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The SEARCH Trial

Multinational, multidisciplinary consortium

Led by Drs. Diane Havlir (UCSF), Moses Kamya
(Makerere University) & Maya Petersen (UCB)

Mission: End AIDS in East Africa

www.searchendaids.com
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The SEARCH Trial

Six-year cluster randomized trial

32 communities in rural Uganda and Kenya

≈ 320,000 people

Phase1: Early HIV diagnosis with immediate and
streamlined ART (antiretroviral therapy)

Phase2: Targeted PrEP (Pre-Exposure Prophylaxis),
targeted HIV testing, and targeted care on top of universal
and streamlined ART
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The SEARCH Trial

Focus on Phase1

Intervention: all HIV+ offered immediate ART with
streamlined care

- Services for initiation, linkage and retention
- Annual, community-wide testing for HIV

Control: all HIV+ offered ART according to in-country
guidelines

Primary outcome: three-year cumulative incidence of HIV
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The SEARCH Trial

At baseline in SEARCH, we sought to test all stable, adult
residents for HIV

Hybrid testing scheme:

- Mobile community health campaigns (CHCs) offered HIV
testing along with multi-disease prevention and treatment
services

- Home-based testing for those not attending a CHC

Tested 131,307 of 146,906 adults in rural Uganda and
Kenya

- Achieved 89% testing coverage

6/69



Targeted
Learning

Laura Balzer

SEARCH

Scientific
Question

Causal Model

Causal
Parameter

Observed
Data

Identifiability

Estimation

TMLE

Interpretation

Application

Conclusion

We often ask causal questions

Some scientific possible questions:

Who did we miss with the hybrid scheme?

- Descriptive

What are the risk factors “significantly” associated with
not testing?

- Descriptive

What is the effect of increased mobility on the risk of not
testing?

- Causal
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Causal Roadmap as a Tool

1 Scientific question

2 Causal model

3 Counterfactuals & causal parameter

4 Observed data & statistical model

5 Identifiability & statistical parameter

6 Estimation

7 Interpretation
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1. Specify the scientific question

What is the effect of increased mobility on the risk of not
testing?

How would the risk of not testing differ if all adults lived
1+ month away vs. <1 month away?

- Inference about testing uptake under different conditions

Many other possible causal questions possible
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2. Define the Causal Model

Causal modeling formalizes our knowledge - however
limited

- Which variables affect each other
- The role of unmeasured/background factors
- The functional form of the relationships

Focus on the structural causal model and corresponding
causal graphs (Pearl2000)

- Many other causal frameworks
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2. Specify the causal model

U: unmeasured background factors

- e.g. stigma, partner’s HIV status, . . .

W : baseline covariates

- e.g. country, sex, age, education level,
SES, . . .

A: the exposure

- A = 1 for lived 1+ month outside the
community

- A = 0 otherwise

Y : the outcome

- Y = 1 for not testing
- Y = 0 for testing
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2. Specify the causal model

The structural causal model (SCM) translates our
knowledge of the study design into a set of equations

A possible study:

1 Randomly sample an adult
2 Measure his/her baseline covariates

- Region, sex, age, SES, education level, occupation . . .

3 Measure the exposure

- “In the past year, how many months did you spend living
outside the community?”

4 Measure the outcome

- Did the participant test at the CHC or at home?
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2. Specify the causal model

The structural causal model (SCM) translates our knowledge of
the study design into a set of equations

Study design: Structural Causal Model:

1 Sample an adult (UW ,UA,UY ) ∼ PU

2 Measure baseline covariates W = fW (UW )

3 Measure the exposure (mobility) A = fA(W ,UA)

4 Observe the outcome (testing) Y = fY (W ,A,UY )

Assumed time-ordering between variables

No assumptions

- On the background factors are (UW ,UA,UY )
- On the functions (fW , fA, fY )
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2. Specify the causal model

Representation as a causal graph
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W = fW (UW )

A = (W, UA)

Y = fY (W, A, UY )

The baseline covariates W represent the set of measured
confounders

The potential correlations between the unmeasured factors
are represented with double-headed arrows

- Unmeasured confounding by the shared unmeasured
common causes
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2. Specify the causal model

If we believed the no unmeasured confounders assumption, a
possible causal graph

2.(Define(the(causal(model(

•  If(you(believed(no(unmeasured(confounders,(a(
possible(causal(model(and(DAG:(
– W=fW(UW)(
– A=fA(W,UA)(
– Y=fY(W,A,UY)+
– Background(factors(
(are(all(independent(
– S#ll(no(func#onal((
form(assump#ons(

•  Wishing(for(something(doesn’t(make(it(true(
(

W(

A( Y(

UW(

UA(

UY(

17(Background factors are all independent

Still no function form assumptions

Wishing for something does not make it true
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Where are we?

