animal studies examining the effects of TCDD on spermatogenesis endpoints

Study
Administered dose (time

of administration) Animal
Epididymal

sperm count
Ejaculated
sperm no.

Daily sperm
production

Sperm
transit rate

% abnormal
sperm

Mably
et al. (409)

0.064–1 �g/kg (gestational d 15) Rat Decreased NA Decreased NA NA

Bjerke and
Peterson (402)

1 �g/kg (gestational d 15) Rat Decreased NA Decreased NA NA

Gray et al. (404) 1 �g/kg (gestational d 8) Rat Not significant Decreased NA NA NA
1 �g/kg (gestational d 15) Rat Decreased Decreased NA NA NA
1 �g/kg (gestational d 11) Hamster Decreased Decreased NA NA NA

Sommer
et al. (408)

1 �g/kg (gestational d 15) Rat Decreased Decreased Decreased Not significant Not significant

Wilker
et al. (410)

0.5, 1 or 2 �g/kg
(gestational d 15)

Rat Decreased NA Unaffected Increased NA

Gray et al.
(405)

0.05–1 �g/kg (gestational d 15) Rat Decreased Decreased Decreased NA NA

Faqi et al.
(403)

0.025–0.3 �g/kg (before mating,
then 0.005–0.06 �g/kg
weekly [to dams])

Rat Decreased NA Decreased Increased Increased

Loeffler and
Peterson (412)

0.25 �g/kg (gestational d 15) Rat Decreased NA Unaffected NA NA

Ohsako
et al. (416)

0.0125–0.8 �g/kg
(gestational d 15)

Rat Not significant NA Unaffected NA NA

Ohsako
et al. (406)

1 �g/kg (gestational d 15) Rat Decreased NA Unaffected NA NA

1 �g/kg (gestational d 18) Rat Unaffected NA Unaffected NA NA
1 �g/kg (postnatal d 2 [to pups]) Rat Unaffected NA Unaffected NA NA

Simanainen
et al. (407)

0.03–1 �g/kg
(gestational d 15)

Rat Decreased NA Decreased NA NA

Yonemoto
et al. (417)

0.0125–0.8 �g/kg
(gestational d 15)

Rat Unaffected Unaffected NA NA Unaffected

Yamano
et al. (714)

0.3 or 1 �g/kg (postnatal d 1
and then every week
[to dams])

Rat Not significant NA NA NA NA

Ikeda
et al. (715)

0.4 �g/kg (before mating, then
0.08 �g/kg weekly [to dams])

Rat Unaffected NA NA NA NA

Bell
et al. (414)

0.05–1 �g/kg (gestational d 15) Rat Increased
(at certain ages)

NA NA NA Increased

Bell
et al. (415)

0.0024–0.046 �g/kg (d 12 weeks
before pregnancy
through parturition)

Rat Unaffected NA NA NA Increased

Arima
et al. (418)

0.03 or 0.3 �g/kg (gestational d 20,
then 5% of dose monthly
[to dams])

Rhesus monkey Decreased Not significant NA NA Not significant

Yamano
et al. (419)

0.3 or 1 �g/kg (weekly to dams
then pups [all postnatal])

Rat NA NA NA NA Increased

Jin et al.
(411)

1 �g/kg � d (postnatal days 1–4
[to dams])

Mouse Decreased NA NA NA NA

Rebourcet
et al. (413)

0.01–0.2 �g/kg (gestational d 15) Rat Decreased (at some ages) NA Not significant NA NA

Not significant indicates trend for effect but did not reach statistical significance. Unaffected means assessed, but no differences were observed relative to controls.
Here, low doses were considered any at or below 1 �g/kg � d (see text for discussion of how this cutoff was established for rodent studies). NA, Not assessed.
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literature offers a unique perspective into the issue of low-
dose effects, perhaps providing important hypotheses to
explain mechanistically why high-dose, short-term exper-
iments can fail to predict the outcome of low-dose, lifetime
exposures.

In the 2001–2002 NHANES dataset, perchlorate was
detected in the urine of each of the 2820 samples tested
(437). This widespread exposure means that the human
population is being continuously exposed because per-
chlorate has a half-life in the human body of about 8 h
(438). Human exposures to perchlorate are likely attrib-
uted to both contaminated drinking water and food (439);
in fact, a recent analysis concludes that the majority of
human exposure to perchlorate comes from food (440).

The predominant theory proposed to explain the
source of perchlorate contamination in the United States
is that it has been employed for many decades as the prin-
cipal oxidant in explosives and solid rocket fuels (441).
Perchlorate is chemically stable when wet and persists for
long periods in geological systems and in ground water.
Because of disposal practices during the 1960s through
1990s, perchlorate became a common contaminant of
ground water in the United States (441, 442). Perchlorate
is also formed under certain kinds of natural conditions
(443), although the relative contributions to human ex-
posure of these different sources is not completely under-
stood. As a result of perchlorate contamination of natural
waters, the food supplyhasbecomecontaminated through
irrigation in part because both aquatic and terrestrial
plants can concentrate perchlorate more than 100-fold
over water levels (444).

This exposure profile in the human population is im-
portant because high doses of perchlorate are known to
reduce functioning of the thyroid gland, and poor thyroid
function is an important cause of developmental deficits
and adult disease (445). The primary question is: at what
dose does perchlorate inhibit thyroid function sufficiently
to cause disease? The current literature, reviewed below,
supports the view that background exposure may affect
thyroid function in adult women. These exposure levels,
however, are considerably lower than predicted by early
toxicology experiments in humans.

Perchlorate reduces thyroid function by inhibiting io-
dide uptake by the sodium/iodide symporter (NIS) (446),
which is the only known effect of perchlorate on human
physiology (438). NIS is responsible for transporting io-
dide into the thyroid gland, which is required for the pro-
duction of thyroid hormone (447). However, NIS is also
expressed in the gut (448, 449), in lactating breast (448,
450, 451), and in placenta (452), presumably all as a de-
livery mechanism for iodide to the developing and adult
thyroid gland. Because the NIS transports perchlorate

(450), the pathway by which humans take up and con-
centrate perchlorate is the same as the pathway by which
humans take up and concentrate iodide. Interestingly, NIS
expression in the human fetal thyroid gland is the rate-
limiting step in production of thyroid hormone (453).
Moreover, NIS transport of perchlorate explains why high
levels of perchlorate are found in human amniotic fluid
(454, 455) and breast milk (456–459).

This effect of perchlorate on thyroid function is impor-
tant because thyroid hormone is essential for normal brain
development, body growth as well as for adult physiology
(445, 460). Moreover, it has become clear that even small
deficits in circulating thyroidhormone inpregnantwomen
(461, 462) or neonates (463) have permanent adverse out-
comes. In fact, recent work indicates that very subtle thy-
roid hormone insufficiency in pregnant women is associ-
ated with cognitive deficits in their children (461). Because
of the importance of thyroid hormone in development and
adult physiology, and because perchlorate is a potent in-
hibitor of iodide uptake and thyroid hormone synthesis,
identifying the dose at which these events occur is critical.

Perchlorate was used medically to reduce circulating
levels of thyroid hormone in patients with an overactive
thyroid gland in the 1950s and 1960s (reviewed in Ref.
446); therefore, it was reasonable to examine the dose-
response characteristics of perchlorate on the human thy-
roid gland. Because perchlorate inhibits iodide uptake,
several studies were performed to evaluate the effect of
perchlorate exposure on iodide uptake inhibition in hu-
man volunteers (438, 464–466). In one study, 0.5 or 3
mg/d (approximately 0.007 and 0.04 mg/kg � d) perchlo-
rate was administered to healthy volunteers (n � 9 females
and 5 males, age 25–65 yr), and no effects were observed
(466). Of course, it is important to note that the 2 wk of
administration tested in this study is not sufficient to see
any effect on serum concentrations of T4 or TSH; the
healthy thyroid can store several months’ worth of thyroid
hormone in the gland (467). Another small study also
found no effects of administering 3 mg/d (approximately
0.04 mg/kg � d) on any thyroid endpoint assessed (n � 8
adult males) (464).

In contrast, two studies examining adult volunteers ad-
ministered perchlorate found effects of this chemical on at
least one endpoint. The first found that radioactive iodide
uptake was affected by 2 wk of exposure to 10 mg/d (0.13
mg/kg � d), but other measures of thyroid function were
not altered (n � 10 males) (465). The second examined
adults (n � 37) given doses ranging from 0.007–0.5 mg/
kg � d; all but the lowest dose altered radioactive iodide
uptake, and only the highest dose altered TSH levels (438).
These studies were interpreted to suggest that adults
would have to consume 2 liters of drinking water daily that
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was contaminated with at least 200 ppb (200 �g/liter)
perchlorate to reach a level in which iodide uptake would
begin to be inhibited. Yet, these administered doses are
high and relatively acute, so the derivation of a safe dose
from these studies, applied to vulnerable populations
such as those with low iodide intake, has been strongly
disputed (471).

Studies of occupational exposures have also been used
to examine the effects of exposure to relatively high levels
of perchlorate. In the first such study, more than 130 em-
ployees were separated into eight groups based on expo-
sure estimates from airborne perchlorate in the workplace
(472). The authors found that individuals with longer
daily exposures to perchlorate, due to longer work shifts,
had significant decreases in TSH levels compared with
individuals with shorter exposures. But this study was
hampered because actual exposure levels were not mea-
sured via urine or blood samples. A second study exam-
ined 37 employees exposed to perchlorate and 21 control
employees from an azide factory; actual exposure mea-
sures were not conducted, but estimates were calculated
based on exposures to perchlorate dust and air samples
(473). This study found no effects of perchlorate expo-
sures on any thyroid endpoint, although the sample size
examined was small. In the final occupational exposure
study, serum perchlorate levels were measured and
compared with several measures of thyroid function in
workers (n � 29) who had spent several years as em-
ployees in a perchlorate production plant (474). In this
study, the most complete because of the biomonitoring
aspect of the exposure measures, higher perchlorate lev-
els were associated with lower radioactive iodide up-
take, higher urinary iodide excretion, and higher thy-
roid hormone concentrations.

Although iodide uptake was often inhibited in these
studies, serum thyroid hormones were typically not al-
tered, perhaps because of sufficient stored hormone.
Based on these observations, the National Academy
Committee to Assess the Health Implications of Per-
chlorate Ingestion (467) estimated that perchlorate
would have to inhibit thyroid iodide uptake by about
75% for several months to cause a reduction in serum
thyroid hormones. Moreover, the drinking water con-
centration of perchlorate required for this kind of in-
hibition was estimated to be over 1,000 ppb (438).
Therefore, the National Academy of Sciences commit-
tee recommended a reference dose of 0.0007 mg/kg � d
(467), based on the dose at which perchlorate could
inhibit iodide uptake, and the EPA used this value to set
a provisional drinking water standard of 15 ppb.

Considering these data and general knowledge about
the thyroid system, it was unexpected that Blount et al.

(475) would identify a positive association between uri-
nary iodide and serum TSH in adult women in the
NHANES 2001–2002 dataset. Yet several features of this
dataset were consistent with a causal action of perchlorate
on thyroid function. First, in the general population of
adult women, urinary perchlorate was positively associ-
ated with serum TSH. In the population of adult women
who also had low urinary iodide, however, urinary per-
chlorate was more strongly associated with serum TSH
and was negatively associated with serum T4. The strength
of this association was such that the authors calculated
that women at the 50th percentile of perchlorate exposure
experienced a 1 �g/dl T4 reduction (reference range �
5–12 �g/dl). Should this magnitude of reduction in serum
T4 occur in a neonate, measurable cognitive deficits would
also be present (476). Finally, Steinmaus et al. (477), using
the same NHANES dataset, showed that women with low
urinary iodide who smoke had an even stronger associa-
tion between urinary perchlorate and measures of thyroid
function. Tobacco smoke delivers thiocyanates, which
also inhibit NIS-mediated iodide uptake (446).

The NHANES dataset suggests that perchlorate expo-
sures of 0.2–0.4 �g/kg � d (440) are associated with de-
pressed thyroid function, even when urinary iodide is not
reduced. This is a considerably lower dose than the 7 �g/
kg � d dose required to suppress iodide uptake in the Greer
et al. (438) study or the 500 �g/kg � d the NAS estimated
would be required for several months to actually cause a
decline in serum T4. Therefore, it is reasonable to question
whether these associations represent a causative relation-
ship between perchlorate and thyroid function.

A number of epidemiological studies have been pub-
lished to test for a relationship between perchlorate ex-
posure and thyroid function. Early work used neonatal
screening data for T4 as a measure of thyroid function, and
the city of birth (Las Vegas, NV, compared with Reno,
NV) as a proxy measure of exposure (478, 479). The re-
ported findings were negative, but we now know that all
Americans are exposed to perchlorate, so there was con-
siderable misclassification of exposure, and no relation-
ship should have been observed. Several additional studies
using similar flawed designs also found no relationship
between proxy measures of perchlorate exposures and
clinical outcomes (480–484).

A recent study of the neonatal screening data from
1998 in California identified a strong association be-
tween neonatal TSH and whether or not the mother
resided in a contaminated area (485). This study in-
cluded over 497,000 TSH measurements and 800 per-
chlorate measurements. In addition, they used as a cut-
off a variety of TSH levels (as opposed to the 99.9th
percentile used for the diagnosis of congenital hypothy-
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roidism), indicating that perchlorate exposure is not
associated with congenital hypothyroidism. Two addi-
tional studies have shown similar relationships between
perchlorate and TSH levels, particularly in families with
a history of thyroid disease (486, 487).

Several studies in pregnant women have failed to iden-
tify a relationship between perchlorate exposure and mea-
sures of thyroid function (488–490). Although these are
important studies that need to be carefully scrutinized,
they do not replicate or refute the NHANES dataset. It
thus remains important to conduct additional studies ex-
ploring the relationship between background exposure to
perchlorate and thyroid function in adults, pregnant
women, neonates, and infants. This effort will be chal-
lenging because of the different characteristics of thyroid
function and hormone action at different life stages (460).
In addition, it will be important to obtain individual mea-
surements of exposures to perchlorate and other NIS in-
hibitors (thiocyanate and nitrate), and iodide itself as well
as individual measures of thyroid function (free and total
T4 and TSH).

If background levels of perchlorate affect thyroid func-
tion in any segment of the population, it will be challeng-
ing to explain how the high-dose, short-term experiments
of Greer et al. (438) completely underestimated the sen-
sitivity of the human thyroid gland to perchlorate expo-
sure. One possibility is that physiological systems respond
to short durations of robust stress with compensatory
mechanisms that reset during periods of long-term stress.

