Enhanced nicotine self-administration and suppressed dopaminergic systems in a rat model of diabetes

Laura O'Dell, University of Texas at El Paso
Enhanced nicotine self-administration and suppressed dopaminergic systems in a rat model of diabetes

Laura E. O’Dell¹, Luis A. Natividad¹, Joseph A. Pipkin¹, Francisco Roman¹, Ivan Torres¹, Jesus Jurado¹, Oscar V. Torres¹, Theodore C. Friedman², John M. Tenayuca³ & Arbi Nazarian³

Department of Psychology, University of Texas at El Paso, El Paso, TX, USA ¹, Division of Endocrinology, Molecular Medicine and Metabolism, Department of Internal Medicine, Charles Drew University of Medicine and Sciences–UCLA School of Medicine, Los Angeles, CA, USA ² and Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA ³

ABSTRACT

Patients with diabetes display a heightened propensity to use tobacco; however, it is unclear whether they experience enhanced rewarding effects of nicotine. Thus, this study examined the reinforcing effects of nicotine in a rodent model of diabetes involving administration of streptozotocin (STZ), a drug that is toxic to pancreatic insulin-producing cells. The first study compared STZ- and vehicle-treated rats that had 23-hour access to intravenous self-administration (IVSA) of nicotine or saline and concomitant access to food and water. In order to examine the contribution of dopamine to our behavioral effects, dopamine transporter (DAT), D1 and D2 receptor levels were compared in the nucleus accumbens (NAc) following 10 days of nicotine or saline IVSA. Dopamine levels in the NAc were also compared following nicotine administration. Lastly, nicotine metabolism and dose-dependent effects of nicotine IVSA were assessed. The results revealed that STZ-treated rats displayed enhanced nicotine intake and a robust increase in food and water intake relative to controls. Protein analysis revealed an increase in DAT and a decrease in D1 receptor levels in the NAc of STZ- versus vehicle-treated rats regardless of IVSA condition. STZ treatment did not alter our assessment of nicotine metabolism. Furthermore, STZ treatment increased nicotine IVSA in a dose-dependent manner. Our findings suggest that STZ-treatment increased the rewarding effects of nicotine. This suggests that strong reinforcing effects of nicotine may contribute to greater tobacco use in patients with diabetes.

Keywords Abuse, diabetes, dopamine, hyperglycemia, hypoinsulinemia, self-administration, tobacco.

INTRODUCTION

Tobacco use remains a significant public health problem. Smoking is particularly concerning in patients with diabetes because they are twice as likely to experience mortality and various negative health outcomes if they use tobacco regularly (Scemama et al. 2006; Tonstad 2009). The health-care costs of patients with diabetes who smoke are 300% higher than non-smoking patients with this disease (Gilmer et al. 2005). Interestingly, smoking rates in adult patients with diabetes were shown to be greater than that of the general population (Bishop et al. 2009). Moreover, patients with diabetes are less likely to quit smoking and are more concerned about weight gain if they quit as compared with smokers without diabetes (Gill, Morgan & MacFarlane 2005). Tobacco cessation rates are also lower among patients with diabetes, and they display higher rates of depression and anxiety during smoking abstinence (Eliasson et al. 1997). The strong linkage between diabetes and smoking behavior mostly reflects studies conducted with persons with type 2 diabetes. Given the compounded health consequences of diabetes and smoking, an important question is whether patients with diabetes have a heightened propensity to use tobacco.

Several approaches have been used to study diabetes in animal models. One approach involves administration of streptozotocin (STZ), which is selectively toxic to insulin-producing beta cells of the pancreas and leads to hypoinsulinemia and a concomitant hyperglycemia. The STZ model has been widely used in rodents as a model of diabetes (Bell & Hye 1983; Artinano & Castro 2009; Lee...
et al. 2010). The hypoinsulinemia produced by STZ treatment reflects the underlying etiology of type 1 diabetes and advanced stages of type 2 diabetes when insulin production becomes compromised (Masiello 2006).

The reinforcing effects of tobacco products are modulated, in large part, by the presence of nicotine, which is readily self-administered in rodents (Goldberg, Speelman & Goldberg 1981; Risner & Goldberg 1983; Henningfield, Miyasato & Jasinski 1985; Corrigall & Coen 1989). Recent studies have utilized extended access procedures involving 23-hour access to nicotine intravenous self-administration (IVSA) in rats (Valentine et al. 1997; LeSage et al. 2002; Harris, Pentel & Lesage 2007; O’Dell & Koob 2007; O’Dell et al. 2007). Extended access procedures are advantageous because the rats are given access to nicotine in a chamber where operant responses for food and water can also be assessed. Rats in extended access procedures display average daily nicotine intake that approximates the levels observed in human smokers (0.18–1.5 mg/kg/day; LeSage et al. 2003).

The rewarding effects of nicotine are mediated, in large part, by dopamine neurotransmission in the mesolimbic pathway. The dopaminergic cell bodies of this pathway originate in the ventral tegmental area (VTA) and terminate in several forebrain structures, including the nucleus accumbens (NAc; Aston-Jones & Harris 2004; Carelli & Wightman 2004). Nicotine stimulates nicotinic acetylcholine receptors in the VTA, causing the activation of dopaminergic neurons, which ultimately leads to the release of dopamine in the NAc (Mansvelder et al. 2003). The release of dopamine in the NAc and the concomitant activation of dopamine receptors in this region play an instrumental role in mediating the rewarding effects of nicotine.