1 Scientific question X

2 Causal model X

3 Counterfactuals & causal parameter

4 Observed data & statistical model

5 Identifiability & statistical parameter

6 Estimation

7 Interpretation

16/69



Targeted
Learning

Laura Balzer

SEARCH

Scientific
Question

Causal Model

Causal
Parameter

Observed
Data

Identifiability

Estimation

TMLE

Interpretation

Application

Conclusion

3a. Specify the counterfactuals

Y1: the counterfactual testing status if, possibly contrary
to fact, the adult lived 1+ month away from the
community (A = 1)

Y0: the counterfactual testing status if, possibly contrary
to fact, the adult lived < 1 month away from the
community (A = 0)

We generate counterfactuals by intervening on the causal
model

W = fW (UW )

A = a

Ya = fY (W , a,UY )
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3b. Specify the causal parameter

Use counterfactuals to define the target causal parameter

The difference in the expected testing uptake if all adults
lived 1+ months away vs. the expected testing update if
all adults lived < 1 month away:

E[Y1]− E[Y0]

- Known as the average treatment effect (ATE)
- For a binary outcome, the causal risk difference:
P(Y1 = 1)− P(Y0 = 1)

Many other causal parameters possible
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3. Specify counterfactuals & the causal parameter

Why is causal inference easy for Hiro?
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3. Specify counterfactuals & the causal parameter

He can time travel. He can obtain the counterfactual outcomes
for all adults under the levels of the intervention of interest.

Yatta!
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Where are we?

1 Scientific question X

2 Causal model X

3 Counterfactuals & causal parameter X

4 Observed data & statistical model

5 Identifiability & statistical parameter

6 Estimation

7 Interpretation
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4a. Specify the observed data

For one adult, the observed data are

O = (W ,A,Y ) ∼ P

- W as measured confounders
- A as the exposure (mobility)
- Y as the outcome (not testing)
- P as the true but unknown distribution

In SEARCH, we have n = 146, 906 adults with stable
residence

- We have n copies of O
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4b. Link causal to observed

We assume the causal model provides a description of our
study under

- Existing conditions (i.e. the real world)
- Specific interventions (i.e the counterfactual world)

This provides a link the causal world and the real
(observed data) world
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4c. Specify the statistical model

Our causal model (what we know) ⇒ Observed data
(what we measure)

Our causal model describes the set of processes that may
have given rise to the observed data

Our causal model implies the statistical model

- Formally, the statistical model is the set of possible
distributions of the observed data
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4c. Specify the statistical model

All statistical models are not wrong

Our statistical model should represent real knowledge

Causal framework helps to choose a statistical model
reflecting our uncertainity

- Often no or few restrictions on the joint distribution of the
observed variables

- e.g. Only know the exposure A is some function of
baseline covariates W and unmeasured factors UA

- If we have real knowledge, specify it in Step 2

Our statistical model is often non-parametric
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4b. Specify the statistical model

Non-parametric: no restrictions

Semi-parametric: some restrictions

Parametric: assumes P is known up to a finite number of
unknown parameters
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Where are we?

1 Scientific question X

2 Causal model X

3 Counterfactuals & causal parameter X

4 Observed data & statistical model X
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6 Estimation
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5. Assess Identifiability

Currently the parameter of interest is expressed in terms of
counterfactuals: E[Y1]− E[Y0]

Identifiability: what assumptions are needed to write the
causal parameter as something we can estimate with the
observed data?

We link our day-job (estimation based on the observed data)
to our superhero-job (answering causal questions)
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5. Assess Identifiability

Some intuition:

E[Y |A = a]: expected testing uptake among adults with
mobility status A = a

- Descriptive/associative

E[Ya]: expected counterfactual testing uptake if all adults
had mobility status A = a

- Causal

Generally E[Y |A = a] does not equal E[Ya]

- Central problem in causal inference
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W = fW (UW )

A = (W, UA)

Y = fY (W, A, UY )
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5. Assess Identifiability

To identify our causal parameter we need:

No unmeasured confounding
- Equivalent to the randomization assumption: Ya ⊥⊥ A|W

Summary:'Iden-fiability'for'Point'
Treatment'Effects'with'basic'structure'
•  Under'what'sets'of'independence'assump-ons'
will'the'GScomputa-on'iden-fiability'result'
hold?'