When these data are examined together, several impor-
tant issues are raised. First, this example illustrates the
difficulties inherent in studying human populations; epi-
demiology yields associations, not cause-effect relation-
ships, in many cases using surrogate markers for perchlo-
rate, and is not able to distinguish short- vs. long-term
exposure duration. Second, our WoE analysis suggests
that there is weak evidence for low-dose effects of per-
chlorate; further research is needed. The relationship be-
tween low-dose perchlorate exposures and thyroid end-
points would be strengthened by the addition of studies
that measure biological concentrations of perchlorate and
compare them with thyroid endpoints in neonates and
other vulnerable populations. Third, the published studies
that reported low-dose effects of perchlorate typically ex-
amined very specific populations, with several focusing on
women with low iodine intake. This observation suggests
that some groups may be more vulnerable to low doses of
perchlorate than others (491).

H. Low-dose summary
These examples, and the examples of low-dose effects

in less well-studied chemicals (Table 3), provide evidence

that low-dose effects are common in EDC research and
may be the default expectation for all chemicals with en-
docrine activity. Many known EDCs have not been ex-
amined for low-dose effects, but we predict that these
chemicals will have effects at low doses if studied appro-
priately. Although studies unable to detect effects at low
doses have received attention, including some studies de-
signed to replicate others that reported low-dose effects,
the majority of these studies contain at least one major
design flaw. Thus, a WoE approach clearly indicates that
low-dose effects are present across a wide span of chemical
classes and activities.

III. Nonmonotonicity in EDC Studies

A concept related to low dose is that of nonmonotonicity.
As noted in Section I.B, in a monotonic response, the ob-
served effects may be linear or nonlinear, but the slope
does not change sign (Fig. 3, A and B). In contrast, a dose-
response curve is nonmonotonic when the slope of the
curve changes sign somewhere within the range of doses
examined (Fig. 3C). NMDRCs are often U-shaped (with
maximal responses of the measured endpoint observed at
low and high doses) or inverted U-shaped (with maximal
responses observed at intermediate doses) (Fig. 3C, top
panels). Some cases are more complicated, with multiple
points along the curve at which the slope of the curve
reverses sign (Fig. 3C, bottom left). Nonmonotonicity is
not synomymous with low dose, because there are low-
dose effects that follow monotonic dose-response curves.
Thus, it is not required that a study include doses that
span from the true low-dose range to the high toxico-
logical range to detect nonmonotonicity. The conse-
quence of NMDRCs for toxicity testing is that a safe
dose determined from high doses does not guarantee
safety at lower, untested doses that may be closer to
current human exposures.

Examples of NMDRCs from the cell culture, animal,
and epidemiological literature will be discussed in detail in
Section III.C. Importantly, our review of the literature
finds that NMDRCs are common in the endocrine and
EDC literature. In fact, it is plausible that, considering the
mechanisms discussed below, NMDRCs are not the ex-
ception but should be expected and perhaps even
common.

A. Why is nonmonotonicity important?
NMDRCs in toxicology and in the regulatory process

for EDCs are considered controversial. In addition to dis-
cussions of whether NMDRCs exist, there is also discus-
sion of whether those that do exist have relevance to
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toxicological determination of putative safe
exposures. In the standard practice of regula-
tory toxicology, the calculated safe dose, also
called a reference dose, is rarely tested. In a
system that is responding nonmonotonically, it
is not appropriate to use a high-dose test to
predict low-dose effects. Unfortunately, all
regulatory testing for the effects of chemical
exposures assume that this is possible. All cur-
rent exposure standards employed by govern-
ment agencies around the world, including the
FDA and EPA, have been developed using an
assumption of monotonicity (492, 493). The
low-dose range, which presumably is what the
general public normally experiences, is rarely,
if ever, tested directly.

The standard procedure for regulatory test-
ing typically involves a series of tests to estab-
lish the lowest dose at which an effect is ob-
servable (the LOAEL), then a dose beneath that
at which no effect is observable (the NOAEL).
Then a series of calculations are used to ac-
knowledge uncertainty in the data, species dif-
ferences, age differences, etc., and those calcu-
lations, beginning with the LOAEL or the
NOAEL, produce a reference dose that is pre-
sumed to be a safe exposure for humans (Fig.
4). Typically, the reference dose is 3- to 1000-
fold lower than the NOAEL. That reference
dose then becomes the allowable exposure and
is deemed safe, even when it is never examined
directly. For chemicals with monotonic linear
dose-response curves (Fig. 3A), this may be ap-
propriate. But for chemicals that display non-
monotonic patterns, it is likely to lead to false
negatives, i.e.concludingthatexposuretotheref-
erence dose is safe when in fact it is not.

As described above, there are other nonlin-
ear dose-response curves that are monotonic
(Fig. 3B). These curves may also present prob-
lems for extrapolating from high doses to low
doses because there is no linear relationship
that can be used to predict the effects of low
doses. Equally troubling for regulatory pur-
poses are responses that have a binary response
rather than a classical dose-response curve
(Fig. 3D). In these types of responses, one range
of doses has no effect on an endpoint, and then
a threshold is met, and all higher doses have the
same effect. An example is seen in the atrazine
literature, where doses below 1 ppb had no
effect on the size of the male larynx but doses

Figure 3.

Figure 3. Examples of dose-response curves. A, Linear responses, whether there are positive
or inverse associations between dose and effect, allow for extrapolations from one dose to
another. Therefore, knowing the effects of a high dose permits accurate predictions of the
effects at low doses. B, Examples of monotonic, nonlinear responses. In these examples, the
slope of the curve never changes sign, but it does change in value. Thus, knowing what
happens at very high or very low doses is not helpful to predict the effect of exposures at
moderate doses. These types of responses often have a linear component within them, and
predictions can be made within the linear range, as with other linear responses. C, Displayed
are three different types of NMDRCs including an inverted U-shaped curve, a U-shaped
curve, and a multiphasic curve. All of these are considered NMDRCs because the slope of the
curve changes sign one or more times. It is clear from these curves that knowing the effect of
a dose, or multiple doses, does not allow for assumptions to be made about the effects of
other doses. D, A binary response is shown, where one range of doses has no effect, and
then a threshold is met, and all higher doses have the same effect.
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at or above 1 ppb produced a significant decrease in size
of approximately 10–15% (336). Even doses of 200 ppb,
the toxicological NOEL, produce the same effect. Thus,
this all-or-none effect is observed because atrazine does
not shrink the larynx; instead, it removes the stimulatory
agent (i.e. androgens). In the absence of some threshold
dose of androgen, the larynx simply remains at the un-
stimulated (female) size. The EPA’s assessment of this
study and others was that the lack of a dose-dependent
response negates the importance of this effect (352). The
lack of a dose response for a threshold effect like larynx
size does not mean that the effects are not dose dependent;
thus, understanding these types of effects and their impli-
cations for risk assessments is essential for determining the
safe levels of chemicals.

It is important to mention here that the appropriateness
of determining NOAEL concentrations, and therefore cal-
culating reference doses, from exposures to endogenous
hormones or EDCs has been challenged by several studies
(Fig. 4A) (494–496). These studies show that hormonally
active agents may still induce significant biological effects
even at extremely low concentrations and that presently
available analytical methods or technologies might be un-
able to detect relatively small magnitudes of effects.
Previous discussions of this topic have shown that as the
dose gets lower (and approaches zero) and the effect size
decreases, the number of animals needed to achieve the
power to detect a significant effect would have to increase
substantially (497). Even more importantly, the assump-
tion of a threshold does not take into account situations
where an endogenous hormone is already above the dose
that causes detectable effects and that an exogenous chem-
ical (whether an agonist or antagonist) will modulate the
effect of the endogenous hormone at any dose above zero
(Fig. 4B). There can thus be no threshold or safe dose for
an exogenous chemical in this situation. Forced identi-
fication of NOAEL or threshold doses based on the
assumption that dose-response curves are always mono-
tonic without considering the background activity of
endogenous hormones and the limitations of analytical
techniques supports the misconception that hormonally
active agents do not have any significant biological ef-
fects at low doses. Thus, the concept that a toxic agent
has a safe dose that can be readily estimated from the
NOAEL derived from testing high, acutely toxic doses
is overly simplistic and contradicted by data when ap-
plied to EDC (5, 497, 498).

B. Mechanisms for NMDRCs
Previously, the lack of mechanisms to explain the ap-

pearance of NMDRCs was used as a rationale for ignoring
these phenomena (492, 493). This is no longer acceptable

because there are several mechanisms that have been iden-
tified and studied that demonstrate how hormones and
EDCs produce nonmonotonic responses in cells, tissues,
and animals. These mechanisms include cytotoxicity, cell-
and tissue-specific receptors and cofactors, receptor selec-
tivity, receptor down-regulation and desensitization, re-
ceptor competition, and endocrine negative feedback
loops. These mechanisms are well understood, and by pro-
viding detailed biological insights at the molecular level
into the etiology of NMDRCs, they strongly negate the
presumption that has been central to regulatory toxicol-
ogy that dose-response curves are by default monotonic.

1.Cytotoxicity
The simplest mechanism for NMDRCs derives from

the observation that hormones can be acutely toxic at high
doses yet alter biological endpoints at low, physiologically
relevant doses. Experiments working at concentrations
that are cytotoxic are incapable of detecting responses that
are mediated by ligand-binding interactions. For example,
the MCF7 breast cancer cell line proliferates in response to
estradiol in the low-dose range (10�12 to 10�11

M) and in
the pharmacological and toxicological range (10�11 to
10�6

M), but toxic responses are observed at higher doses
(38). Thus, when total cell number is graphed, it displays
an inverted U-shaped response to estrogen. But cells that
do not contain ER, and therefore cannot be affected by the
hormonal action of estradiol, also display cytotoxic re-
sponses when treated with high doses of hormone. These
results clearly indicate that the effects of estradiol at high
doses are toxic via non-ER-mediated mechanisms.

2. Cell- and tissue-specific receptors and cofactors
Some NMDRCs are generated by the combination of

two or more monotonic responses that overlap, affecting
a common endpoint in opposite ways via different path-
ways. For example, in vitro cultured prostate cell lines
demonstrate a nonmonotonic response to increasing doses
of androgen where low doses increase cell number and
higher doses decrease cell number, thus producing an in-
verted U-shaped curve (499, 500). Although the parental
cell expressed an inverted U-shaped dose-response curve,
after a long period of inhibition, the effects on cell number
could be segregated by selecting two populations of cells:
one that proliferated in the absence of androgens and
other cells that proliferated in the presence of high andro-
gen levels (501). Thus, the observed inverted U-shaped
response is due to actions via two independent pathways
that can be separated from each other in an experimental
setting (502). Similarly, estrogens have been shown to in-
duce cell proliferation and inhibit apoptosis in several cell
populations, but inhibit proliferation and induce apopto-
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sis in others (503, 504), with the combined effect being an
inverted U-shaped curve for cell number (505).

Why does one single cell type have different responses
to different doses of the same hormone? The case of the
prostate cell line described above is reminiscent of the re-

sults described from the transcriptome of
MCF7 cells, whereby a discrete global re-
sponse like cell proliferation manifests at sig-
nificantly lower estrogen doses than the induc-
tion of a single marker gene (135). That a
response like cell proliferation requires a sig-
nificantly lower dose of hormone than the dose
needed to induce a given target gene is coun-
terintuitive but factual; it may be interpreted as
consistent with the notion that metazoan cells,
like cells in unicellular organisms, are intrinsi-
cally poised to divide (503, 506, 507) and that
quiescence is an induced state (508, 509). The
biochemical details underlying these different
responses are largely unknown; however, re-
cent studies showed that steroid receptors con-
trol only a portion of their target genes directly
via promoter binding. The majority of the
changes are indirect, through chromatin rear-
rangements (510, 511).

Why do different cell types (in vitro and in
vivo) have different responses to the same hor-
mone? One answer is that they may express
different receptors, and these receptors have
different responses to the same hormone. For
example, some tissues express only one of the
two major ER (ER� and ER�), and actions via
these receptors are important not just for re-
sponsiveness to hormone but also for cellular
differentiation and cross talk between tissue
compartments (512). Yet other tissues express
both ER� and ER�, and the effects of signaling
via these two receptors often oppose each oth-
er; i.e. estrogen action via ER� induces prolif-
eration in the uterus, but ER� induces apopto-
sis (154). Complicating the situation further,
different responses to a hormone can also be
obtained due to the presence of different co-
factors in different cell and tissue types (513,
514); these coregulators influence which genes
are transcriptionally activated or repressed in
response to the presence of hormone. They can
also influence ligand selectivity of the receptor
and DNA-binding capacity, having tremen-
dous impact on the ability of a hormone to have
effects in different cell types (105, 515, 516).

Although much of these activities occur on
a biochemical level, i.e. at the receptor, there is also evi-
dence that nonmonotonicity can originate at the level of
tissue organization. The mammary gland has been used as
a model to study inter- and intracompartmental effects of
hormone treatment: within the ductal epithelium, estro-

Figure 4.

Figure 4. NOAEL, LOAEL, and calculation of a safe reference dose. A, In traditional toxicology
testing, high doses are tested to obtain the maximum tolerated dose (MTD), the LOAEL, and
the NOAEL. Several safety factors are then applied to derive the reference dose, i.e. the dose
at which exposures are presumed safe. This reference dose is rarely tested directly. Yet when
chemicals or hormones produce NMDRCs, adverse effects may be observed at or below the
reference dose. Here, the doses that would be tested are shown by a dotted line, and the
calculated safe dose is indicated by a thick solid line. The actual response, an inverted U-
shaped NMDRC, is shown by a thin solid line. B, Experimental data indicate that EDCs and
hormones do not have NOAELs or threshold doses, and therefore no dose can ever be
considered safe. This is because an exogenous hormone (or EDC) could have a linear
response in the tested range (dotted line), but because endogenous hormones are present
(thin solid line), the effects of the exogenous hormone are always observed in the context of
a hormone-containing system.
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gen has distinct effects during puberty, both inducing pro-
liferation, which causes growth of the ductal tree, and
inducing apoptosis, which is required for lumen formation
(517, 518); in cell culture, the presence of stromal cells can
also enhance the effects of estrogen on epithelial cells (519,
520), suggesting that stromal-epithelial compartmental
interactions can mediate the effects of estrogen.

3. Receptor selectivity
NMDRCs can occur because of differences in receptor

affinity, and thus the selectivity of the response, at low vs.
high doses. For example, at low doses, BPA almost exclu-
sively binds to the ER (including mER), but at high doses
it can also bind weakly to other hormone receptors, like
androgen receptor and thyroid hormone receptor (249,
521). This type of receptor nonselectivity is quite common
for EDCs, and it has been proposed that binding to dif-
ferent receptors may be an explanation for the diverse
patterns of disease observed after EDC exposures (522). In
fact, several of the chemicals shown to have low-dose ef-
fects are known to act via multiple receptors and pathways
(Table 3). Thus, the effects seen at high doses can be due
to action via the binding of multiple receptors, compared
with the effects of low doses, which may be caused by
action via only a single receptor or receptor family.