Previous studies have demonstrated that the mesolimbic reward pathway is modulated by insulin. Insulin receptors have been detected in the NAc as well as on dopaminergic neurons in the VTA (Havrankova, Roth & Brownstein 1978; Figlewicz et al. 2003). Activation of insulin receptors has been shown to negatively regulate reward. For example, intracerebroventricular administration of insulin results in attenuation of sucrose self-administration (Figlewicz et al. 2006) and preference for an environment paired with high-fat food (Figlewicz et al. 2004). Insulin administered directly into the VTA decreases opioid-induced sucrose feeding behavior (Figlewicz et al. 2008). In contrast, decreased insulin signaling via an induction of a hypoinsulinemic state has been shown to increase reward functioning. Namely, hyperinsulinemic rats exhibit an increase in the rate of responding to lateral hypothalamic stimulation (Briese & Hernández 1970). Likewise, STZ-treated rats exhibit a decrease in intracranial self-stimulation thresholds that is reversed by insulin and naloxone (Carr 1994; Carr, Kim & Cabeza de Vaca 2000). These findings suggest a negative modulatory effect of insulin receptors on the mesolimbic dopaminergic system that regulates reward.

To our knowledge, the mechanisms that modulate the rewarding effects of nicotine in rats with diabetes have not been studied. Given the involvement of the NAc in reward processing, the goal of this study is to examine how dopamine systems modulate the reinforcing effects of nicotine in the NAc of STZ- and vehicle-treated rats. These studies are a first step toward understanding enhanced vulnerability to tobacco abuse in patients with diabetes.

MATERIALS AND METHODS

Subjects

Sixty-day-old male Wistar rats were handled for 3–5 days prior to the start of experimentation and received *ad libitum* access to food and water during this phase of the study. Rats were housed in groups of two to three per cage in a humidity- and temperature-controlled (20–22°C) vivarium. The rats were bred from a fully outbred stock from Harlan, Inc. (Indianapolis, IN, USA). The University of Texas at El Paso (UTEP) Institutional Animal Care and Use Committee approved all procedures.

Materials

The drugs used in the IVSA experiments were (–)nicotine hydrogen tartrate salt, d-amphetamine, STZ (Sigma Inc., St. Louis, MO, USA), Timentin and Brevital® (McKesson Inc., San Francisco, CA, USA). All drugs were dissolved in 0.9% sterile saline, and the doses were selected based on previous work in our laboratory (O’Dell & Koob 2007; O’Dell et al. 2007). All chemicals for the dialysis procedures were purchased from Sigma Inc. For Western blot analysis, radioimmunoprecipitation assay (RIPA) lysis buffer (sc-24948), anti-alpha tubulin primary antibody (sc-8035), goat anti-rabbit immunoglobulin G horseradish peroxidase (IgG-HRP; sc-2004) and goat anti-mouse IgG-HRP (sc-2005) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Phosphatase inhibitor cocktail 1 (P2850) and cocktail 2 (P5726) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Bicinchoninic acid (BCA) protein assay kit and SuperSignal West Pico chemiluminescent substrate were produced by Thermo Scientific (Rockford, IL, USA). Laemmli buffer, Tris-glycine extended gels and nitrocellulose membranes were purchased from Bio-Rad Laboratories (Hercules, CA, USA). Anti-D1 receptor (MAB5290), anti-D2 receptor (AB5084P) and anti-dopamine transporter (DAT; AB15344) primary antibodies were purchased from Millipore (Billerica, MA, USA). The anti-DAT antibody detects two bands corresponding to non-glycosylated (55 kDa) and glycosylated (75 kDa) proteins.
Non-glycosylated DAT represents intracellular DAT levels, while glycosylated DAT represents cell surface DAT levels (Afonso-Oramas et al. 2009).

Procedural summary

The inset below depicts the timeline for the experimental procedures of this experiment. Study 1 compared the rewarding effects of nicotine using IVSA procedures in STZ- and vehicle-treated rats. Brain tissue from these rats was then analyzed for DAT, D1 and D2 receptor levels using Western blot procedures. Study 2 compared dopamine levels in the NAc following systemic administration of nicotine and amphetamine in STZ- and vehicle-treated rats using in vivo microdialysis procedures.

Study 1: self-administration procedures

The rats were tested in 23-hour sessions using operant chambers from Med Associates (St. Albans, VT, USA). The animals were kept on a 12/12-hour light–dark cycle (lights on at 6:00 AM) inside sound-attenuated chambers with continuous white noise, as previously described (O’Dell et al. 2007). A 28-V white cue light was illuminated above the active lever at the onset of the 1-second infusion and was terminated after a 20-second timeout period, during which time responses on the active lever had no scheduled consequence. All responses on the inactive lever were recorded without a timeout period. Each day, the rats were removed at 10:00 AM from the operant chambers and placed into their home cages for 1 hour so the chambers could be cleaned, and the water and food could be replenished. The rats were first trained for 5 days on a fixed ratio 1 (FR-1) schedule of reinforcement to obtain 45-mg food pellets (Bio-Serv, Frenchtown, NJ, USA) from a dispenser with a swing door mounted between two levers on the front wall of the chamber. When the animal placed its head into the food hopper, the swing door broke a photo beam that then activated the delivery of a food pellet into the bottom of the food hopper. A nose–poke response was required in a separate hole positioned on the back of the chamber for delivery of 0.1 ml aliquots of water into an adjacent metal dipper cup.