'
W'

A'

UY'
UA'

UW'

Y'

Or$ W'

A'

UA'

UW'

Y'

Or$

UY'

W'

A'

UY'
UA'

Y'

UW'

EU,X(Ya) =
X

w

E0(Y |A = a, W = w)P0(W = w)

Positivity: sufficient variability in the exposure within
confounder strata

P(A = a|W = w) > 0

for all w with P(W = w) > 0

- Ensures the statistical parameter is well-defined
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5. Assess Identifiability

With the randomization and positivity assumptions:

E(Ya) = E
[
E(Ya|W )

]

= E
[
E(Ya|A = a,W )

]
under randomization

= E
[
E(Y |A = a,W )

]
under positivity

- Other common assumptions (temporality, stability and
consistency) are implied by our causal model and the link
between the causal model and statistical model

- These assumptions are not new requirements; this
framework forces us to consider them explicitly
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5. Assess Identifiability

The G-computation identifiability result (Robins1986):

Under the needed assumptions:

E(Y1)− E(Y0) = E
[
E(Y |A = 1,W )− E(Y |A = 0,W )

]

Difference in the expected outcome, given the exposure
and confounders, and the expected outcome given no
exposure and confounders, and then averaged
(standardized) with respect to the covariate distribution

For a binary outcome, equal to the marginal risk difference

E
[
P(Y = 1|A = 1,W )− P(Y = 1|A = 0,W )

]
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5. Assess Identifiability

What if the assumptions do not hold?

- What if we do not believe the no unmeasured confounders
assumption?

- What if we do not have time-ordering?
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5. Assess Identifiability

Still have a well-defined and interpretable target
parameter:

- Difference in the marginal risk of failing to test associated
with greater mobility, after controlling for the measured
confounders

- Coming as close to the wished-for causal parameter given
the limitations in the data

- More in Step 7

Can use the lack of identifiability to inform future data
collection and future studies
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Where are we?

1 Scientific question X

2 Causal model X

3 Counterfactuals & causal parameter X

4 Observed data & statistical model X

5 Identifiability & statistical parameter X

6 Estimation

7 Interpretation

35/69



Targeted
Learning

Laura Balzer

SEARCH

Scientific
Question

Causal Model

Causal
Parameter

Observed
Data

Identifiability

Estimation

TMLE

Interpretation

Application

Conclusion

6. Estimation

We have identified the causal parameter as a function of
the observed data distribution:

Ψ(P) = E
[
E(Y |A = 1,W )− E(Y |A = 0,W )

]

Many estimators available:

- Parametric G-computation (a.k.a. simple substitution
estimator)

- Inverse probability of treatment weighting (IPTW)
- Targeted maximum likelihood estimation (TMLE)

Nothing more-or-less causal about these estimators
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6. Estimation - “Standard” approach

Pause and consider the “standard” approach

Run logistic regression of the outcome (not testing) Y on
the exposure (mobility) A and the baseline confounders W

logit
[
E(Y |A,W )

]
= β0 + β1A + β2W 1 + . . .+ β19W 18

Exponentiate the coefficient in front of the exposure (eβ1)

Interpret as the conditional odds ratio associated with
living 1+ month outside the community, while holding all
the other risk factors constant
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6. Estimation - “Standard” approach

Some problems:

Our target parameter Ψ(P) is not equal to eβ1

- Letting the estimation approach drive the question asked
- Throwing away all our hard work!