4. Receptor down-regulation and desensitization
When hormones bind to nuclear receptors, the ultimate

outcome is a change in the transcription of target genes.
When the receptor is bound by ligand, an increase in re-
sponse is observed; as discussed previously in this review,
the relationship between hormone concentration and the
number of bound receptors, as well as the relationship
between the number of bound receptors and the biological
effect, is nonlinear (38). After the nuclear receptor is
bound by hormone and transcription of target genes has
occurred (either due to binding of the receptor at a DNA
response element or the relief of a repressive event on the
DNA), the reaction eventually must cease; i.e. the bound
receptor must eventually be inactivated in some way.
Thus, nuclear hormone receptors are ubiquitinated and
degraded, usually via the proteasome (523). Importantly,
the role of the hormone in receptor degradation differs
depending on the hormone; binding of estrogen, proges-
terone, and glucocorticoid mediates the degradation of
their receptors (524–526), whereas the presence of hor-
mone may actually stabilize some receptors and prevent
degradation (527), and other receptors are degraded with-
out ligand (528). As hormone levels rise, the number of
receptors being inactivated and degraded also rises, and
eventually the number of receptors being produced cannot
maintain the pace of this degradation pathway (523). Fur-

thermore, the internalization and degradation of receptors
can also influence receptor production, leading to an even
stronger down-regulation of receptor (529). In the animal,
the role of receptor down-regulation is actually quite com-
plex, because signaling from one hormone receptor can
influence protein levels of another receptor; i.e. ER sig-
naling can promote degradation of the glucocorticoid re-
ceptor by increasing the expression of enzymes in the pro-
teasome pathway that degrade it (530).

There is also the issue of receptor desensitization, a
process whereby a decrease in response to a hormone is not
due to a decrease in the number of available receptors but
instead due to the biochemical inactivation of a receptor
(531). Desensitization typically occurs when repeated or
continuous exposure to ligand occurs. Normally seen with
membrane-bound G protein-coupled receptors, the acti-
vation of a receptor due to ligand binding is quickly fol-
lowed by the uncoupling of the activated receptor from its
G proteins due to phosphorylation of these binding part-
ners (532). Receptor desensitization has been observed for
a range of hormones including glucagon, FSH, human
chorionic gonadotropin, and prostaglandins (533). Im-
portantly, desensitization and down-regulation can occur
in the same cells for the same receptor (534), and therefore,
both can play a role in the production of NMDRCs.

5. Receptor competition
Mathematical modeling studies suggest that the mix-

ture of endogenous hormones and EDCs establishes a nat-
ural environment to foster NMDRCs. Using mathemati-
cal models, Kohn and Melnick (42) proposed that when
EDC exposures occur in the presence of endogenous hor-
mone and unoccupied hormone receptors, some unoccu-
pied receptors become bound with the EDC, leading to an
increase in biological response (i.e. increased expression of
a responsive gene, increased weight of an organ, etc.). At
low concentrations, both the endogenous hormone and
the EDC bind to receptors and activate this response, but
at high doses, the EDC can outcompete the natural ligand.
The model predicts that inverted U-shaped curves would
occur regardless of the binding affinity of the EDC for the
receptor and would be abolished only if the concentration
of natural hormone were raised such that all receptors
were bound.

6. Endocrine negative feedback loops
In several cases, the control of hormone synthesis is

regulated by a series of positive- and negative feedback
loops. Several hormones are known to control or influence
their own secretion using these feedback systems. In one
example, levels of insulin are known to regulate glucose
uptake by cells. Blood glucose levels stimulate insulin pro-
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duction, and as insulin removes glucose from circulation,
insulin levels decline. Thus, NMDRCs can occur as the
free/available ligand and receptor concentrations are in-
fluenced by one another. In another example, thyroid hor-
mone secretion is stimulated by TSH, and thyroid hor-
mone suppresses TSH; thus, feedback between these two
hormones allows thyroid hormone to be maintained in a
narrow dose range.

Several studies indicate that these negative feedback
loops could produce NMDRCs when the duration of hor-
mone administration is changed (535). For example, short
exposures of estrogen induce proliferation in the uterus
and pituitary, but longer hormone regimens inhibit cell
proliferation (236, 536). Thus, the outcome is one where
exposure to a single hormone concentration stimulates an
endpoint until negative feedback loops are induced and
stimulation ends (537).

7. Other downstream mechanisms
Removing the variability that can come from examin-

ing different cell types, or even single cell types in the con-
text of a tissue, studies of cultured cells indicate that dif-
ferent gene profiles are affected by low doses of hormone
compared with higher doses. In a study of the genes af-
fected by low vs. higher doses of estrogen, researchers
found that there were a small number of genes in MCF7
breast cancer cells with very high sensitivity to low doses
of estradiol (10 pM) compared with the total number of
genes that were affected by higher (30 or 100 pM) expo-
sures (538). But the surprising finding was the pattern of
estradiol-induced vs. estradiol-suppressed gene expres-
sion at high and low doses; when 10 pM was administered,
the number of estradiol-suppressible genes was approxi-
mately three times higher than the number of estradiol-
inducible genes. However, the overall profile of the num-
ber of estradiol-suppressible genes was approximately
half the total number of estradiol-inducible genes. This
observation suggests that low doses of estrogen selectively
target a small subset of the total number of estrogen-sen-
sitive genes and that the genes affected by low doses are
most likely to be suppressed by that treatment. The mech-
anisms describing how low doses of estrogen differently
affect the expression of genes compared with higher doses
have yet to be elucidated, but low doses of estradiol inhibit
expression of apoptotic genes (539), indicating that which
genes are affected by hormone exposure is relevant to un-
derstand how low doses influence cellular activities.

C. Examples of nonmonotonicity

1. Examples of NMDRCs from cell culture
A tremendous amount of theoretical and mathematical

modeling has been conducted to understand the produc-

tion of nonlinear and nonmonotonic responses (42, 540).
These studies and others suggest that the total number of
theoretical response curves is infinite. Yet this does not
mean that the occurrence of NMDRCs is speculative;
these types of responses are reported for a wide variety of
chemicals. Cell culture experiments alone provide hun-
dreds of examples of nonmonotonic responses (see Table
6 for examples). In the natural hormone category, many
different hormones produce NMDRCs; this is clearly not
a phenomenon that is solely attributable to estrogen and
androgen, the hormones that have been afforded the
most attention in the dose-response literature. Instead,
NMDRCs are observed after cells are treated with a range
of hormones, suggesting that this is a fundamental and
general feature of hormones.

Chemicals from a large number of categories with
variable effects on the endocrine system also produce
NMDRCs in cultured cells. These chemicals range from
components of plastics to pesticides to industrial chemi-
cals and even heavy metals. The mechanisms for non-
monotonicity discussed in Section III.B are likely expla-
nations for the NMDRCs reported in a range of cell types
after exposure to hormones and EDCs. Table 6 provides
only a small number of examples from the literature, and
it should be noted that because these are studies of cells in
culture, most of these studies typically examined only a
few types of outcomes: cell number (which could capture
the effects of a chemical on cell proliferation, apoptosis, or
both), stimulation or release of another hormone, and reg-
ulation of target protein function, often examined by mea-
suring the phosphorylation status of a target.

2. Examples of NMDRCs in animal studies
Some scientists suggest that nonmonotonicity is an ar-

tifactof cell culture, however, a largenumberofNMDRCs
have been observed in animals after administration of nat-
ural hormones and EDCs, refuting the hypothesis that this
is a cell-based phenomenon only. Similar to what has been
observed in cultured cells, the NMDRCs observed in
animals also span a large range of chemicals, model
organisms, and affected endpoints (Table 7). These re-
sults underscore the biological importance of the mech-
anisms of nonmonotonicity that have been largely
worked out in vitro.

Although NMDRCs attributable to estrogen treatment
are well documented, the induction of NMDRCs is again
observed to be a general feature of hormone treatment; a
wide range of hormones produce these types of responses
in exposed animals. Importantly, a number of pharma-
ceutical compounds with hormone-mimicking or endo-
crine-disrupting activities also produce NMDRCs. Fi-
nally, as expected from the results of cell culture
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TABLE 6. Examples of NMDRCs in cell culture experiments

Chemicals by
chemical class Nonmonotonic effect Cell type Refs.

Natural hormones
17�-Estradiol Cell number MCF7 breast cancer cells 135, 716

Dopamine uptake Fetal hypothalamic cells (primary) 717
pERK levels, prolactin release GH3/B6/F10 pituitary cells 41, 718, 719
�-Hexosaminidase release HMC-1 mast cells 720
Cell number Vascular smooth muscle cells 721
Production of L-PGDS, a sleep-

promoting substance
U251 glioma cells 722

5�-Dihydrotestosterone Cell number LNCaP-FGC prostate cancer cells 499
Cell number, kinase activity Vascular smooth muscle cells 721

5�-Androstenedione Cell number LNCaP-FGC prostate cancer cells 499
Corticosterone Mitochrondrial oxidation, calcium

flux
Cortical neurons (primary) 723

Insulin Markers of apoptosis (in absence
of glucose)

Pancreatic �-cells (primary) 724

Progesterone Cell number LNCaP-FGC prostate cancer cells 499
Prolactin Testosterone release Adult rat testicular cells (primary) 725
hCG Testosterone release Adult rat testicular cells (primary) 725
T3 Rate of protein phosphorylation Cerebral cortex cells (primary,

synaptosomes)
726

LPL mRNA expression White adipocytes (rat primary) 727
GH IGF-I expression Hepatocytes (primary cultures from

silver sea bream)
728

Pharmaceutical hormones
DES Cell number MCF7 breast cancer cells 716

Prolactin release GH3/B6/F10 pituitary cells 41
Ethinyl estradiol CXCL12 secretion MCF7 breast cancer cells, T47D breast

cancer cells
729

R1881 (synthetic
androgen)

Cell number LNCaP-FGC cells 499

Trenbolone Induction of micronuclei RTL-W1 fish liver cells 730
Plastics

BPA Cell number MCF7 breast cancer cells 135, 716
Dopamine efflux PC12 rat tumor cells 40
pERK levels, intracellular Ca2�

changes, prolactin release
GH3/B6/F10 pituitary cells 41, 718

Cell number LNCaP prostate cancer cells 731
DEHP Number of colonies Escherichia coli and B. subtilis bacteria 732
Di-n-octyl phthalate Number of colonies E. coli and B. subtilis bacteria 732

Detergents, surfactants
Octylphenol Cell number MCF7 breast cancer cells 716

Dopamine uptake Fetal hypothalamic cells (primary) 717
pERK levels GH3/B6/F10 pituitary cells 718
hCG-stimulated testosterone levels Leydig cells (primary) 733

Propylphenol pERK levels GH3/B6/F10 pituitary cells 718
Nonylphenol pERK levels, prolactin release GH3/B6/F10 pituitary cells 41, 718

�-Hexosaminidase release HMC-1 mast cells 720
Cell number MCF7 breast cancer cells 135

PAH
Phenanthrene All-trans retinoic acid activity P19 embryonic carcinoma cells 734, 735
Benz(a)acridine All-trans retinoic acid activity P19 embryonic carcinoma cells 734
Naphthalene hCG-stimulated testosterone Pieces of goldfish testes 736
�-naphthoflavone hCG-stimulated testosterone Pieces of goldfish testes 736
Retene hCG-stimulated testosterone Pieces of goldfish testes 736

Heavy metals
Lead Estrogen, testosterone, and

cortisol levels
Postvitellogenic follicles (isolated from

catfish)
737

Cadmium Expression of angiogenesis genes Human endometrial endothelial cells 738
(Continued)
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TABLE 6. Continued

Chemicals by
chemical class Nonmonotonic effect Cell type Refs.

Phytoestrogens and
natural antioxidants

Genistein Cell number Caco-2BBe colon adenocarcinoma cells 739
CXCL12 secretion, cell number T47D breast cancer cells 729
Cell number, cell invasion, MMP-9

activity
PC3 prostate cancer cells 740

pJNK levels, Ca2� flux GH3/B6/F10 pituitary cells 719
Coumesterol Prolactin release, pERK levels GH3/B6/F10 pituitary cells 719
Daidezin Prolactin release, pERK levels GH3/B6/F10 pituitary cells 719

Cell number MCF7 breast cancer cells 135
Cell number LoVo colon cancer cells 741

Resveratrol Expression of angiogenesis genes Human umbilical vein endothelial cells 742
Trans-resveratrol pERK levels, Ca2� flux GH3/B6/F10 pituitary cells 719
Artelastochromene Cell number MCF7 breast cancer cells 743
Carpelastofuran Cell number MCF7 breast cancer cells 743
Biochanin A Induction of estrogen-sensitive

genes in the presence of
testosterone

MCF7 breast cancer cells 744

Licoflavone C Induction of estrogen-sensitive
genes

Yeast bioassay 745

Quercetin Aromatase activity H295R adrenocortical carcinoma cells 746
Cell number SCC-25 oral squamous carcinoma cells 747

Dioxin
TCDD Cell number, gene expression M13SV1 breast cells 748

PCB
PCB-74 Cell viability, GnRH peptide levels GT1-7 hypothalamic cells 749
PCB-118 Cell viability, GnRH peptide levels GT1-7 hypothalamic cells 749
Aroclor 1242 (PCB

mixture)
�-Hexosaminidase release HMC-1 mast cells 720

POP mixture Apoptosis of cumulus cells Oocyte-cumulus complexes (primary,
isolated from pigs)

750

Herbicides
Glyphosphate-based

herbicide (Round-Up)
Cell death, aromatase activity, ER�

activity
HepG2 liver cells 751

Atrazine Cell number IEC-6 intestinal cells 752
Insecticides

Endosulfan Cell number IEC-6 intestinal cells 752
�-Hexosaminidase release HMC-1 mast cells 720
ATPase activity of P-glycoprotein CHO cell extracts 753

Diazinon Cell number IEC-6 intestinal cells 752
Dieldrin �-Hexosaminidase release HMC-1 mast cells 720
DDT Cell number MCF7 breast cancer cells 144
DDE �-Hexosaminidase release HMC-1 mast cells 720

Prolactin release GH3/B6/F10 pituitary cells 41
3-Methylsulfonyl-DDE Cortisol and aldosterone release,

expression of steroidogenic
genes

H295R adrenocortical carcinoma cells 754

Fungicides
Hexachlorobenzene Transcriptional activity in the

presence of DHT
PC3 prostate cancer cells 755

Prochloraz Aldosterone, progesterone, and
corticosterone levels; expression
of steroidogenic genes

H295R adrenocortical cells 756

Ketoconazole Aldosterone secretion H295R adrenocortical cells 757
Fungicide mixtures Aldosterone secretion H295R adrenocortical cells 757

PBDE
PBDE-49 Activation of ryanodine receptor 1 HEK293 cell (membranes) 758
PBDE-99 Expression of GAP43 Cerebral cortex cells (primary) 759

Due to space concerns, we have not elaborated on the shape of the curve (U, inverted U, or other nonmonotonic shape) or the magnitude of observed effects in this
table. CXCL12, Chemokine (C-X-C motif) ligand 12; DEHP, bis(2-ethylhexyl) phthalate; DHT, dihydrotestosterone; hCG, human chorionic gonadotropin; MMP, matrix
metalloproteinase; PAH, polyaromatic hydrocarbons; PBDE, polybrominated diphenyl ethers; PCB, polychlorinated biphenyl; pERK, phospho-ERK; PGDS, prostaglandin-
D synthase; pJNK, phospho-c-Jun N-terminal kinase.
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TABLE 7. Examples of NMDRCs in animal studies

Chemicals by
chemical class Nonmonotonic effect Organ/sex/animal Refs.