After 5 days of food and water training sessions, the rats received an i.p. injection of either vehicle (citrate buffer) or STZ (45 mg/kg). Beginning 2 days later, plasma glucose levels were monitored every other day for the remainder of the study. A 22-G needle was used at the base of the tail to excise a small drop of blood. Glucose values were then assessed using a monitoring system calibrated for rodent blood (AlphaTRAK, Abbott Laboratories, Abbott Park, IL, USA). This dose of STZ produced two groups of rats that displayed glucose levels in a high (mean value = 554 ± 13 mg/dl; range = 440–619 mg/dl) or intermediate (mean value = 288 ± 29 mg/dl; range = 236–343 mg/dl) range. Vehicle-treated control rats displayed glucose levels in a normal range (124 ± 2 mg/dl; range = 116–129 mg/dl). STZ-treated rats that displayed glucose levels lower than 200 or higher than 650 mg/dl at any given timepoint were eliminated from the study. Most rats that receive this dose of STZ display glucose levels in the high range. Therefore, it is only possible to achieve glucose levels in an intermediate range in large cohorts of rats. A sufficient number of rats in the intermediate glucose range were only available in our behavioral experiments (study 1). Thus, graded effects were only reported in the behavioral studies that required many animals. The rats were then subdivided into separate groups that would receive saline or nicotine IVSA.

One week after the STZ injection, the rats were anesthetized with an isoflurane/oxygen vapor mixture (1–3%) and implanted with jugular venous catheters, as previously described (O’Dell et al. 2007). The catheters were then flushed daily for the duration of the experiment with a 0.3–0.5 ml infusion of a 100 mg/ml antibiotic solution containing Timentin (McKesson Inc.) that was diluted in saline containing heparin (30 USP units/ml). To verify patency of the catheters on the day before IVSA training, the rats received a 0.1 ml infusion of a 10 mg/ml solution of the ultra short-acting barbiturate anesthetic Brevital sodium (1% methohexital sodium, McKesson Inc.) through the catheter. Rats with non-patent catheters were excluded from the study. This barbiturate produces a rapid anesthesia that dissipates within less than a minute of drug administration. Thus, we suspect that there were no carryover effects to the next day of IVSA testing.

Following 3 days of recovery from surgery, the rats were re-introduced into the chambers by connecting the exit port of the catheter fittings to the metal spring that...
was attached to the swivel and balance arm. Rats performed nose-poke responses for food and water (FR-1) in 23-hour sessions for 3 days in the absence of any levers. This was carried out in order to re-establish stable levels of food and water intake prior to the introduction of the levers in the next phase of the study.

Following food and water reinstatement, rats were presented with the active and inactive levers beginning on the first day at 10:00 AM. The rats were removed each day for 1 hour from the operant chambers from 10:00 to 11:00 AM to clean the boxes and replenish the food and water. Rats were then given access to saline or nicotine IVSA (0.03 mg/kg/0.1 ml infusion; expressed as base) on an FR-1 schedule of reinforcement. The nicotine solutions were prepared daily based on the rats’ weights from previous studies comparing 23-hour nicotine IVSA in the previous day. The dose of nicotine was selected based on previous studies comparing 23-hour nicotine IVSA in adult Wistar rats (O’Dell & Koob 2007; O’Dell et al. 2007).

Following surgery, the animals were transferred to 5% non-fat dry milk in tris-buffered saline with Tween 20 (TBST; Sigma-Aldrich, St. Louis, MO, USA) or in 5% bovine serum albumin (BSA) in TBST. For primary antibody incubation, membranes were incubated in 5% BSA containing antibodies for D1 receptors (1:1000), D2 receptors (1:1000), overnight at 4°C. For detection of DAT (1:1000) and alpha-tubulin (1:1000), membranes were incubated in 5% non-fat dry milk in TBST overnight at 4°C. After several washes in TBST, membranes were then incubated in their corresponding secondary antibodies at a 1:100 concentration for 2 hours at room temperature. Membranes were then washed and visualized using SuperSignal West Pico chemiluminescent substrate (Thermo Scientific) using a Kodak (Eastman Kodak Inc., Los Angeles, CA, USA) digital imaging system. For quantitating band intensities, densitometry was conducted using the Carestream software (Woodbridge, CT, USA).

Study 1: protein analyses

Two hours after the last IVSA session, vehicle- and STZ-treated rats displaying high glucose levels were decapitated and the brains were removed, flash frozen and maintained at −80°C. Only the brains of rats displaying high glucose levels (mean 554 ± 13 mg/dl) were included in the protein analysis. This was carried out to compare changes in protein levels in groups of rats that displayed the largest changes in blood glucose levels. At a later time, the NAc was dissected and homogenized using a handheld homogenizer in a RIPA lysis buffer containing ethylenediaminetetraacetic acid (EDTA; 1 mM), phenylmethanesulphonyl fluoride (1%), sodium orthovanadate (1%), protease inhibitor cocktail (2%) and phosphatase inhibitor cocktails 1 and 2 (1%). Homogenized samples were incubated in the buffer for 30 minutes on ice and then centrifuged at 14 000 rpm for 10 minutes. The lysates were then used for protein analysis. Protein concentration in the lysate was quantified using a BCA protein assay kit (Thermo Scientific).