Relies on the main terms logistic regression being correct

- May measure the relevant variables but do not know their
exact functional relationship

- If we had this knowledge, then we should encode it in our
causal model (Step2)

- If this parametric regression is wrong, can have biased
point estimates and misleading inference
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Parametric G-Computation

Consider again our target parameter:

Ψ(P) = E
[
E(Y |A = 1,W )− E(Y |A = 0,W )

]
=
∑
w

[
E(Y |A = 1,W = w)− E(Y |A = 0,W = w)

]
P(W = w)

1 Estimate the conditional mean outcome, given the
exposure and baseline covariates E(Y |A,W )

- e.g. run main terms logistic regression

2 Estimate the covariate distribution P(W )

- Use the sample proportion 1/n
∑n

i=1 I(Wi = w)

3 Substitute in (plug-in) these estimates:

Ψ(P̂) =
1

n

n∑
i=1

[
Ê(Yi |Ai = 1,Wi )− Ê(Yi |Ai = 0,Wi )

]
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Parametric G-Computation

Relies on consistently estimating the mean outcome
E(Y |A,W )

Sometimes we have a lot of knowledge about the
relationship between the outcome Y and the
exposure-covariates (A,W )

- If we had this knowledge, encode in our causal model and
use it!

More often, our knowledge is limited
- Avoid introducing new assumptions during estimation
- Assuming a parametric regression model can result in bias

and misleading inferences
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Inverse Probability of Treatment Weighting
(IPTW)

Some Intuition:

Can think of confounding as biased sampling

- Certain exposure-covariate subgroups are over-represented
relative to what we would see in a randomized trial

- Other exposure-covariate subgroups are under-represented

Apply weights to up-weight under-represented subjects
and down-weight over-represented subjects

Average and compare weighted outcomes
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Estimation with IPTW

How are Inverse Probability of Treatment Weighted (IPTW)
estimators like Joan from Mad Men?
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Estimation with IPTW

Weight in all the right places
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Estimation with IPTW

Relies on consistently estimating the propensity score
P(A = 1|W )

Sometimes we have a lot of knowledge about how the
exposure was assigned

- If we had this knowledge, encode in our causal model and
use it!

More often, our knowledge is limited

- Avoid introducing new assumptions during estimation
- Assuming a parametric regression model can result in bias

and misleading inferences
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Estimation with IPTW

Tends to be an unstable estimator under positivity
violations (i.e. strong confounding)

- When covariate groups only have a few exposed or
unexposed observations, weights can blow up

- When there are covariate groups with 0 exposed or
unexposed observations, weights will not blow up. BUT the
estimator will likely be biased and variance underestimated

Not guaranteed to respect the statistical model
(e.g. yield probabilities less than 0 and greater than 1)

Note: this is just one flavor of IPTW
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Non-parametric Estimation

Often our statistical model is non-parametric

Our estimation algorithm should respect our statistical
model

- Avoid introducing new assumptions

To estimate E(Y |A,W ), we could take the average
outcome within all strata of exposure-covariates

- Typically have too many covariates and/or continuous
covariates → empty/sparse cells

- This approach breaks down due to the “curse of
dimensionality”
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Semi-parametric Estimation

We often “know nothing”, but also need to smooth over
data with weak support
Relax parametric assumptions with data-adaptive
algorithms

- e.g. stepwise regression with interactions

However, treating the final regression as if it were
pre-specified ignores the model building process

- No reliable way to obtain inference

Algorithm tailored to maximize/minimize some criteria and
is not necessarily the best algorithm for estimating Ψ(P)

Be more flexible!
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6. Estimation

We need SuperLearner!

Flexible estimation approach to avoid unwarranted
assumptions

Uses cross-validation (sample splitting) to evaluate the
performance of a library of candidate estimators

We need TMLE!

Updates the initial estimator of E(Y |A,W ) with
information in the exposure mechanism P(A = 1|W )

- Second chance to control for confounding
- Hone our estimator to the parameter of interest
- Central limit theorem for inference
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Some More Notation

E(Y |A,W ) - the true conditional
mean outcome, given the exposure
and baseline covariates

Ê(Y |A,W ) - an initial estimator
based on n observations

Ê∗(Y |A,W ) - the targeted estimator
based on n observations
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Overview - TMLE

1 Estimate E(Y |A,W ) with SuperLearner

2 Estimate the propensity score P(A = 1|W ) with
SuperLearner

3 Target the initial estimator Ê(Y |A,W )

4 Plug-in the updated estimates into the target parameter
mapping

Ψ(P̂) =
1

n

n∑

i=1

[
Ê∗(Yi |Ai = 1,Wi )− Ê∗(Yi |Ai = 0,Wi )

]
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What is SuperLearner?