Natural hormones
17�-Estradiol Morphological parameters Mammary gland/female/mice 138, 541

Accumulation of cAMP Pineal/female/rats 760
Prostate weight male/mice 689
Uterine weight female/mice 761
Antidepressant effects, measured by immobility

assay
Behavior/male/mice 762

Nocturnal activity, gene expression in preoptic area Brain and behavior/female/mice 763
Corticosterone Spatial memory errors Behavior/male/rats 764

Cholinergic fiber loss in cortex after treatment with
neurodegenerative drugs

Brain/male/rats 765

Mitochondrial metabolism Muscle/male/rats: strain differences 766
Contextual fear conditioning Behavior/male/rats 767
Locomotor activity Behavior/male/captive Adelie

penguins
768

Glucocorticoid Na�/K�-ATPase activity Brain/tilapia (fish) 769
Testosterone Na�/K�-ATPase activity Brain/tilapia (fish) 769

Gonadotropin subunit gene expression Pituitary/sexually immature goldfish 770
11�-Hydroxyandrosterone Gonadotropin subunit gene expression Pituitary/sexually immature goldfish 770
T4 Bone growth Tibia/male/rats with induced

hypothyroidism
771

Leptin Insulin production (in the presence of glucose) Pancreas/male/rats 560
Oxytocin Infarct size, plasma LDH levels, creatine kinase

activity after ischemia/ reperfusion injury
Brain and blood/male/rats 772

Memory retention Behavior/male/mice 773
Melatonin Brain infarction and surviving neuron number after

injury
Brain/female/rats 774

Dopamine Memory Brain/both/rhesus monkey 775
Neuronal firing rate Brain/male/rhesus monkey 776

Pharmaceutical
DES Sex ratio, neonatal body weight, other neonatal

development
Mice 777

Adult prostate weight Male/mice 689
Uterine weight Female/mice 761
Expression of PDGF receptor Testes/male/rats 778
Morphological parameters Mammary gland/male and female/

mice
779

Estradiol benzoate Dorsal prostate weight, body weight Male/rats 780
Sexual behaviors, testes morphology Male/zebra finches (birds) 781

Ethinyl estradiol GnRH neurons Brain/zebrafish 782
Tamoxifen Uterine weight Female/mice 761
Fluoxetine

(antidepressant)
Embryo number Potamopyrgus antipodarum (snails) 783

Fadrozole (aromatase
inhibitor)

Aromatase activity Ovary/female/fathead minnows 784

Plastics
BPA Fertility Reproductive axis /female/mice 316

Reproductive behaviors Behavior/male/rats 785
Protein expression Hepatopancreas/male/Porcellio

scaber (isopod)
786

Timing of vaginal opening, tissue organization of
uterus

Reproductive axis/female/mice 577

Expression of receptors in embryos Brain and gonad/both/ mice 787
DEHP Aromatase activity Hypothalamus/male/rats 788

Cholesterol levels Serum/male/rats 569
Timing of puberty Reproductive axis /male/rats 789
Body weight at birth, vaginal opening, and first

estrous
Female/rats 790

Seminal vesicle weight, epididymal weight,
testicular expression of steroidogenesis genes

Male/rats 791

Responses to allergens, chemokine expression Skin/male/mice 792
(Continued)
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TABLE 7. Continued

Chemicals by
chemical class Nonmonotonic effect Organ/sex/animal Refs.

Detergents, surfactants
Nonylphenol ethoxylate Fecundity Biomphalaria tenagophila (snails) 793
Octylphenol Embryo production P. antipodarum (snails) 794

Spawning mass and egg numbers Marisa cornuarietis (snails) 795
Semicarbazide Timing of preputial separation, serum DHT Male/rats 796

Antimicrobial
Triclocarban Fecundity P. antipodarum (snails) 797

PCB
Mixture of PCB Corticosterone levels Male/kestrels (birds) 798
Environmental PCB

mixture
Corticosterone levels Female/tree swallows (birds) 799

UV filters
Octyl methoxycinnamate Activity, memory Behavior/both/rats 800

Aromatic hydrocarbons
�-naphthoflavone Testosterone Plasma/male/goldfish 736
Toluene Locomotor activity Behavior/male/rats 801

Dioxins
TCDD Cell-mediated immunity Immune system/male/ rats 802

Proliferation after treatment with chemical
carcinogen

Liver/female/rats 803

Heavy metals
Cadmium Expression of metallothionein, pS2/TFF1 Intestine and kidney/ female/rats 804

Activity of antioxidant enzymes Earthworms 805
Size parameters, metamorphic parameters Xenopus laevis 806

Lead Growth, gene expression Vicia faba seedlings (plant) 807
Retinal neurogenesis Eye and brain/female/rats 808

Selenium DNA damage, apoptotic index Prostate/male/dogs 809
Hatching failure Eggs/red-winged blackbirds (wild

population)
810

Phytoestrogens
Genistein Aggressive, defensive behaviors Behavior/male/mice 811

Retention of cancellous bone after ovariectomy Tibia bones/female/rat 812
Expression of OPN, activation of Akt Prostate/male/mice 740

Resveratrol Angiogenesis Chorioallantoic membrane/chicken
embryos

742

Ulcer index after chemical treatment, expression of
gastroprotective genes

Stomach/male/mice 813

Phytochemicals
Phlorizin Memory retention Behavior/male/mice 814

Herbicides
Atrazine Time to metamorphosis Thyroid axis/Rhinella arenarum

(South American toad)
815

Survivorship patterns Four species of frogs 363
Growth parameters Bufo americanus 816

Pendimethalin Expression of AR, IGF-I Uterus/female/mice 817
Commercial mixture with

mecoprop, 2,4-
dichlorophenoxyacetic
acid and dicamba

Number of implantation sites, number of live births Female/mice 818

Simazine Estrous cyclicity Reproductive axis/female/rat 819
Insecticides

Permethrin Dopamine transport Brain/male/mice 820
Heptachlor Dopamine transport Brain/male/mice 820
DDT Number of pups, sex ratios, neonatal body weight,

male anogenital distance
Mice 777

Methoxychlor Number of pups, anogenital distance (males and
females), neurobehaviors (males and females)

Mice 777

Chlorpyrifos Body weight Male/rats 821
Antioxidant enzyme activity Oxya chinensis (locusts) 822

Malathion Antioxidant enzyme activity O. chinensis (locusts) 822
(Continued)
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experiments, chemicals with many different modes of ac-
tion generate NMDRCs in treated animals.

Perhaps most striking is the range of endpoints affected,
from higher-order events such as the number of viable
offspring (which could be due to alterations in the repro-
ductive tissues themselves or the reproductive axis), to
behavioral effects, to altered organ weights, and to lower-
order events such as gene expression. The mechanisms
responsible for these nonmonotonic phenomena may be
similar to those studied in cell culture systems, although

additional mechanisms are likely to be operating in vivo
such as alterations in tissue organization (541) and the
interactions of various players in the positive and negative
feedback loops of the endocrine system.

3. Examples of NMDRCs in the epidemiology literature
Perhaps not surprisingly, natural hormones produce

NMDRCs in human populations as well (Table 8). Al-
though the methods needed to detect NMDRCs in humans
are specific to the field of epidemiology, these results sup-

TABLE 7. Continued

Chemicals by
chemical class Nonmonotonic effect Organ/sex/animal Refs.

Fungicides
Carbendazim Liver enzymes, hematology parameters Blood and liver/male/rats 823
Chlorothalonil Survival, immune response, corticosterone

levels
Several amphibian species 686

Vinclozolin Protein expression Testes/male/P. scaber (isopod) 786

Due to space concerns, we have not elaborated on the shape of the curve (U, inverted U, or other nonmonotonic shape) or the magnitude of observed effects in this
table. DEHP, Bis(2-ethylhexyl) phthalate; DHT, dihydrotestosterone; LDH, lactate dehydrogenase; PCB, polychlorinated biphenyl; PDGF, platelet-derived growth factor.

TABLE 8. NMDRCs for natural hormones identified in the epidemiology literature

Hormone Affected endpoint NMDRC Study subjects Refs.

Testosterone
(free)

Incidence of coronary
events

Incidence of 25% at extremes of
exposure, 16% at moderate
exposure

Rancho Bernardo Study
participants, women
aged 40� (n � 639)

824

Depression Hypo- and hypergonadal had
higher depression scores than
those with intermediate free
testosterone

Androx Vienna Municipality
Study participants,
manual workers, men
aged 43–67 (n � 689)

825

PTH Mortality �50% excess risk for individuals
with low or high iPTH

Hemodialysis patients
(n � 3946)

826

Risk of vertebral or hip
fractures

�33% higher for low or high
iPTH compared to normal
levels

Elderly dialysis patients
(n � 9007)

827

TSH Incidence of Alzheimer’s
disease

About double the incidence in
lowest and highest tertile in
women (no effects observed
in men)

Framingham Study
participants (elderly)
(n � 1864, 59% women)

828

Leptin Mortality Mortality �10% higher for
lowest and highest leptin
levels

Framingham Heart Study
participants (elderly)
(n � 818, 62% women)

563

Insulin Coronary artery
calcification

Higher for low and high insulin
area under the curve
measures.

Nondiabetic patients with
suspected coronary heart
disease, cross-sectional
(n � 582)

829

Mortality
(noncardiovascular
only)

Relative risk �1.5 for highest
and lowest fasting insulin
levels

Helsinki Policemen Study
participants, men aged
34–64 (n � 970)

830

Cortisol BMI, waist
circumference

Low cortisol secretion per hour
for individuals with highest
and lowest BMI, waist
circumference

Whitehall II participants,
adults, cross-sectional
(n � 2915 men; n �
1041 women)

831

Major depression (by
diagnostic interview)

Slight increases at extremes of
cortisol

Longitudinal Aging Study
Amsterdam participants,
aged 65�, cross-
sectional (n � 1185)

832

BMI, Body mass index; iPTH, intact PTH; PTH, parathyroid hormone.
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port the idea that NMDRCs are a fundamental feature of
hormones. Importantly, it should be noted that most of the
individuals surveyed in studies examining the effects of
natural hormones have a disease status or are elderly. This
of course does not mean that natural hormones induce
NMDRCs in only these select populations but may instead
be a reflection of the types of individuals available for these
studies (for example, there are very few clinical events in
younger people).

NMDRCs observed in the epidemiology literature
from human populations exposed to EDCs are now start-
ing to receive attention (Table 9). Here, most reports of
NMDRCs come from studies of healthy individuals ex-
posed to persistent organic pollutants POPs, chemicals
that do not easily degrade and consequently bioaccumu-
late in human and animal tissues (542). These POPs do
encompass a range of chemical classes including compo-
nents of plastics, pesticides, and industrial pollutants. A
large number of these studies have focused on endpoints
that are relevant to metabolic disease, and together, these
studies show that there is a recurring pattern of NMDRCs
related to POPs and disease. Of course, not every study of
POPs shows NMDRCs, and this is probably due to the
distribution of EDCs in the populations examined.

In addition to the studies that show strong evidence for
NMDRCs in human populations, there is also a subset of
studies that provide suggestive evidence for nonmono-
tonic relationships between EDCs and human health end-
points (Table 9). In fact, the authors of many of these
papers clearly identify U- or inverted U-shaped dose-re-
sponse curves. However, when authors do not perform the
appropriate statistical tests to verify the presence of a
NMDRC, there is some ambiguity in their conclusions.
The usual cross-sectional vs. prospective design dichot-
omy in epidemiology also is a factor that can influence the
strength of a NMDRC, or prevent the detection of one at
all. This disjunction in design is often incongruous with
EDC exposure studies because we often know very little
about clearance rates of the chemical, interactions with
adiposity, and changes to these factors with age and gen-
der. Yet regardless of any possible weaknesses in these
studies, they provide supportive evidence that NMDRCs
are observed in human populations.

Because these reports of NMDRCs in human popula-
tions are relatively new, few mechanisms have been pro-
posed for these phenomena. Why would risk curves be
nonmonotonic over the dose distribution observed in hu-
man populations? Why would individuals with the highest
exposures have less severe health outcomes compared
with individuals with more moderate exposures? One
plausible explanation is that the same mechanisms for
NMDRCs in animals and cell cultures operate in human

populations: chronic exposures to high doses can activate
negative feedback loops, activate receptors that promote
changes in different pathways that diverge on the same
endpoint with opposing effects, or produce some measure
of toxicity. Accidental exposures of very large doses may
not behave the same as background doses for a variety of
reasons, including the toxicity of high doses; these large
doses tend to occur over a short time (and therefore more
faithfully replicate what is observed in animal studies after
controlled administration).

Another explanation is that epidemiology studies, un-
like controlled animal studies, examine truly complex
mixtures of EDCs and other environmental chemicals.
Some chemical exposures are likely to be correlated due to
their sources and their dynamics in air, water, soil, and
living organisms that are subsequently eaten. Therefore,
intake of these chemicals may produce unpredicted, likely
nonlinear outcomes whether the two chemicals act via
similar or different pathways.

The design of observational epidemiological studies is
fundamentally different from studies of cells or animals, in
that the EDC exposure distributions are given, rather than
set by the investigator. In particular, as shown in Fig. 5,
different epidemiological populations will have different
ranges of exposure, with the schematic example showing
increasing risk in a population with the lowest exposures
(labeled group A), an inverted U-shaped risk in a moderate
dose population (labeled group B), and an inverse risk in
a population with the highest exposures (labeled group C).
An additional example is provided (labeled group D) in
which an industrial spill shows high risk, but the compar-
ison with the entire unaffected population with a wide
variety of risk levels due to differential background expo-
sure could lead to a high- or a low-risk reference group and
a wide variety of possible findings.