Western blots were performed using sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Specifically, 10 μg of sample was combined with Laemmli buffer (Bio-Rad Laboratories) containing beta-mercaptoethanol (5%). Samples were then boiled for 3 minutes, centrifuged and the supernatant was loaded onto Tris-glycine TGX gels (Bio-Rad Laboratories) and electrophoresed at 100 V constant. Proteins were then transferred to nitrocellulose membranes. Membranes were blocked for 1 hour at room temperature in 5% non-fat dry milk in tris-buffered saline with Tween 20 (TBST; Sigma-Aldrich, St. Louis, MO, USA) or in 5% bovine serum albumin (BSA) in TBST. For primary antibody incubation, membranes were incubated in 5% BSA containing antibodies for D1 receptors (1:1000), D2 receptors (1:1000), overnight at 4°C. For detection of DAT (1:1000) and alpha-tubulin (1:1000), membranes were incubated in 5% non-fat dry milk in TBST overnight at 4°C. After several washes in TBST, membranes were then incubated in their corresponding secondary antibodies at a 1:100 concentration for 2 hours at room temperature. Membranes were then washed and visualized using SuperSignal West Pico chemiluminescent substrate (Thermo Scientific) using a Kodak (Eastman Kodak Inc., Los Angeles, CA, USA) digital imaging system. For quantitating band intensities, densitometry was conducted using the Carestream software (Woodbridge, CT, USA).

Study 2: neurochemistry procedures

Separate groups of rats (n = 5–6/group) received an i.p. injection of either vehicle (citrate buffer) or STZ (45 mg/kg). The rats were then returned to their home cages for 22 days to approximate the time frame in which the brain tissues were collected in study 1. Glucose levels were monitored every other day after the STZ injection. STZ-treated rats displayed glucose levels in a similar high range as was observed in study 1. On day 23, the rats were anesthetized with an isoflurane/oxygen mixture and then were stereotaxically implanted with a dialysis probe aimed at the NAc using the following coordinates relative to bregma (anterior/posterior = +1.7, medial/ lateral = ±1.4, dorsal ventral = −8.1). The probes were purchased from CMA Microdialysis (model CMA 11, Solna, Sweden) with an active membrane length of 2 mm in the NAc. The probes were perfused for at least 1 hour prior to implantation at a rate of 0.5 μl/minute with artificial cerebral spinal fluid composed of 145 mM NaCl, 2.8 mM KCl, 1.2 mM CaCl2, 1.2 mM MgCl2, 5.4 mM d-glucose and 0.25 mM ascorbic acid, and adjusted to a pH of 7.2–7.4. Following surgery, the animals were transferred to
Nicotine IVSA in diabetic rats

acrylic glass cages (24 cm long × 24 cm wide × 31 cm high), and food and water were available throughout dialysis testing.

The dialysis collection was performed the following day (day 24) because our experience with these procedures has shown that this time period is optimal for tissue equilibration and detecting pharmacological effects across different treatment conditions (O’Dell & Parsons 2004). The day after probe implantation, the samples were collected in 20-minute intervals for 1 hour to establish a baseline period, and then for four separate 1-hour collection periods consisting of an i.p. injection of saline, two doses of nicotine in increasing order (0.4 and 0.8 mg/kg) and a final injection of amphetamine (1 mg/kg). The injection of amphetamine was included as a positive control to examine robust neurochemical effects and to assess whether the effects are specific to nicotine. All dialysate samples collected from the NAc probe were diluted with 10 μl of a perchloric acid solution (0.05 N) to preserve the samples and prevent degradation of dopamine. After sample collection, the dialysates were immediately frozen on dry ice then stored in a −70°C freezer until analysis. At the end of the experiment, all rats were sacrificed and the probe placements were verified in 40-μm coronal sections of the NAc.

Dopamine levels were quantified from 10 μl of sample injected into a high-performance liquid chromatography system equipped with an ESA HR-80 80.0 × 4.6 mm column (3-μm BetaBasic packing material, C-18 stationary phase, ESA, Chelmsford, MA, USA) and eluted using a mobile phase composed of a 75 mM NaH2PO4 (monohydrate, monobasic) buffer (pH 3.75), with 10% acetonitrile, 0.025 mM sodium EDTA, 0.4% (v/v) triethylamine and 1.7 mM 1-octanesulfonic acid sodium salt delivered at 1 ml/minute by an ESA model 580 syringe pump. Quantification was achieved via an ESA Coulochem II detector equipped with a coulometric sensor containing dual glassy carbon working electrodes set at −150 mV. The extracellular levels of dopamine were estimated using external calibration curves with standards containing known concentrations of dopamine.

At the end of the experiment, all rats were euthanized with pentobarbital (100 mg/kg, salt, i.p.) and the brains were extracted. Probe placements were verified during tissue sectioning using a rat brain atlas (Paxinos & Watson 1998). As a final elimination criterion, a baseline dopamine concentration for an individual subject had to fall within a range that was less than two standard deviations from the group mean in order to be included in the final analysis.

Study 3: nicotine pharmacokinetics

The purpose of this study was to compare nicotine metabolism in vehicle- and STZ-treated rats. Nicotine metabolism was assessed indirectly by comparing plasma cotinine levels in vehicle- and STZ-treated rats (n = 10–14/group). Rats received an i.p. injection of vehicle or STZ (4.5 mg/kg) and were returned to their home cages for 22 days to approximate the time frame in which the tissues were collected from the previous studies. Glucose levels were monitored every other day after the STZ injection. STZ-treated rats displayed glucose levels in a similar high range as was observed in the previous studies. On day 23, the rats received an s.c. injection of nicotine (0.4 mg/kg), and blood plasma samples were collected from tail blood 30 and 60 minutes after the injection. After the second sampling period, the rats received another injection of a higher dose of nicotine (0.8 mg/kg) and blood samples were collected again 30 and 60 minutes later. Plasma cotinine levels were analyzed using commercially available 96-well plate enzyme-linked immunosorbent assay kits (OraSure Technologies, Inc., Bethlehem, PA, USA). Standard curves were used to estimate plasma cotinine levels using a Spectra Maxplus spectrophotometer (Molecular Devices Inc., Sunnyvale, CA, USA).