Machine learning algorithm

Uses cross-validation (data-splitting) to evaluate the
performance of a library of candidate estimators

Library can consist of a simple (e.g. main terms regression
models), semi-parametric (e.g. stepwise regression, loess)
and more aggressive algorithms

Performance is measured by a loss function

- e.g. Mean squared error (MSE)
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What is SuperLearner?

Cross-validation: allows us to compare algorithms based on
how they perform on independent data

Partition the data into “folds”

Fit each algorithm on the training set

Evaluate its performance (called “risk”) on
the validation set

- e.g. calculate the MSE for observations in
the validation set

Rotate through the folds

Average the cross-validated risk estimates
across the folds to obtain one measure of
performance for each algorithm

V1fold'Cross1Valida.on'

•  The'observa.ons'in'the'
Valida.on'set'are'used'to'
assess'the'performance'
(es.mate'the'risk)'of'the'
candidate'es.mators'

•  For'example,'we'calculate'
how'well'(in'terms'of'
mean'squared'error)'each'
candidate'regression'(fit'
on'the'training'set)'does'
at'predic.ng'the'outcome'
in'valida.on'set'

Training 

Set
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Set

1

2
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6

10

9

8

7

Fold 1

Learning 
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What(is(SuperLearner?(
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– Par##on(the(data(in(“folds”(
– Fit(each(algorithm(on(the(training(set(

– Evaluate(it’s(performance((called(“risk”)(

on(the(valida#on(set(

•  e.g.(calculate(the(MSE(for(observa#ons(in(the(
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43(
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What is SuperLearner?

We could choose the algorithm with the best performance
(i.e. smallest cross-validated risk estimate)

Instead, SuperLearner builds the best combination of
algorithm-specific estimates

Who do Captain Planet and SuperLearner need to succeed?
Our estimators combined!
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Why do we need to target?

We could use SuperLearner to predict the outcomes for all
units under the treatment and control

Then we could plug these estimates into the target
parameter mapping (i.e. average the difference in the
predictions):

Ψ(P̂) =
1

n

n∑

i=1

[
Ê(Yi |Ai = 1,Wi )− Ê(Yi |Ai = 0,Wi )

]

However, SuperLearner is focused on E(Y |A,W )

- This is not our target parameter
- Wrong bias-variance trade-off

Also no reliable way to obtain inference
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What is targeting?

Use information in the estimated propensity score
P̂(A = 1|W ) to update the initial (SuperLearner)
estimator Ê(Y |A,W )

Involves running a univariate regression

Use the estimated coefficient to update our initial
predictions of the outcome under the treatment and under
the control

Like Robin Hood, we target to hit the bullseye
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How do we target?

1 Estimate the propensity score P̂(A = 1|W )

- Again, use a flexible approach or parametric knowledge if
available

2 Create the clever covariate:

Ĥ =

(
I(A = 1)

P̂(A = 1|W )
− I(A = 0)

P̂(A = 0|W )

)

3 Run logistic regression of the outcome Y on the clever
covariate Ĥ with offset as the logit of the initial estimates.

- where logit(x) = log(x/1− x)

4 Plug in the estimated fluctuation coefficient ε̂:

logit
[
Ê∗(Y |A,W )

]
= logit

[
Ê(Y |A,W )

]
+ ε̂Ĥ
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TMLE - Point Estimate

5 Use the updated estimator Ê∗(Y |A,W ) to predict the
outcomes for all observations under the treatment and
control

6 Substitute into the target parameter mapping:

Ψ(P̂) =
1

n

n∑

i=1

[
Ê∗(Yi |Ai = 1,Wi )− Ê∗(Yi |Ai = 0,Wi )

]
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Some nice things about TMLE

Double robust

- Consistent if either conditional mean E(Y |A,W ) or the
propensity score P(A = 1|W ) is consistently estimated

- Two chances!

Semi-parametric efficient

- Lowest asymptotic variance (most precision) among a large
class if both consistently estimated

Asymptotically linear

- Normal curve for inference

Substitution estimator

- Robustness under strong confounding and rare outcomes

Software: tmle and ltmle packages in R

58/69



Targeted
Learning

Laura Balzer

SEARCH

Scientific
Question

Causal Model

Causal
Parameter

Observed
Data

Identifiability

Estimation

TMLE

Interpretation

Application

Conclusion

Where are we?