It is reasonable to suggest that even though epidemio-
logical studies are an assessment of exposures at a single
time point, many of these pollutants are persistent, and
therefore a single measure of their concentration in blood
may be a suitable surrogate for long-term exposures. The
movement of people from relatively low- to higher-expo-
sure groups over time depend on refreshed exposures,
clearance rates, and individual differences in ability
to handle exposures (i.e. due to genetic susceptibilities,
amount of adipose tissue where POPs can be stored, etc.).

Figure 5 therefore further illustrates that observational
epidemiological studies yield the composite effect of vary-
ing mixtures of EDCs at various exposure levels for var-
iousdurations, combiningacuteandchronic effects.These
studies are important, however, in that they are the only
way to study EDC effects in the long term in intact hu-
mans, as opposed to studying signaling pathways, cells,
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TABLE 9. NMDRCs for EDCs identified in the epidemiology literature

Chemicals by chemical
class Affected endpoint NMDRC Study subjects Refs.

Insecticides
Trans-nonachlor Diabetes incidence Highest risk in groups with intermediate

exposures (quartile 2)
CARDIA participants, case-control study (n � 90

cases and n � 90 controls)
833

Telomere length in peripheral
leukocytes

Increased length in intermediate exposures
(quintile 4)

Adults aged 40� (Korea, n � 84) 591

p,p�-DDE BMI, triglyceride levels, HDL
cholesterol

Highest risk in groups with intermediate
exposures (quartile 3)

CARDIA participants (n � 90 controls from
nested case control study)

590

Risk of rapid infant weight
gain

For infants born to women of normal weight
prepregnancy, risk is highest with
intermediate exposures.

Infants from Childhood and the Environment
project, Spain (n � 374 from normal
prepregnancy weight mothers; n � 144 from
overweight mothers)

834

Telomere length in peripheral
leukocytes

Increased length with intermediate exposures
(quintile 4)

Adults aged 40� (Korea, n � 84) 591

Oxychlordane Bone mineral density of arm
bones

With low exposures, fat mass had inverse
associations with bone mineral density;
with high exposures, fat mass had positive
associations with bone mineral density.

NHANES 1999–2004 participants, aged 50�

(n � 679 women, n � 612 men)
835

Plastics
Mono-methyl phthalate

(MMP)
Atherosclerotic plaques Increased risk in intermediate exposure

groups (quintiles 2–4)
Adults aged 70, living in Sweden (n � 1016) 836

Perfluorinated
compounds

PFOA Arthritis (self-reported) Increased risk in intermediate exposure
groups (quartile 2)

NHANES participants, aged 20� (both sexes,
n � 1006)

837

Fire retardants
PBB-153 Blood triglyceride levels Increased risk in intermediate exposure

groups (quartile 2)
NHANES participants, aged 12� (n � 637) 604

PBDE-153 Prevalence of diabetes, Prevalence of diabetes highest in
intermediate groups (quartiles 2–3 relative
to individuals with undetectable levels)

NHANES participants, aged 12� (n � 1367) 604

Prevalence of metabolic
syndrome, levels of blood
triglycerides

Prevalence of metabolic syndrome highest in
intermediate exposure groups (quartile 2
relative to individuals with undetectable
levels); blood triglycerides highest in low
exposure groups (quartile 1 relative to
individuals with undetectable levels)

NHANES participants, aged 12� (n � 637) 604

PCB
PCB-74 Triglyceride levels Lowest levels are observed in intermediate

groups (quartile 2)
CARDIA participants (n � 90 controls from

nested case-control study)
590

PCB-126 Bone mineral density in right
arm

With low exposures, fat mass had inverse
associations with bone mineral density;
with high exposures, fat mass had positive
associations with bone mineral density

NHANES participants, aged �50 (n � 710
women, n � 768 men)

835

PCB-138 Bone mineral density in right
arm

With low exposures, fat mass had inverse
associations with bone mineral density;
with high exposures, fat mass had positive
associations with bone mineral density

NHANES participants, women aged 50�

(n � 679 women, n � 612 men)
835

PCB-153 Telomere length in peripheral
leukocytes

Increased length with intermediate exposure
groups (quintile 4)

Adults aged 40� (Korea, n � 84) 591

PCB-170 Diabetes incidence Highest risk in groups with intermediate
exposures (quartile 2)

CARDIA participants, case-control study (n � 90
cases and n � 90 controls)

833

Endometriosis Decreased risk in groups with intermediate
exposures (quartile 3)

Participants from the Women at Risk of
Endometriosis (WREN) study, 18–49 yr old,
case-control study (n � 251 cases; n � 538
controls)

838

PCB-172 DNA hypomethylation (by
Alu assay)

Highest levels of hypomethylation in groups
with lowest and highest exposures

Adults aged 40� (Korea, n � 86) 839

PCB-180a BMI Highest BMI with intermediate exposures
(quartile 2)

CARDIA participants (n � 90 controls from
nested case control study)

590

PCB-187a HDL cholesterol levels Lowest levels with intermediate exposures
(quartile 2)

CARDIA participants (n � 90 controls from
nested case control study)

590

PCB 196–203 Diabetes incidence Highest risk in groups with intermediate
exposures (quartile 2)

CARDIA participants, case-control study (n � 90
cases and n � 90 controls)

833

PCB-196 Endometriosis Decreased risk in groups with intermediate
exposures (quartile 3)

Participants from the Women at Risk of
Endometriosis (WREN) study, 18–49 yr old,
case-control study (n � 251 cases; n � 538
controls)

838

(Continued)
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organs, or animal models over limited periods of time.
Causal inference is not done directly from the epidemio-
logical study results; instead, it is done via combining in-
formation from the epidemiological observations with

findings from the detailed studies of pathways and
animals.

We have suggested that NMDRCs are a fundamental
andgeneral featureofhormoneaction in cells andanimals.

TABLE 9. Continued

Chemicals by chemical
class Affected endpoint NMDRC Study subjects Refs.

PCB-199a Triglyceride levels Highest risk in groups with intermediate
exposures (quartiles 2–3)

CARDIA participants (n � 90 controls from
nested case control study)

590

PCB-201 Endometriosis Decreased risk in groups with intermediate
exposures (quartiles 2–3)

Participants from the Women at Risk of
Endometriosis (WREN) study, 18–49 yr old,
case-control study (n � 251 cases, n � 538
controls)

838

Heavy metals
Selenium Fasting glucose levels (by

modeled exposure)
Intermediate exposures have highest fasting

glucose levels
NHANES 2003- 2004 participants, aged 40�

(n � 917)
840

Glycosylated hemoglobin (by
modeled exposure)

Intermediate exposures have highest %
glycosylated hemoglobin

NHANES 2003- 2004 participants, aged 40�

(n � 917)
840

Diabetes incidence (by
modeled exposure)

Intermediate exposures have highest risk for
diabetes

NHANES 2003- 2004 participants, aged 40�

(n � 917)
840

Blood triglyceride levels Intermediate exposures have highest
triglyceride levels

NHANES participants, aged 40� (n � 1159) 841

Arsenic Cytokines in umbilical cord
blood

Lower inflammatory markers at intermediate
exposures (quartile 2)

Pregnant women in Bangladesh ( n � 130) 842

Manganese Mental development scores
in infants and toddlers

Intermediate exposures had highest mental
development scores at 12 months of age;
association lost in older toddlers

12-month-old infants, Mexico (n � 301) 843

Sperm count, motility and
morphology

Intermediate doses had lowest sperm counts
and motility; intermediate doses also had
the worst sperm morphologies

Men aged 18–55 (infertility clinic patients,
n � 200)

844

Mixtures
31 POP Diabetes incidence Highest incidence in intermediate groups

(sextiles 2–3)
CARDIA participants, case-control study (n � 90

cases and n � 90 controls)
833

16 POP Diabetes incidence Highest incidence in intermediate groups
(sextiles 2–3)

CARDIA participants, case-control study (n � 90
cases and n � 90 controls)

833

Non-dioxin-like PCB
(mix)

Metabolic syndrome Highest incidence in intermediate groups
(quartile 3)

NHANES 1999–2002 participants, aged 20�

(n � 721)
845

Dioxin-like PCB (mix) Triacylglycerol levels by
quartile of exposure

Highest levels in intermediate groups
(quartile 3)

NHANES 1999–2002 participants, aged 20�

(n � 721)
845

Additional supportive evidence for NMDRC in the epidemiology literature
Insecticides

Heptachlor epoxide Prevalence of newly
diagnosed hypertension

Highest risk in intermediate groups (quartile
2); other endpoints do not have NMDRC

NHANES participants, women aged 40�, cross-
sectional (n � 51 cases, n � 278 total)

26

�-Hexachloro-
cyclohexane

Triacylglycerol levels by
quartile of exposure

Highest risk in intermediate group (quartile 2) NHANES participants, aged 20� (n � 896 men,
175 with metabolic syndrome)

845

Plastics
Mono-N-butyl
phthalate (MBP)

BMI, age-specific effects Effects seen only in elderly participants (age
60–80); risk is lowest in quartile 3

NHANES male participants (n � 365; age
60–80)

470

Mono-benzyl
phthalate (MBzP)

BMI, age-specific effects Effects seen only in young participants (age
6–11); risk is highest in quartiles 2–3

NHANES participants (both sexes, n � 329
males; n � 327 females)

470

Flame retardants
PFOA Thyroid disease (self-

reported)
Lowest risk in intermediate groups (quartile

3)
NHANES 1999–2000, 2003–2006 participants,

males aged 20� (n � 3974)
837

Dioxin and related
compounds

TCDD Age at natural menopause Highest for intermediate exposure group
(quintile 4)

Highly exposed women; Seveso Women’s
Health Study participants (n � 616)

468

HCDD Bone mineral density in right
arm by quintile of fat mass

With low exposures, fat mass had inverse
associations with bone mineral density;
with high exposures, fat mass had positive
associations with bone mineral density

NHANES participants, women aged 50�

(n � 679 women, n � 612 men)
835

Heavy metals
Selenium Prevalence of peripheral

artery disease
Disease prevalence decreased in intermediate

doses, then increased gradually with
higher doses

NHANES participants, aged 40� (n � 2062) 469

BMI, Body mass index; HCDD, hexachloro-dibenzo-p-dioxin; HDL, high-density lipoprotein; PCB, polychlorinated biphenyls; PFOA, perfluorooctanoic acid; PBB,
polybrominated biphenyl; PBDE, polybrominated diphenyl ethers; POP, persistent organic pollutants.
a In many cases, multiple chemicals in the same class had similar effects. A few chemicals were selected to illustrate the observed effect. This list is not comprehensive.
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It is therefore worth asking whether NMDRCs are ex-
pected in the epidemiology literature. The endpoints as-
sessed in epidemiology studies are typically integrated ef-
fects, rather than short-term effects; therefore, the various
cell- or organ-specific effects may cancel each other, par-
ticularly if they are NMDRCs (because they are unlikely to
all have nonmonotonicity at the same dose and direction).
Thus, NMDRCs are likely to be rarer in the epidemiology
literature compared with studies examining the effects of
a wide range of doses of an EDC on animals and cultured
cells. Yet it is also important to ask what can be concluded
if a NMDRC is detected in one epidemiology study but not
in others examining the same chemical and outcome.
There are several factors that must be considered. The first
is that differences in the populations examined between
the two studies could explain why a monotonic relation-
ship is observed in one group and a nonmonotonic rela-
tionship in another (see Fig. 5). The second is that one or
more studies may not be statistically designed to detect
NMDRCs. Finally, it is plausible that the NMDRC is an
artifact due to residual confounding or some other factor
that was not considered in the experimental design. As
more becomes known about the mechanisms operating in
cells, tissues, and organs to generate NMDRCs, our ability
to apply this information to epidemiology studies will in-
crease as well.

4. Tamoxifen flare, a NMDRC observed in cells, animals, and
human patients

Although there is controversy in toxicology and risk
assessment for endocrine disruptors, NMDRCs are rec-
ognized and used in current human clinical practice, al-
though under a different specific term, flare. Flare is often
reported in the therapy of hormone-dependent cancers
such as breast and prostate cancer. Clinically, failure to
recognize the NMDRC that is termed a flare would be
considered malpractice in human medicine.

Tamoxifen flare was described and named as a transient
worsening of the symptoms of advanced breast cancer, par-
ticularly metastases to bone associated with increased pain,
seen shortly after the initiation of therapy in some patients
(543). If the therapy could be continued, the patients show-
ing tamoxifen flare demonstrated a very high likelihood of
subsequent response to tamoxifen, including arrest of tumor
growth and progression of symptoms for some time.

The subsequent mechanism of the flare was described in
basic lab studies in athymic mouse models of human hor-
mone-dependentbreast cancerxenografts (544)and in tissue
culture of hormone-dependent human breast cancer cells
(545–547). In these models, it was observed that although
high, therapeutic concentrations of tamoxifen inhibited es-
trogen-stimulated proliferation of breast cancer cells, lower
concentrations of tamoxifen actually stimulated breast can-

Figure 5.

Figure 5. Example of a NMDRC in humans and the sampling populations that could be examined in epidemiology studies. This schematic illustrates
a theoretical NMDRC in a human population. If a study were to sample only group A, the conclusion would be that with increasing exposures, risk
increases monotonically. Sampling group B would allow researchers to conclude that there is a nonmonotonic relationship between exposure level
and risk. If a study included only group C, the conclusion would be that with increasing exposures, there is decreased risk of disease. Group D
represents a population that was highly exposed, i.e. due to an industrial accident. This group has the highest risk, and there is a monotonic
relationship between exposures and risk, although risk is high for all individuals. In the group D situation, there is generally a background
population with which high-dose exposure is compared (dotted line); relative risk for group D would depend on whether that background
population resembles group A, B, or C. From this example, it is clear that the population sampled could strongly influence the shape of the dose-
response curve produced as well as the conclusions reached by the study.
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cer cell growth as long as the cells were estrogen dependent
(548). Tamoxifen was also shown to disrupt tissue organi-
zation of the mammary gland, with specific effects on the
stroma that may contribute to the observed effects on pro-
liferation of epithelial cells (549, 550).

Tamoxifen therapy is administered as 10 mg twice per
day (20 mg/d; approx 0.3 mg/kg body weight per day), but
the target circulating levels are in the near submicromolar
range (0.2–0.6 �M); these levels are reached slowly, after
approximately 2 wks of therapy (551). In the initial pe-
riod, where tamoxifen flare is observed, the circulating
concentrations are ascending through lower concentra-
tions, in the range below therapeutic suppression of
growth, where breast cancer cell proliferation is actually
stimulated by the drug, both in tissue culture, in animal
xenograft studies, and in human patients (reviewed in Ref.
548). The recognition of this dual dose-response range
for tamoxifen (low-dose, low-concentration estrogenic
growth-stimulatory and higher-dose, higher-concentra-
tion estrogenic growth-inhibitory responses) led to the
definition of the term selective estrogen response modu-

lator, or SERM, activity (552–554). This SERM activity
has since been observed for many or even most estrogenic
EDCs, including BPA (3, 555–557).