Study 4: nicotine dose–response IVSA study

The purpose of this study was to compare the sensitivity of the rewarding effects of nicotine in vehicle- and STZ-treated rats (n = 5). A dose–response curve for nicotine IVSA was first generated in naïve rats. Then, the nicotine IVSA dose–response curve was re-assessed following STZ treatment in the same rats. A within-subject design was conducted based on our previous finding that rats administer the same amount of nicotine when given access a second time to the same escalating dose regimen (O’Dell & Koob 2007). Therefore, if the rats displayed an increase in nicotine intake following STZ treatment, the results would imply an increase in the rewarding effects of nicotine. Rats were trained to perform operant responses for food and water for 3 days. Upon completion of food and water training, the rats were implanted with jugular catheters and then given access to nicotine IVSA in 3-day intervals of increasing doses of nicotine (0.03, 0.06, 0.09 mg/kg/0.1 ml infusion) on an FR-1 schedule of reinforcement. Following the last IVSA session, the rats were given an injection of STZ (45 mg/kg) and were returned to their home cages. The rats displayed glucose levels that were initially normal (133.0 ± 7.2 mg/dl), but remained in a high range following STZ administration (500.0 ± 30.5 mg/dl). The day after STZ administration, the rats were given re-access to the same escalating dose regimen of nicotine given that they immediately displayed glucose levels in a high range (450–563 mg/dl).

Statistical analyses

Statistical analyses included overall analyses of variance (ANOVAs) followed by post hoc testing where appropriate.
The initial analyses compared the effect of various behavioral and biological markers using ANOVA across treatment (vehicle versus STZ), drug condition (nicotine versus saline) and time (IVSA sessions in study 1 or sampling period during dialysis testing in study 2). Separate analyses were conducted for each measure that focused only on nicotine IVSA groups of rats with varying glucose levels (control, intermediate and high). In instances where significant interaction effects were not observed, main effects are reported with appropriate group comparisons using Fisher’s least significant difference tests ($P < 0.05$). The type of analysis that was performed is denoted by different symbols on the figures. For Western blot analysis, one-way ANOVA or t-tests were performed to detect statistical significance.

RESULTS

Study 1: glucose levels and nicotine, food and water intake

Figure 1 denotes glucose levels in STZ- and vehicle-treated rats from study 1. STZ administration produced a graded increase in glucose levels as compared with vehicle-treated controls. The initial analysis revealed a main effect of STZ treatment ($F_{1,28} = 1191.2$, $P < 0.001$), with STZ producing higher glucose levels than vehicle-treated controls regardless of IVSA condition ($P < 0.05$). A separate analysis of glucose levels in nicotine IVSA rats with varying glucose levels revealed a main effect of STZ treatment ($F_{2,23} = 175.3$, $P < 0.01$), with STZ producing a graded increase in glucose levels. Specifically, STZ treatment produced a group of rats displaying higher glucose levels (554 ± 13 mg/dl) as compared with all other nicotine IVSA groups, and a group of rats displaying intermediate levels (288 ± 29 mg/dl) that were significantly higher than vehicle-treated controls with glucose levels in a normal range (124 ± 2 mg/dl; $P < 0.05$).

Figure 2 denotes nicotine, food and water intake in STZ- and vehicle-treated rats from study 1. Overall, the results revealed that STZ-treated rats displayed a graded increase in the level of nicotine, food and water intake versus vehicle-treated controls. The initial analysis revealed an interaction of drug condition (nicotine or saline) and STZ treatment ($F_{1,28} = 7.7$, $P < 0.01$). A main effect of drug condition was also observed ($F_{1,28} = 1191.2$, $P < 0.001$), with all rats displaying higher nicotine versus saline intake regardless of STZ treatment ($P < 0.05$). A separate analysis of nicotine intake in groups of rats with varying glucose levels revealed a significant main effect of STZ treatment ($F_{2,23} = 3.3$, $P < 0.05$), with rats displaying high glucose levels exhibiting higher levels of nicotine IVSA as compared with vehicle-treated nicotine IVSA rats ($P < 0.05$).

Our analyses of the inactive lever revealed that there were no differences in operant responses on the inactive lever across STZ treatment ($F_{1,28} = 0.6$, $P = 0.4$) or drug conditions ($F_{1,28} = 0.07$, $P = 0.8$; data not shown).
The initial analysis comparing food intake revealed a main effect of STZ treatment \((F_{1,28} = 160.1, P < 0.001)\), with STZ-treated rats displaying higher food intake regardless of drug condition \((P < 0.05)\). This analysis also revealed a main effect of drug condition \((F_{1,28} = 16.2, P < 0.001)\), with rats given nicotine IVSA access displaying less food intake regardless of STZ treatment. A separate analysis of food intake in groups of rats with varying glucose levels revealed a main effect of STZ treatment \((F_{2,23} = 47.3, P < 0.05)\), with rats displaying high glucose levels exhibiting higher levels of food intake as compared with all other nicotine IVSA groups \((P < 0.05)\).

The initial analyses of water intake revealed a main effect of STZ treatment \((F_{1,28} = 57.8, P < 0.001)\), with all STZ-treated rats displaying higher water intake as compared with vehicle-treated controls regardless of drug condition \((P < 0.05)\). The effect of STZ on water intake was not influenced by nicotine IVSA, as expected. A separate analysis of water intake in groups of rats with varying glucose levels revealed a main effect of STZ treatment \((F_{2,23} = 16.7, P < 0.001)\), with rats displaying high glucose levels exhibiting higher levels of water intake as compared with all other nicotine IVSA groups \((P < 0.05)\). Rats displaying intermediate glucose levels also exhibited higher levels of water intake as compared with vehicle-treated controls \((P < 0.05)\).

Figure 3 denotes nicotine intake during the first hour of access in STZ- and vehicle-treated rats from study 1.
Overall, the results revealed that STZ-treated rats displayed an increase in nicotine intake during the first hour of nicotine IVSA as compared with vehicle-treated controls that did not change across the 10 days of testing. The initial analysis revealed a significant interaction between time and STZ treatment ($F_{9,252} = 2.5$, $P < 0.01$). Subsequent analyses revealed that nicotine intake during the first hour of drug access was significantly higher in STZ-treated rats displaying high glucose levels on the 4th, 7th, 8th, 9th and 10th days of IVSA as compared with the 1st day of testing ($P < 0.05$). A main effect of drug condition was observed such that nicotine intake was generally higher than saline intake ($F_{1,28} = 4.6$, $P < 0.05$), and this effect was statistically significant in high and intermediate glucose nicotine IVSA rats ($P < 0.05$). A separate analysis of nicotine intake in groups of rats with varying glucose levels revealed a main effect of STZ treatment ($F_{2,23} = 3.3$, $P < 0.05$), with rats displaying high glucose levels exhibiting higher levels of nicotine intake as compared with vehicle-treated nicotine IVSA rats ($P < 0.05$).

Study 1: protein analysis

Figure 4 denotes D1 and D2 receptor protein densities in the NAc of STZ-treated rats displaying high glucose levels and vehicle-treated rats from study 1. STZ-treated rats displayed a significant reduction in dopamine D1 receptor levels in the NAc, regardless of IVSA condition ($F_{1,17} = 12.8$, $P < 0.001$). On the other hand, STZ treatment or IVSA condition did not change D2 receptor levels in the NAc.

Figure 5 denotes cytoplasmic (55 kDa) and membrane bound (75 kDa) DAT levels in the NAc of STZ- and
vehicle-treated rats. The changes in DAT levels were primarily detected as a function of STZ treatment. STZ treated rats displayed higher DAT levels at both molecular weights as compared with controls ($t_{15} = 3.17, P < 0.05$ for 55 kDa and $t_{15} = 2.19, P < 0.05$ for 75 kDa). Nicotine IVSA did not significantly affect DAT levels in STZ-treated and control rats. A previous study indicated a reduction in tubulin mRNA in sensory neurons upon STZ treatment (Scott et al. 1999). However, in our study no changes in tubulin protein levels were detected in the NAc between control and STZ-treated rat (data not shown).

Study 2: dopamine levels

Figure 6 denotes dopamine levels in the NAc of vehicle- and STZ-treated rats that displayed high glucose levels similar to study 1. Overall, the results revealed that dopamine levels were suppressed in the NAc of STZ- versus vehicle-treated controls. Statistical analysis revealed a significant interaction of time and STZ treatment ($F_{20,180} = 4.3, P < 0.001$). Subsequent analyses revealed that STZ-treated rats displayed lower dopamine levels versus controls during all sampling periods ($P < 0.05$), with the exception of the 280-minute sampling period where significant differences were not observed. STZ-treated rats displayed a significant increase in dopamine levels relative to baseline only during the 220 to 360-minute sampling periods ($P < 0.05$). On the other hand, vehicle-treated rats displayed robust increases in dopamine levels relative to baseline that were significant during the 80 to 260-minute sampling periods after nicotine administration, and during the 300 to 360-minute sampling periods after amphetamine administration ($P < 0.05$).

Study 3: nicotine pharmacokinetics

Table 1 denotes cotinine values in vehicle- and STZ-treated rats 30 and 60 minutes after administration of two separate injections of nicotine. The results revealed that cotinine levels were similar in vehicle- and STZ-treated rats across both timepoints and doses of nicotine ($F_{1,22} = 1.5, P = 0.23$).
Table 1 Plasma cotinine values (ng/ml) in control and STZ-treated rats.

<table>
<thead>
<tr>
<th>Nicotine dose</th>
<th>0.4 mg/kg</th>
<th>0.8 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time after injection</td>
<td>0.4 mg/kg</td>
<td>0.8 mg/kg</td>
</tr>
<tr>
<td>Control</td>
<td>30 minutes</td>
<td>0.4 mg/kg</td>
</tr>
<tr>
<td>16.0 ± 1.7</td>
<td>10.0 ± 1.4</td>
<td>8.0 ± 1.6</td>
</tr>
<tr>
<td>STZ-treated</td>
<td>16.0 ± 1.8</td>
<td>8.3 ± 2.4</td>
</tr>
</tbody>
</table>

STZ = streptozocin.