These observations defined three separate dose-re-
sponse ranges for the SERM tamoxifen in human clinical
use. The lowest dose-response range, the range of flare,
stimulated breast cancer growth and symptoms in some
patients with hormone-dependent cancer. The next higher
dose-response range is the therapeutic range where tamoxifen
inhibits estrogen-dependent tumor growth. The highest dose
range causes acute toxicity by the SERM (see Fig. 6).

Tamoxifen provides an excellent example for how
high-dose testing cannot be used to predict the effects of
low doses. For tamoxifen (as for other drugs), the range of
acute human toxicity for tamoxifen was determined in
phase I clinical trials. Phase I trials also defined an initial
therapeutic range, the second dose-response range, as a
dose below which acute toxicity was not observed. The
therapeutic dose range was tested and further defined in
phase II and later clinical trials to determine efficacy (see
for exampleRef. 558). Standard toxicological testing from

Figure 6.

Figure 6. Dose-response ranges for tamoxifen in breast cancer therapy. This figure demonstrates the NMDRC, also called flare, in tamoxifen
treatments. As the circulating dose of tamoxifen increases when treatment starts, patients initially experience flare, i.e. growth of the tumor (546),
followed by a decrease in tumor size as the circulating levels of tamoxifen rise into the therapeutic range (676, 677). High doses of tamoxifen are
acutely toxic (546). Starting from the highest concentrations, where acute toxicity is observed, and going to lower concentrations on the X-axis,
the acute toxicity diminishes towards zero growth, i.e. therapeutic stasis (green baseline). This occurs at approximately 1E-05 m, the lowest
observed effect level (LOEL) for toxicity. The vertical arrows show the results of applying three or four 10-fold safety factors to the LOEL for the
high-dose toxicity of tamoxifen, and would calculate a safe or reference dose for tamoxifen in the region of flare, the least safe region of exposure
in actual practice. Above the diagram of dose response ranges is estimated ER occupancy by tamoxifen. This was calculated from the affinity
constant of tamoxifen for ERs determined in human breast cancer cells (Ki � 29.1 nM; Ref 678); flare appears to correspond to low receptor
occupancy (blue axis), therapeutic range with mid and upper-range receptor occupancy, and acute toxicity well above 99% receptor occupancy.
(678).
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high doses to define a LOAEL or NOAEL are equivalent
to the phase I clinical testing, and in risk assessment, a safe
dose or reference dose is calculated from these tests. How-
ever, the lowest dose range, with the highly adverse effects
termed flare, was not detected in the phase I trials and was
determined only for tamoxifen in breast cancer therapy at
the therapeutic doses (543). The implication for risk as-
sessment is that NMDRCs for EDCs, particularly those
already identified as SERMs, would likely not be detected
by standard toxicological testing at high doses. That is, the
consequence of high-dose testing is the calculation of a
defined but otherwise untested safe dose that is well within
the range equivalent to flare, i.e. a manifestly unsafe dose
of the EDC (Fig. 6).

5. Similarities in endpoints across cell culture, animal, and
epidemiology studies: evidence for common mechanisms?

There are common trends in some findings of
NMDRCs in cell, animal, and human studies and there-
fore evidence for related mechanisms for NMDRCs at var-
ious levels of biological complexity. Tamoxifen flare, dis-
cussed in Section III.C.4, is an informative example.
Another illustrative example is that of the effect of the
hormone leptin (Fig. 7). In cultured primary adipocytes,
NMDRCs are observed after leptin exposure; moderate
doses of leptin significantly reduce insulin-mediated glu-
cose intake, whereas low and high doses maintain higher
glucose intake in response to insulin (559). The rat pan-
creas shows a similar response to leptin; the amount of

Figure 7.

Figure 7. Leptin as an example of a NMDRC. Several studies report NMDRCs in response to leptin treatments. A, NMDRCs are observed in cultured
primary adipocytes after leptin exposure. This graph illustrates the relationship between administered leptin dose and glucose uptake in two types
of adipocytes, those isolated from omental tissue (green) and others from sc fat (purple) (schematic was made from data in Ref. 559). These data
are on a log-linear plot. B, Ex vivo rat pancreas was treated with leptin and various doses of glucose, and the insulin response curves were
examined. Area under the curve is a measure of the ability of the pancreas to bring glucose levels under control. Different dose-response curves
were observed depending on the amount of glucose administered: a U-shaped curve when 8 mmol/liter was included (pink) or a multiphasic curve
with 4 mmol/liter (blue) (schematic made from data in Ref. 560). These data are on a linear-linear plot. C, U-shaped NMDRCs were also observed
when food intake was compared with leptin levels in the blood of rats administered the hormone. This response was similar in males (orange) and
females (cyan) (schematic made from data in Ref. 562). These data are on a linear-linear plot.
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secreted insulin has an inverted U-shaped response to lep-
tin (560, 561). Even more striking is the relationship be-
tween leptin and food intake. Rats administered moderate
doses of leptin consume less food compared to rats dosed
with low or high levels of leptin (562); mechanistically,
this lower food intake could be due to higher circulating
glucose levels in these animals due to ineffective insulin
action. And finally, in a human study, leptin levels were
found to correlate with body mass index but have a U-
shaped relationship with mortality (563). These results
suggest that hormones can produce similar responses at
several levels of biological complexity (cell, organ, animal,
and population).

A large number of epidemiology studies with NMDRCs
have found relationships between EDC exposures like POPs
and metabolic diseases including obesity and diabetes (Table
9) (see also Ref. 564 for a review), and the mechanisms for
these relationships have begun to be explored. Human and
animal cells treated with EDCs in culture display NMDRCs
that are relevant to these diseases: BPA has nonmonotonic
effects on the expression of adipocyte proteins in preadi-
pocytes and the release of adiponectin from mature adi-
pocytes (565–567). Similarly, in female rodents, low doses
but not high doses of BPA increased adipose tissue weight
and serum leptin concentrations (568), and intermediate
doses of phthalates decrease serum cholesterol levels (569).
Thus, although understanding the mechanisms operating at
the cellular level of organization has not yet led to definitive
knowledge of the mechanisms producing NMDRCs in hu-
man populations, there appear to be strong similarities in
cells, animals, and humans that support a call for continued
workfocusingonmetabolicdiseaseendpointsateach levelof
biological organization.

D. NMDRC summary
We have demonstrated that nonmonotonicity is a com-

mon occurrence after exposures to hormones and EDCs in
cell culture and animals and across human populations.
Because of the abundance of examples of NMDRCs, we
expect that if adequate dose ranges are included in animal
and cell culture studies, including the use of negative and
well-chosen positive controls, NMDRCs may be observed
more often than not. Here, we have focused mainly on
studies that examined a wide range of doses, including
many that examined the effects of doses that span the
low-dose and toxicological ranges. We also discussed sev-
eral mechanisms that produce NMDRCs. Each of these
mechanisms can and does operate at the same time in a
biological system, and this cooperative action is ultimately
responsible for NMDRCs.

Understanding nonmonotonicity has both theoretical
and practical relevance. When a chemical produces mono-

tonic responses, all doses are expected to produce similar
effects whose magnitude varies with the dose, but when a
chemical produces a NMDRC, dissimilar or even opposite
effects will be observed at different doses. Thus, mono-
tonic responses can be modeled using the assumption that
each step in a linear pathway behaves according to the law
of mass action (43, 570); high doses are always expected
to produce higher responses. In contrast, NMDRCs are
not easy to model (although they are quite easy to test for),
requiring detailed knowledge of the specific mechanisms
operating in several biological components. From a reg-
ulatory standpoint, information from high doses cannot
always be used to assess whether low doses will produce
a biological effect (38).

IV. Implications of Low-Dose Effects
and Nonmonotonicity

Both low-dose effects and NMDRCs have been observed
for a wide variety of EDCs as well as natural hormones.
Importantly, these phenomena encompass every level of
biological organization, from gene expression, hormone
production, and cell number to changes in tissue architec-
ture to behavior and population-based disease risks. One
conclusion from this review is that low-dose effects and
NMDRCs are often observed after administration of en-
vironmentally relevant doses of EDCs. For both hormones
and EDCs, NMDRCs should be the default assumption
absent sufficient data to indicate otherwise. Furthermore,
there are well-understood mechanisms to explain how
low-dose effects and NMDRCs manifest in vitro and in
vivo. Accepting these phenomena, therefore, should lead
to paradigm shifts in toxicological studies and will likely
also have lasting effects on regulatory science. Some of
these aspects are discussed below. Additionally, we have
briefly explored how this knowledge should influence fu-
ture approaches in human and environmental health.

At a very practical level, we recommend that research-
ers publishing data with low-dose and nonmonotonic ef-
fects include key words in the abstract/article that identify
them as such specifically. This review was unquestionably
impeded because this has not been standard practice. We
also strongly recommend that data showing nonmono-
tonic and binary response patterns not be rejected or crit-
icized because there is no dose response.

A. Experimental design

1. Dose ranges must be chosen carefully
To detect low-dose effects or NMDRCs, the doses in-

cluded for testing are of utmost importance. Most of the
studies we examined here for nonmonotonicity tested
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doses over severalfold concentrations. Unfortunately, reg-
ulatory guidelines only require that three doses be tested.
Both low-dose effects and NMDRCs can be observed
when examining only a few doses, but some studies may
detect significant results purely by luck, because a small
shift in dose can have a large impact on the ability to
observe differences relative to untreated controls.

In the multitude of chemicals that have never been
tested at low doses, or in the development of new chem-
icals, to determine whether a chemical has low-dose effects
in laboratory animals, we suggest setting the NOAEL or
LOAEL from traditional toxicological studies as the high-
est dose in experiments specifically designed to test endo-
crine-sensitive endpoints. We suggest setting the lowest
dose in the experiment below the range of human expo-
sures, if such a dose is known. Several intermediate doses
overlapping the range of typical human exposures should
be included also, bringing the total number in the range of
five to eight total doses tested. Importantly, although the
levels of many environmental chemicals in human blood
and/or urine have been reported by the CDC and other
groups responsible for population-scale biomonitoring, it
is often not known what administered doses are needed to
achieve these internal exposure levels in animals (4, 253);
thus, toxicokinetic studies are often needed before the on-
set of low-dose testing. This is important because the crit-
ical issue is to determine what effects are observed in an-
imals when circulating levels of an EDC match what is
measured in the typical human. Due to differences in me-
tabolism, route of exposure, and other factors, a relatively
high dose may need to be administered to a rodent to
produce blood concentrations in the range of human lev-
els; however, this should not be considered a high-dose
study.

It has also been suggested that animal studies that are
used to understand the potential effects of a chemical on
humans should use a relevant route of administration to
recapitulate human exposures (571, 572) because there
may be differences in metabolism after oral and nonoral
administration. Many chemicals that enter the body orally
undergo first-pass metabolism and are then inactivated via
liver enzymes, whereas other routes (i.e. sc) can bypass
these mechanisms and lead to a higher concentration of the
active compound in circulation (573). Studies indicate,
however, that inactivation of chemicals via first-pass me-
tabolism is not complete and also that deconjugation of
metabolites can occur in some tissues allowing the re-
release of the active form (574, 575). Additionally, for
some chemicals, it is clear that route of administration has
little or no impact on the availability of the active com-
pound in the body (241, 384), and other studies show that
route of administration has no impact on the biological

effects of these chemicals; i.e. regardless of how it enters
the body, dioxin has similar effects on exposed individuals
(384), and comparable results have been observed for BPA
(141). Although understanding the typical route of human
exposure to each environmental chemical is an important
task, it has been argued that any method that leads to
blood concentrations of a test chemical in the range they
are observed in humans is an acceptable exposure proto-
col, and this is especially true with gestational exposures,
because fetuses are exposed to chemicals only via their
mothers’ blood (31, 576).

2. Timing of exposures is important
Rodent studies indicate that EDC exposures during de-

velopment have organizational effects, with permanent
effects that can manifest even in late adulthood, whereas
exposures after puberty are for the most part activational,
with effects that are abrogated when exposures cease. For
example, the adult uterus requires relatively large doses of
BPA (in the parts-per-million range) to induce changes
associated with the uterotrophic assay (555, 577), whereas
parts-per-trillion and ppb exposures during the fetal pe-
riod permanently and effectively alter development of the
uterus (279, 310, 578). Thus, the timing of exposures is
profoundly important to detect low-dose effects of EDCs.

Human studies also support this conclusion. The 1976
explosion of a chemical plant in Seveso, Italy, which led to
widespread human exposure to large amounts of TCDD,
a particularly toxic form of dioxin, and the deposition of
this chemical on the land surrounding the chemical plant,
provided evidence in support of the organizational and
activational effects of endocrine-active chemicals in hu-
mans (579). Serum TCDD concentrations showed corre-
lations between exposure levels and several disease out-
comes including breast cancer risk, abnormal menstrual
cycles, and endometriosis (580–582), but individuals who
were either infants or teenagers at the time of the explosion
were found to be at greatest risk for developing adult dis-
eases (583, 584). Importantly, many scientists have argued
that organizational effects can occur during puberty, i.e.
that the period where hormones have irreversible effects
on organ development extends beyond the fetal and neo-
natal period (585), and for some endpoints this appears to
be the case (586, 587).

It has also been proposed that the endocrine system
maintains homeostasis in the face of environmental insults
(210). The adult endocrine system does appear to provide
some ability to maintain a type of homeostasis; when the
pharmaceutical estrogen DES is administered to pregnant
mice, the circulating estradiol concentrations in the dam
respond by decreasing linearly (224). In contrast, fetal
concentrations of estradiol respond nonmonotonically in
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a way that is clearly not correlated with maternal levels.
Similarly, there is evidence that BPA can induce aromatase
and therefore increase estradiol levels in situ in the fetal
urogenital sinus (588). This is an example of a feed-for-
ward positive-feedback effect rather than a homeostatic
response. The effects of EDCs on adult subjects, both an-
imal and people, suggest that diseases often result from
low-dose adult exposures (589–595); this argues against
a view of the endocrine system as a means to maintain
homeostatic control. Instead, individuals can be perma-
nently changed, in an adverse way, after EDC exposures.

In one example, pregnant mice were exposed to low
concentrations of BPA, and their male offspring had al-
tered pancreatic function at 6 months of age (158). Sur-
prisingly, however, the mothers (exposed only during
pregnancy) were also affected, with altered metabolic ma-
chinery and body weight at 4 months postpartum, long
after exposures had ended. The increased incidence of
breast cancer in women that took DES during pregnancy
also illustrates this point (596, 597). These studies suggest
that even the adult endocrine system is not invariably ca-
pable of maintaining a so-called homeostatic state when
exogenous chemicals affecting the endocrine system are
present. Thus, although adult exposures to EDCs have
been given some attention by bench scientists (29), more
work of this kind is needed to better understand whether
and how EDCs can have permanent organizational effects
on adult animals.