Figure 7 Nicotine intake (± standard error of the mean) during each day (left panel) and averaged across the 3 days of nicotine IVSA (right panel) prior to and following streptozocin (STZ) administration (n = 5). STZ treatment increased intake across all doses of nicotine. The asterisk (*) denotes a main effect of nicotine dose, and the dagger (†) denotes a significant effect of STZ treatment (P < 0.05).

Study 4: nicotine intake across doses

Figure 7 denotes intake of escalating doses of nicotine in rats given extended access to IVSA before and after STZ treatment. Overall, a dose-dependent increase in nicotine IVSA was observed, consistent with our previous observations in naïve rats given extended access to an escalating dose regimen of nicotine IVSA (O’Dell & Koob 2007). After STZ treatment, nicotine intake was increased across all doses. Statistical analysis revealed a significant main effect of STZ treatment (F₁,₄ = 10.3, P < 0.05) and nicotine dose (F₁,₈ = 11.4, P < 0.001).

DISCUSSION

The main finding of this report is that STZ-treated rats displayed significantly higher nicotine IVSA compared with controls. One strength of our approach is that the IVSA procedure was able to concomitantly measure nicotine, food and water intake. The finding that food and water intake were higher in STZ-treated rats is confirmation of the induction of a hyperglycemic state. The levels of food intake were also lower in STZ-treated rats that pressed for nicotine as compared with STZ-treated rats that pressed for saline. The latter effect is consistent with the appetite-suppressant effects of nicotine (Mangubat et al. 2012). Our data also show that STZ treatment produced a suppression of mesolimbic dopamine systems at both pre- and post-synaptic levels. Lastly, our effects do not appear to be related to pharmacokinetic differences produced by STZ given that cotinine levels were similar in response to nicotine in vehicle- and STZ-treated rats.

The present study demonstrated that STZ-treated rats displayed higher levels of nicotine IVSA as compared with controls. STZ-treated rats also displayed an escalation of nicotine intake during the first hour of drug access, suggesting strong motivational effects of nicotine. Previous studies have revealed that rats given extended access to nicotine IVSA display an increase in intake in the first hour of drug access across repeated testing (O’Dell et al. 2007). This rise in nicotine IVSA during the first hour of access is believed to reflect an increase in the motivational effects of nicotine that emerge with the development of nicotine dependence. Our interpretation that STZ treatment enhances the rewarding effects of nicotine is consistent with our finding that nicotine intake was dose dependently greater in STZ- versus vehicle-treated rats. Moreover, the increase in nicotine intake was augmented as a function of glucose levels. Importantly, nicotine intake was also increased following STZ treatment across a range of escalating nicotine doses.
Nicotine IVSA in diabetic rats

It is unlikely that this effect was due to re-exposure to nicotine, given our previous finding that rats administer the same amount of nicotine when given access a second time to the same escalating dose regimen (O'Dell & Koob 2007). Therefore, the increase in the level of nicotine intake following STZ treatment is believed to reflect an increase in the rewarding effects of nicotine. Taken together, these results suggest that hypoinsulinemia produced by STZ administration enhances the rewarding effects of nicotine.

Nicotine reward is modulated via the mesolimbic dopamine pathway, which originates in the VTA and terminates in the NAc (Corrigall & Coen 1991; Corrigall et al. 1992). The present study demonstrated that STZ treatment produced a decrease in dopamine levels in the NAc during baseline and in response to nicotine and amphetamine administration. These findings are consistent with previous studies showing reduced basal and amphetamine-evoked dopamine release in the striatum of STZ-versus vehicle-treated rats (Saller 1984; Lim, Lee & Ho 1994; Muráč et al. 1996; Owens et al. 2005; Williams et al. 2007). The attenuated dopamine levels are either a direct effect of hyperglycemia on dopamine neuronal firing rates (Saller & Chiodo 1980), a decrease in presynaptic D2 receptor signal transduction (Owens et al. 2012) or an indirect effect via opioid systems that suppress dopamine activity (Carr 1994; Wolinsky, Abrahamsen & Carr 1996; Berman et al. 1997). Considering that DAT levels were increased in the NAc of STZ-treated rats, it is also possible that the reduced levels of DA in the NAc are due to an increase in DA clearance. The reduced dopamine release observed in the present study may lead to the increased nicotine IVSA. This suggestion is consistent with the finding in human studies showing that a decrease in dopamine levels is associated with increased nicotine intake (Dagher et al. 2001).

The present study also revealed that STZ treatment produced a decrease in D1 receptor levels in the NAc. One might predict that lower extracellular levels of dopamine may have led to an upregulation of post-synaptic D1 and D2 receptors. However, lower D1 receptor expression and no changes in D2 receptors may reflect a deficiency in the regulation of the dopamine system produced by a hypoinsulinemic state. Similar changes in D1 and D2 receptor levels have been reported in STZ-treated rodents (Šuković, Sabolić & Lacković 1995; Sumiyoshi, Ichikawa & Meltzer 1997; Saitoh et al. 1998). It is possible that the decrease in D1 receptors contributes to the enhanced nicotine IVSA in STZ-treated rats. This suggestion is based on the finding that blockade of D1 receptors in the NAc increased the rewarding effects of nicotine (Laviolette et al. 2008). Because receptor antagonism and a decrease in receptor levels both lead to diminished receptor signaling, the possibility exists that lower levels of D1 receptors in the NAc contribute to the increase in nicotine IVSA observed in the present study.

Behavioral studies have extensively investigated the effects of various psychostimulants and selective dopaminergic compounds in STZ-treated rats. STZ treatment has been shown to decrease D2 receptor sensitivity in behavioral assays assessing catalepsy, yawning and locomotor activity (Sevak, Koek & France 2005; Sevak et al. 2007), although no change in sensitivity of D2 receptors to food reward have been found (Sevak et al. 2008). Studies evaluating the rewarding effects of amphetamine in STZ-treated rats have produced mixed results. For example, Galici et al. (2003) demonstrated that STZ-treated rats displayed a reduction in amphetamine IVSA, whereas Sevak et al. (2008) found that STZ did not alter place preference produced by amphetamine. These results contrast our finding that STZ-treated rats displayed an increase in the rewarding effects of nicotine. This may be related to the distinct mechanisms of action of amphetamine versus nicotine and/or a different period of delay following STZ treatment. Specifically, the Galici and Sevak studies assessed behavioral effects 7 days after STZ treatment, whereas the present study assessed behavioral effects 14 days after STZ administration. Future studies may be warranted to systematically examine the effects of diabetes on reward processing produced by different drugs of abuse.

In the present study, STZ-treated rats displayed an increase in nicotine IVSA and reduced NAc dopamine systems. It is possible that low brain insulin levels may increase susceptibility of nicotine use to compensate for attenuated dopaminergic system functioning. This is based on our finding that STZ treatment produced a general suppression of mesolimbic dopaminergic systems. Also, a recent report demonstrated that insulin produced an increase in dopaminergic neuron firing in the VTA that was abolished in mice lacking insulin receptor signaling (Könnerr et al. 2011). A compensation hypothesis is consistent with the finding that blockade of dopamine receptors increases amphetamine IVSA (Yokel & Wise 1976). Another possibility is that STZ treatment enhanced nicotine IVSA via changes in other neurochemical systems, such as cholinergic systems that modulate nicotine reward. Future studies are needed to explore the contribution of dopamine and other systems in modulating the rewarding effects of nicotine in diabetic rats.

It is acknowledged that STZ produces an array of biological effects that could have influenced our findings. For example, STZ-treated rats may self-administer more nicotine in an attempt to increase their fluid levels. However, STZ-treated rats that were pressing for saline displayed low levels of saline IVSA. Another potential concern is that chronic administration of STZ produces tactile alldynia and cataract formation that could influence
IVSA behavior (Wei et al. 2003; Morrow 2004). These effects, however, do not emerge until after our testing period. Furthermore, STZ-treated rats displayed high levels of operant responding for nicotine, food and water that do not appear to be influenced by the emergence of side effects. Lastly, the results from the present study are unable to rule out the effects of STZ on other pancreatic peptides, such as amylin that modulate glycemic regulation. Amylin is synthesized by pancreatic beta islet cells and is co-packaged and secreted with insulin (Johnson et al. 1988; Lukinius et al. 1989; Ogawa et al. 1990). STZ is known to reduce amylin levels via a destruction of beta cells. Amylin receptors have been identified in numerous brain regions, including the midbrain and the NAc (van Rossum et al. 1994; Sexton et al. 1994; Aiyar et al. 1995; Christopoulos et al. 1995). Therefore, changes in amylin levels may have contributed to the enhanced nicotine IVSA and the suppressed dopamine systems in our study. STZ treatment involves a physiological stress that dysregulates glucose homeostasis. We believe that the dysregulation produced by STZ, in part, changes the brain reward system in a manner that enhances the rewarding effects of nicotine.

The present findings are an important first step in understanding the interaction between insulin, the mesolimbic dopamine system and the behavioral effects of nicotine. Future studies are needed to more fully examine the underlying mechanisms by which STZ treatment enhances the rewarding effects of nicotine. The recent US Food and Drug Administration approval of Cycloset (bromocriptine; Santarus, Inc., San Diego, CA, USA) (2010), a dopamine agonist for the treatment of insulin resistance, may attest to the importance of understanding the role of dopamine in diabetes and co-morbid conditions such as tobacco addiction.

Acknowledgements

This project was supported by a grant from the American Diabetes Association (7-12-BS-135) and the National Institute of Minority Health Disparities (G12MD007592) as part of the UTEP Border Biomedical Research Center. Research funds were also provided by the Western University of Health Sciences. This project was also supported by training grants provided by the National Institute on Drug Abuse (R24-DA029989 and R25-DA033613; L.E.O.). Dr. Friedman received salary support from Minority Institutions’ Drug Abuse Research Development Program grant R24DA017298. Dr. Luis Natividad received a pre-doctoral fellowship from the National Institutes of Health Ruth L. Kirschstein Program (F31-DA021133). Undergraduate student stipend support was also provided through the UTEP Bridges to the Baccalaureate Program (5R25GM049011-12) and the Research Initiative for Scientific Advancement Program.

Conflict of Interest

The authors have no relevant conflicts of interest to disclose.

Authors Contribution

LEO and AN were responsible for the study concept and design. LAN, JAP, FR, IT, JJ and OVT contributed to the acquisition of animal data. JMT performed the protein analyses. LEO, AN and TF assisted with data analysis and interpretation of findings. LEO and AN drafted the manuscript and TF provided critical revisions regarding clinical relevance. All authors critically reviewed content and approved final version for publication.

References

Owens WA, Sevak RJ, Galici R, Chang X, Javors MA, Galli A, France CP, Daws LC (2005) Deficits in dopamine clearance...