At the beginning of this review, we justified the need to
critically examine the low-dose literature because of recent
epidemiological findings linking EDC exposures and dis-
eases. Yet there is inherent difficulty in examining neona-
tal exposures to EDCs and their connection to diseases due
to the length of time needed for these studies; thus, many
studies of this type have examined high doses of pharma-
ceuticals (i.e. DES) or accidental exposures to industrial
chemicals (i.e. dioxin) (66, 398, 399, 581, 597–601).

Only recently, with the availability of biomonitoring
samples from large reference populations, have lower
doses begun to receive widespread attention from epide-
miologists. Many recent studies have examined adult ex-
posures to EDCs and correlated exposures with disease
statuses (see for example Refs. 15, 16, and 602–604). Hu-
man studies examining fetal/neonatal exposures to low-
dose EDCs and early life effects have also begun to be
studied (6, 333, 605–607), although studies linking these
early life exposures to adult diseases are likely to be de-
cades away. More than anything, these studies support
our view that the effects of low-dose exposures should be
considered when determining chemical safety.

3. Importance of endpoints being examined
Traditional toxicology testing, and in particular those

studies performed for the purposes of risk assessment, typ-
ically adhere to guideline studies that have been approved
by international committees of experts (608). The end-
points assessed in these guideline-compliant studies are
centered around higher-order levels, including weight
loss, mortality, changes in organ weight, and a limited
number of histopathological analyses (609, 610). When
pregnant animals are included in toxicological assess-
ments, the endpoints measured typically include the
ability to maintain pregnancies, the number of offspring
delivered, sex ratios of surviving pups, and measures
regarding maternal weight gain and food/water intake
(610).

Yet low-dose EDCs are rarely toxic to the point of kill-
ing adult animals or causing spontaneous abortions, and
traditional tests such as the uterotrophic assay have been
shown to be relatively insensitive (72, 577). It has been
argued that this type of testing is insufficient for under-
standing the effects of EDCs (31, 70, 495, 611). Many
EDC studies have instead focused on examining newly
developed, highly sensitive endpoints that span multiple
levels of biological organization, from gene expression to
tissue organization to organ systems to the whole animal
(612), which may not be rapidly lethal but which none-
theless have enormous importance for health, including
mortality. Thus, for example, studies designed to examine
the effects of chemicals on obesity no longer focus on body
weight alone but also analyze gene expression; fat content
in adipose cells and the process of adipogenesis; inflam-
mation, innvervation, and vascularization parameters in
specific fat pads; conversion rates of white and brown
adipose tissues; systemic hormone levels and response to
glucose and insulin challenges; and food intake and energy
expenditures, among others (314, 613–615). As our
knowledge of EDCs and the endocrine system continue to
grow, the most sensitive endpoints should be used to de-
termine whether a chemical is disrupting the development
of organisms (70).

In moving beyond traditional, well-characterized
health-related endpoints like mortality and weight loss, an
important question has been raised: how do we define
endpoints as adverse? This is an important point, because
it has been suggested that the endpoints examined in in-
dependent EDC studies are not validated and may not
represent adverse effects (609). There is also debate over
whether the mechanism (or mode) of action must be ex-
plained for each effect to determine whether a relevant
pathway is present in humans (616, 617). Yet, when orig-
inally assessing the low-dose literature, the NTP expert
panel chose to examine all effects of EDC exposure, re-
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gardless of whether the endpoint could be deemed adverse
(2). From the perspective of developmental biology, any
change in development should be seen as adverse, even if
the change itself is not associated with a disease or dys-
function. Some of these developmental changes, in fact,
may increase sensitivity or susceptibility to disease later on
in life but will otherwise appear normal. Furthermore,
studies of heavy metals have shown that small shifts in
parameters like IQ may not have drastic effects on indi-
viduals but can have serious repercussions on the popu-
lation level (618), and therefore changes in the variance/
observable range of a phenotype should also be considered
adverse (52).

4. Importance of study size
National Institutes of Health guidelines require that the

number of vertebrate animals used in experiments be as
small as possible to show statistically significant effects
based on power analysis. Yet many traditional toxicology
studies have used large numbers of animals to draw con-
clusions about chemical safety. When the endpoints being
assessed have binary outcomes (i.e. animal has a tumor vs.
animal does not have a tumor) and the incidence of the
phenotype is not high, a large number of animals is re-
quired to reveal statistically significant effects. In contrast,
many of the endpoints examined in the field of endocrine
disruption are more complex and are not binary; thus,
power analysis allows researchers to determine how many
animals are needed to observe statistically significant (and
biologically relevant) differences between control and ex-
posed populations. For this reason, arbitrary numbers set
as cutoffs for determining whether a study is acceptable or
unacceptable for risk assessments are not appropriate. In-
stead, the number of animals required for a study to be
complete is dependent on the effect size, precision/vari-
ance, minimal meaningful difference to be considered be-
tween populations, and the �-value set in statistical tests.

B. Regulatory science
For decades, regulatory agencies have tested, or ap-

proved testing, of chemicals by examining high doses and
then extrapolating down from the NOAEL, NOEL, and
LOAEL to determine safe levels for humans and/or wild-
life. As discussed earlier, these extrapolations use safety
factors that acknowledge differences between humans and
animals, exposures of vulnerable populations, interspe-
cies variability, and other uncertainty factors. These safety
factors are informed guesses, not quantitatively based cal-
culations. Using this traditional way of setting safe doses,
the levels declared safe are never in fact tested. Doses in the
range of human exposures are therefore also unlikely to be
tested. This has generated the current state of science,

where many chemicals of concern have never been exam-
ined at environmentally relevant low doses (see Table 4 for
a small number of examples).

Assumptions used in chemical risk assessments to esti-
mate a threshold dose below which daily exposure to a
chemical is estimated to be safe are false for EDCs. First,
experimental data provide evidence for the lack of a
threshold for EDCs (619). More broadly, the data in this
review demonstrate that the central assumption underly-
ing the use of high doses to predict low-dose effects will
lead to false estimates of safety. The use of only a few high
doses is based on the assumption that all dose-response
relationships are monotonic and therefore that it is ap-
propriate to apply a log-linear extrapolation from high-
dose testing to estimate a safe reference dose (Fig. 4). The
Endocrine Society issued a position statement on EDCs
(620) and urged the risk assessment community to use the
expertise of their members to develop new approaches to
chemical risk assessments for EDCs based on principles of
endocrinology. Undertaking this mission will represent a
true paradigm shift in regulatory toxicology (79). The En-
docrine Society statement was then supported in March
2011 by a letter to Science from eight societies with rele-
vant expertise representing over 40,000 scientists and
medical professionals (621).

Studies conducted for the purposes of risk assessment
are expected to include three doses: a dose that has no ef-
fects on traditional toxicological endpoints (the NOAEL),
a higher dose with effects on traditional endpoints (the
LOAEL), and an even higher dose that shows toxicity.
Although reducing the number of animals used for these
types of studies is an important goal, more than three doses
are often needed for a true picture of a chemical’s toxicity.
The examination of a larger number of doses would allow
for 1) the study of chemicals at the reference dose, i.e. the
dose that is calculated to be safe; 2) examination of doses
in the range of actual human exposures, which is likely to
be below the reference dose; and 3) the ability to detect
NMDRCs, particularly in the low-dose range. The impact
of testing more doses on the numbers of animals required
can be mitigated by use of power analysis, as suggested
above. Because no amount of research will ever match the
diversity and reality of actual human experience, there
should be ongoing epidemiological study of potential ad-
verse effects of EDCs even after safe levels are published,
with periodic reevaluation of those safe levels.

One issue that has been raised by regulatory agencies is
whether animal models are appropriate for understanding
the effects of EDCs on humans. These arguments largely
center around observed differences in hormone levels dur-
ing different physiological periods in rodents and humans
(57), and differences in the metabolic machinery and ex-
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cretion of chemicals between species (622). To address the
first issue, it should be noted that the FDA uses animals to
test pharmaceuticals and other chemicals before any safety
testing in humans because it is widely recognized that,
although animals and humans do not have exactly the
same physiologies, there is evolutionary conservation
among vertebrates and specifically among mammals (62).
Furthermore, animal studies proved to be highly predic-
tive of the effects of DES on women, indicating that ro-
dents are sufficiently similar to humans to reliably forecast
affected endpoints in the endocrine system (64, 623).
Thus, the default position must be that animal data are
indicative of human effects until proven otherwise.

With regard to the second issue, BPA researchers in
particular have examined species-specific differences in
metabolism of this EDC. Interestingly, the pharmacoki-
netics of BPA in rodents, monkeys, and humans appear to
be very similar (624), and regulatory agencies have sub-
sequently concluded that rodents are appropriate models
to assess the effects of this chemical (625, 626). Thus,
researchers should select animal models that are sensitive
to low doses of hormones and select appropriate species
for the endpoints of interest. As the scope of our knowl-
edge has broadened about how chemicals can alter the
endocrine system, well beyond estrogens, androgens, and
the thyroid, it is imperative that considerable thought be
given to how to apply this for regulatory purposes.

C. Human health
As discussed several times throughout this review, there

is now substantial evidence that low doses of EDCs have
adverse effects on human health. Thus, although many
epidemiological studies originally focused on occupation-
ally exposed individuals and individuals affected by acci-
dental exposures to high doses of environmental chemi-
cals, these recent studies have suggested wide-ranging
effects of EDCs on the general population.

Importantly, human exposures are examples of true
mixtures; dozens if not hundreds of environmental chem-
icals are regularly detected in human tissues and fluids
(91), yet very little is known about how these chemicals act
in combination (627). Several studies indicate that EDCs
can have additive or even synergistic effects (143, 323,
628–630), and thus these mixtures are likely to have un-
expected and unpredictable effects on animals and hu-
mans. The study of mixtures is a growing and complex
field that will require considerable attention in the years
ahead as knowledge of EDCs in the laboratory setting are
applied to human populations (631, 632).

How much will human health improve by testing chem-
icals at low, environmentally relevant doses and using the
results to guide safety determinations? Current testing

paradigms are missing important, sensitive endpoints; be-
cause they are often unable to detect NMDRCs, they can-
not make appropriate predictions about what effects are
occurring at low doses. At this time, it is not possible to
quantify the total costs of low-dose exposures to EDCs.
However, current epidemiology studies linking low-dose
EDC exposures to a myriad of health problems, diseases,
and disorders suggest that the costs of current low-dose
exposures are likely to be substantial.

The weight of the available evidence suggests that
EDCs affect a wide range of human health endpoints that
manifest at different stages of life, from neonatal and in-
fant periods to the aging adult. As the American popula-
tion ages, healthcare costs continue to rise, and there are
societal costs as well, with decreased quality of life con-
cerns, decreases in work productivity due to illness or the
need for workers to care for affected family members, and
the psychological stresses of dealing with some outcomes
like infertility. Thus, it is logical to conclude that low-dose
testing, followed by regulatory action to minimize or elim-
inate human exposures to EDCs, could significantly ben-
efit human health. This proposal effectively calls for
greatly expanded research to give human communities
feedback about themselves. It emanates from a view that
human society benefits greatly from the many chemical
compounds it uses but that extensive epidemiological sur-
veillance and other focused research designs are needed to
assure that the balance of risk/benefit from those chemi-
cals is acceptable.

How much would human health benefit by a reduction
in the use of EDCs? For some chemicals, minor changes in
consumer habits or industrial practices can have drastic
effects on exposures (633–636). Other chemicals like
DDT that have been regulated in the United States for
decades continue to be detected in human and environ-
mental samples; the persistent nature of many of these
agents suggests they may impact human health for decades
to come. Even less-persistent chemicals like BPA are likely
to remain in our environment long after a ban is enacted
because of the large amounts of plastic waste leaching BPA
(and other estrogenic compounds) from landfills into wa-
ter sources (637) and its presence on thermal receipt paper
and from there into recycled paper (638–640). Yet, de-
spite these challenges, reducing human exposure to EDCs
should be a priority, and one way to address that priority
is to decrease the production and use of these chemicals.
The Endocrine Society has called for such a reduction and
the use of the precautionary principle, i.e. action in the
presence of concerning information but in the absence of
certainty to eliminate or cut the use of questionable chem-
icals even when cause-effect relationships are not yet es-
tablished (620).
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D. Wildlife
Much of the recent focus on EDCs has been on the

impact of these chemicals on human health. Yet the ear-
liest studies of EDCs that focused on the impact of these
chemicals on wildlife should not be forgotten. Rachel Car-
son’s work on DDT and other pesticides provided some of
the earliest warning signs that there were unintended con-
sequences of chemical use. Carson’s work was ahead of its
time; she understood that exceedingly small doses of these
chemicals produced adverse effects, that the timing of ex-
posures was critical, and that chemical mixtures produced
compounded effects (641). Now, decades after some of the
most dangerous EDCs have been regulated, they continue
to be measured in environmental samples as well as the
bodies of wildlife animals.

Furthermore, it should be pointed out that humans, like
wildlife, are not insulated from the environment, and ef-
fects in wildlife, including nonmammalian species, are in-
dicative of and mirror effects in humans. For example,
BPA has estrogen-like effects in fish (642–644), amphib-
ians (645, 646), and reptiles (647, 648). A recent review
showed that demasculinizing and feminizing effects of
atrazine have been demonstrated in fish, amphibians, rep-
tiles, birds, and mammals, i.e. every vertebrate class ex-
amined (326); and in fact, the first report to suggest that
atrazine induced aromatase was conducted in reptiles
(649). Similarly, perchlorate affects fish (650–653), am-
phibians (654–658), and birds (659–661) via mecha-
nisms consistent with those described for humans, and
some of the earliest reports on perchlorate’s effects on
thyroid function were conducted in amphibians (661,
662). Finally, ecological studies of dioxin and dioxin-like
chemicals reveal effects on a range of exposed wildlife
including birds (663, 664), fish (665, 666), and inverte-
brates (667). Although these studies have highlighted
some of the species-specific effects of dioxin (389), and
orders of magnitude differences in toxic equivalency fac-
tors between species (668), they also indicate the con-
servation of mechanisms for the effects of dioxin on a
range of biological endpoints in wildlife, laboratory an-
imals, and humans (384). In fact, in many cases, non-
mammalian species are much more sensitive to EDC
effects, and wildlife species serve as sentinels for envi-
ronmental and public health (669 – 673). Thus, the ef-
fects of these chemicals on wildlife populations are
likely to continue; for this reason, the low-dose effects
of these chemicals are particularly worth understanding
(674, 675).

V. Summary

In conclusion, we have provided hundreds of examples
that clearly show that NMDRCs and low-dose effects are

common in studies of hormones and EDCs. We have ex-
amined each of these issues separately and provided mech-
anistic explanations and examples of both. These topics
are related, but they must be examined individually to be
understood. The concept of nonmonotonicity is an essen-
tial one for the field of environmental health science be-
cause when NMDRCs occur, the effects of low doses can-
not be predicted by the effects observed at high doses. In
addition, the finding that chemicals have adverse effects
on animals and humans in the range of environmental
exposures clearly indicates that low doses cannot be
ignored.

In closing, we encourage scientists and journal editors
to publish data demonstrating NMDRCs and low-dose
effects, even if the exact mechanism of action has not yet
been elucidated. This is important because the study of
EDC is a growing specialty that crosses many scientific
fields, and scientists that work on or regulate EDCs should
appreciate and acknowledge the existence of NMDRCs
and low-dose effects and have access to this important
information. We further recommend greatly expanded
and generalized safety testing and surveillance to detect
potential adverse effects of this broad class of chemicals.
Before new chemicals are developed, a wider range of
doses, extending into the low-dose range, should be fully
tested. And finally, we envision that the concepts and em-
pirical results we have presented in this paper will lead to
many more collaborations among research scientists in
academic and government laboratories across the globe,
that more and more sophisticated study designs will
emerge, that what we have produced herein will facilitate
those making regulatory decisions, that actions taken in
light of this information will begin to abate the use of
EDCs, and ultimately that health impacts in people and in
wildlife will be averted.
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Pesenti S, Leduque P, Déchaud H, Magre S, Le Maguer-
esse-Battistoni B 2010 The effects of an in utero exposure
to 2,3,7,8-tetrachlorodibenzo-p-dioxin on male reproduc-
tive function: identification of Ccl5 as a potential marker.
Int J Androl 33:413–424

414. Bell DR, Clode S, Fan MQ, Fernandes A, Foster PM, Jiang
T, Loizou G, MacNicoll A, Miller BG, Rose M, Tran L,
White S 2007 Toxicity of 2,3,7,8-tetrachlorodibenzo-p-
dioxin in the developing male Wistar(Han) rat. I. No de-
crease in epididymal sperm count after a single acute dose.
Toxicol Sci 99:214–223

415. Bell DR, Clode S, Fan MQ, Fernandes A, Foster PM, Jiang
T, Loizou G, MacNicoll A, Miller BG, Rose M, Tran L,
White S 2007 Toxicity of 2,3,7,8-tetrachlorodibenzo-p-
dioxin in the developing male Wistar(Han) rat. II. Chronic
dosing causes developmental delay. Toxicol Sci 99:224–
233

416. Ohsako S, Miyabara Y, Nishimura N, Kurosawa S, Sakaue
M, Ishimura R, Sato M, Takeda K, Aoki Y, Sone H, To-
hyama C, Yonemoto J 2001 Maternal exposure to a low
dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) sup-
pressed the development of reproductive organs of male
rats: dose-dependent increase of mRNA levels of 5�-re-
ductase type 2 in contrast to decrease of androgen receptor
in the pubertal ventral prostate. Toxicol Sci 60:132–143

417. Yonemoto J, Ichiki T, Takei T, Tohyama C 2005 Maternal
exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin and the
body burden in offspring of Long-Evans rats. Environ
Health Prev Med 10:21–32

418. Arima A, Kato H, Ooshima Y, Tateishi T, Inoue A, Mu-
neoka A, Ihara T, Kamimura S, Fukusato T, Kubota S,
Sumida H, Yasuda M 2009 In utero and lactational ex-
posure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
induces a reduction in epididymal and ejaculated sperm
number in rhesus monkeys. Reprod Toxicol 28:495–502

419. Yamano Y, Asano A, Ohta M, Hirata S, Shoda T, Ohyama
K 2009 Expression of rat sperm flagellum-movement as-
sociated protein genes under 2,3,7,8-tetrachlorodibenzo-
p-dioxin treatment. Biosci Biotechnol Biochem 73:946–
949

420. Korkalainen M, Tuomisto J, Pohjanvirta R 2004 Primary
structure and inducibility by 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) of aryl hydrocarbon receptor repressor
in a TCDD-sensitive and a TCDD-resistant rat strain.
Biochem Biophys Res Commun 315:123–131

440 Vandenberg et al. Hormones and EDCs: Low Doses and Nonmonotonicity Endocrine Reviews, June 2012, 33(3):378–455



421. Ishimaru N, Takagi A, Kohashi M, Yamada A, Arakaki R,
Kanno J, Hayashi Y 2009 Neonatal exposure to low-dose
2,3,7,8-tetrachlorodibenzo-p-dioxin causes autoimmu-
nity due to the disruption of T cell tolerance. J Immunol
182:6576–6586

422. Nohara K, Fujimaki H, Tsukumo S, Ushio H, Miyabara Y,
Kijima M, Tohyama C, Yonemoto J 2000 The effects of
perinatal exposure to low doses of 2,3,7,8-tetrachlorod-
ibenzo-p-dioxin on immune organs in rats. Toxicology
154:123–133

423. Lim J, DeWitt JC, Sanders RA, Watkins 3rd JB, Henshel
DS 2007 Suppression of endogenous antioxidant enzymes
by 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxida-
tive stress in chicken liver during development. Arch En-
viron Contam Toxicol 52:590–595

424. Slezak BP, Hatch GE, DeVito MJ, Diliberto JJ, Slade R,
Crissman K, Hassoun E, Birnbaum LS 2000 Oxidative
stress in female B6C3F1 mice following acute and sub-
chronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD). Toxicol Sci 54:390–398

425. Hassoun EA, Wilt SC, Devito MJ, Van Birgelen A, Alsharif
NZ, Birnbaum LS, Stohs SJ 1998 Induction of oxidative
stress in brain tissues of mice after subchronic exposure to
2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 42:
23–27

426. Hermsen SA, Larsson S, Arima A, Muneoka A, Ihara T,
Sumida H, Fukusato T, Kubota S, Yasuda M, Lind PM
2008 In utero and lactational exposure to 2,3,7,8-tetra-
chlorodibenzo-p-dioxin (TCDD) affects bone tissue in rhe-
sus monkeys. Toxicology 253:147–152

427. Keller JM, Huet-Hudson Y, Leamy LJ 2008 Effects of
2,3,7,8-tetrachlorodibenzo-p-dioxin on molar develop-
ment among non-resistant inbred strains of mice: a geo-
metric morphometric analysis. Growth Dev Aging 71:
3–16

428. Kakeyama M, Sone H, Tohyama C 2008 Perinatal expo-
sure of female rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin
induces central precocious puberty in the offspring. J En-
docrinol 197:351–358

429. Shi Z, Valdez KE, Ting AY, Franczak A, Gum SL, Petroff
BK 2007 Ovarian endocrine disruption underlies prema-
ture reproductive senescence following environmentally
relevant chronic exposure to the aryl hydrocarbon receptor
agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biol Reprod
76:198–202

430. Gray LE, Wolf C, Mann P, Ostby JS 1997 In utero expo-
sure to low doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin
alters reproductive development of female Long Evans
hooded rat offspring. Toxicol Appl Pharmacol 146:237–
244

431. Jenkins S, Rowell C, Wang J, Lamartiniere CA 2007 Pre-
natal TCDD exposure predisposes for mammary cancer in
rats. Reprod Toxicol 23:391–396

432. Mitsui T, Sugiyama N, Maeda S, Tohyama C, Arita J
2006 Perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-
dioxin suppresses contextual fear conditioning-accompa-
nied activation of cyclic AMP response element-binding
protein in the hippocampal CA1 region of male rats. Neu-
rosci Lett 398:206–210

433. Seo BW, Powers BE, Widholm JJ, Schantz SL 2000 Radial
arm maze performance in rats following gestational and

lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-di-
oxin (TCDD). Neurotoxicol Teratol 22:511–519

434. Uemura H, Arisawa K, Hiyoshi M, Kitayama A, Takami
H, Sawachika F, Dakeshita S, Nii K, Satoh H, Sumiyoshi Y,
Morinaga K, Kodama K, Suzuki T, Nagai M, Suzuki T
2009 Prevalence of metabolic syndrome associated with
body burden levels of dioxin and related compounds
among Japan’s general population. Environ Health Per-
spect 117:568–573

435. Hites RA 2011 Dioxins: an overview and history. Environ
Sci Technol 45:16–20

436. De Groef B, Decallonne BR, Van der Geyten S, Darras VM,
Bouillon R 2006 Perchlorate versus other environmental
sodium/iodide symporter inhibitors: potential thyroid-re-
lated health effects. Eur J Endocrinol 155:17–25

437. Blount BC, Valentin-Blasini L, Osterloh JD, Mauldin JP,
Pirkle JL 2007 Perchlorate exposure of the US Population,
2001–2002. J Expo Sci Environ Epidemiol 17:400–407

438. Greer MA, Goodman G, Pleus RC, Greer SE 2002 Health
effects assessment for environmental perchlorate contam-
ination: the dose response for inhibition of thyroidal ra-
dioiodine uptake in humans. Environ Health Perspect 110:
927–937

439. Murray CW, Egan SK, Kim H, Beru N, Bolger PM 2008 US
Food and Drug Administration’s Total Diet Study: Dietary
intake of perchlorate and iodine. J Expo Sci Environ Epi-
demiol 18:571–580

440. Huber DR, Blount BC, Mage DT, Letkiewicz FJ, Kumar A,
Allen RH 2011 Estimating perchlorate exposure from food
and tap water based on US biomonitoring and occurrence
data. J Expo Sci Environ Epidemiol 21:395–407

441. Urbansky ET 2002 Perchlorate as an environmental con-
taminant. Environ Sci Pollut Res Int 9:187–192

442. Ginsberg GL, Hattis DB, Zoeller RT, Rice DC 2007 Eval-
uation of the U.S. EPA/OSWER preliminary remediation
goal for perchlorate in groundwater: focus on exposure to
nursing infants. Environ Health Perspect 115:361–369

443. Dasgupta PK, Dyke JV, Kirk AB, Jackson WA 2006 Per-
chlorate in the United States. Analysis of relative source
contributions to the food chain. Environ Sci Technol 40:
6608–6614

444. Tan K, Anderson TA, Jones MW, Smith PN, Jackson WA
2004 Accumulation of perchlorate in aquatic and terres-
trial plants at a field scale. J Environ Qual 33:1638–1646

445. Miller MD, Crofton KM, Rice DC, Zoeller RT 2009 Thy-
roid-disrupting chemicals: interpreting upstream biomark-
ers of adverse outcomes. Environ Health Perspect 117:
1033–1041

446. Wolff J 1998 Perchlorate and the thyroid gland. Pharmacol
Rev 50:89–105

447. Carrasco N 2000 Thyroid iodide transport: the Na�/I�

symporter (NIS). In: Braverman LE, Utiger RD, eds. The
thyroid: a fundamental and clinical text. 8th ed. Philidel-
phia: Lippincott, Williams and Wilkins; 52–61

448. Nicola JP, Basquin C, Portulano C, Reyna-Neyra A, Par-
oder M, Carrasco N 2009 The Na�/I� symporter mediates
active iodide uptake in the intestine. Am J Physiol Cell
Physiol 296:C654–C662

449. Vayre L, Sabourin JC, Caillou B, Ducreux M, Schlum-
berger M, Bidart JM 1999 Immunohistochemical analysis

Endocrine Reviews, June 2012, 33(3):378–455 edrv.endojournals.org 441



of Na�/I� symporter distribution in human extra-thyroi-
dal tissues. Eur J Endocrinol 141:382–386

450. 2007 The Na�/I symporter (NIS) mediates electroneutral
active transport of the environmental pollutant perchlor-
ate. Proc Natl Acad Sci USA 104:20250–20255

451. Dohan O, De la Vieja A, Paroder V, Riedel C, Artani M,
Reed M, Ginter CS, Carrasco N 2003 The sodium/iodide
symporter (NIS): characterization, regulation, and medical
significance. Endocr Rev 24:48–77

452. Mitchell AM, Manley SW, Morris JC, Powell KA, Bergert
ER, Mortimer RH 2001 Sodium iodide symporter (NIS)
gene expression in human placenta. Placenta 22:256–258

453. Szinnai G, Lacroix L, Carré A, Guimiot F, Talbot M, Mar-
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I, Olea-Serrano MF, López C, Olea N 2007 Oestrogenicity
of paper and cardboard extracts used as food containers.
Food Addit Contam 24:95–102

640. Terasaki M, Shiraishi F, Fukazawa H, Makino M 2007
Occurrence and estrogenicity of phenolics in paper-recy-
cling process water: pollutants originating from thermal
paper in waste paper. Environ Toxicol Chem 26:2356–
2366

641. Carson R 1962 Silent spring. Boston, MA: Houghton Mif-
flin

642. Chung E, Genco MC, Megrelis L, Ruderman JV 2011 Ef-
fects of bisphenol A and triclocarban on brain-specific ex-
pression of aromatase in early zebrafish embryos. Proc
Natl Acad Sci USA 108:17732–17737

643. Rhee JS, Kim BM, Lee CJ, Yoon YD, Lee YM, Lee JS 2011
Bisphenol A modulates expression of sex differentiation
genes in the self-fertilizing fish, Kryptolebias marmoratus.
Aquat Toxicol 104:218–229

644. Hatef A, Alavi SM, Abdulfatah A, Fontaine P, Rodina M,
Linhart O 2012 Adverse effects of bisphenol A on repro-
ductive physiology in male goldfish at environmentally rel-
evant concentrations. Ecotoxicol Environ Saf 76:56–62

645. Bai Y, Zhang YH, Zhai LL, Li XY, Yang J, Hong YY 2011
Estrogen receptor expression and vitellogenin synthesis in-
duced in hepatocytes of male frogs Rana chensinensis ex-
posed to bisphenol A. Zool Res 32:317–322
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Plasma insulin and all-cause, cardiovascular, and noncar-
diovascular mortality: the 22-year follow-up results of the
Helsinki Policemen Study. Diabetes Care 23:1097–1102

831. Kumari M, Chandola T, Brunner E, Kivimaki M 2010 A
nonlinear relationship of generalized and central obesity
with diurnal cortisol secretion in the Whitehall II study.
J Clin Endocrinol Metab 95:4415–4423

832. Bremmer MA, Deeg DJ, Beekman AT, Penninx BW, Lips
P, Hoogendijk WJ 2007 Major depression in late life is
associated with both hypo- and hypercortisolemia. Biol
Psychiatry 62:479–486

833. Lee DH, Steffes MW, Sjödin A, Jones RS, Needham LL,
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