1 Scientific question X

2 Causal model X

3 Counterfactuals & causal parameter X

4 Observed data & statistical model X

5 Identifiability & statistical parameter X

6 Estimation X

7 Interpretation
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7. Interpretation

Final step - consider whether and to what degree the
identifiability assumptions have been met

Statistical:

- Estimate of the marginal difference in the risk of failing to
test associated with increased mobility, after adjusting for
measured confounders

- As close as we can get to causal effect given the
limitations in the data

- “Variable importance measure”

Causal:

- If the necessary causal assumptions hold: Estimate of the
causal risk difference or the average treatment effect
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Yay!!

1 Scientific question X

2 Causal model X

3 Counterfactuals & causal parameter X

4 Observed data & statistical model X

5 Identifiability & statistical parameter X

6 Estimation X

7 Interpretation X
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Hybrid Testing in SEARCH
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Articles

A hybrid mobile approach for population-wide HIV testing 
in rural east Africa: an observational study
Gabriel Chamie, Tamara D Clark, Jane Kabami, Kevin Kadede, Emmanuel Ssemmondo, Rachel Steinfeld, Geoff  Lavoy, Dalsone Kwarisiima, 
Norton Sang, Vivek Jain, Harsha Thirumurthy, Teri Liegler, Laura B Balzer, Maya L Petersen, Craig R Cohen, Elizabeth A Bukusi, Moses R Kamya, 
Diane V Havlir, Edwin D Charlebois

Summary
Background Despite large investments in HIV testing, only an estimated 45% of HIV-infected people in sub-Saharan 
Africa know their HIV status. Optimum methods for maximising population-level testing remain unknown. We sought 
to show the eff ectiveness of a hybrid mobile HIV testing approach at achieving population-wide testing coverage.

Methods We enumerated adult (≥15 years) residents of 32 communities in Uganda (n=20) and Kenya (n=12) using a 
door-to-door census. Stable residence was defi ned as living in the community for at least 6 months in the past year. In 
each community, we did 2 week multiple-disease community health campaigns (CHCs) that included HIV testing, 
counselling, and referral to care if HIV infected; people who did not participate in the CHCs were approached for 
home-based testing (HBT) for 1–2 months within the 1–6 months after the CHC. We measured population HIV 
testing coverage and predictors of testing via HBT rather than CHC and non-testing.

Findings From April 2, 2013, to June 8, 2014, 168 772 adult residents were enumerated in the door-to-door census. HIV 
testing was achieved in 131 307 (89%) of 146 906 adults with stable residence. 13 043 of 136 033 (9·6%, 95% CI 9·4–9·8) 
adults with and without stable residence had HIV; median CD4 count was 514 cells per μL (IQR 355–703). Among 
131 307 adults with stable residence tested, 56 106 (43%) reported no previous testing. Among 13 043 HIV-infected 
adults, 4932 (38%) were unaware of their status. Among 105 170 CHC attendees with stable residence 104 635 (99%) 
accepted HIV testing. Of 131 307 adults with stable residence tested, 104 635 (80%; range 60–93% across communities) 
tested via CHCs. In multivariable analyses of adults with stable residence, predictors of non-testing included being male 
(risk ratio [RR] 1·52, 95% CI 1·48–1·56), single marital status (1·70, 1·66–1·75), age 30–39 years (1·58, 1·52–1·65 vs 
15–19 years), residence in Kenya (1·46, 1·41–1·50), and migration out of the community for at least 1 month in the past 
year (1·60, 1·53–1·68). Compared with unemployed people, testing for HIV was more common among farmers 
(RR 0·73, 95% CI 0·67–0·79) and students (0·73, 0·69–0·77); and compared with people with no education, testing 
was more common in those with primary education (0·84, 0·80–0·89). 

Interpretation A hybrid, mobile approach of multiple-disease CHCs followed by HBT allowed for fl exibility at the 
community and individual level to help reach testing coverage goals. Men and mobile populations remain challenges 
for universal testing.

Funding National Institutes of Health and President’s Emergency Plan for AIDS Relief.

Introduction
Despite large investments in HIV testing, only an 
estimated 45% of people living with HIV in sub-Saharan 
Africa know their HIV status.1,2 To take full advantage of 
recent advances in treatment as prevention,3 HIV testing 
needs to increase at the population level. UNAIDS has 
established an ambitious global target of 90% of people 
living with HIV being diagnosed by 2020.1 However, how 
best to maximise population-wide testing coverage is 
unknown. Many barriers to HIV testing exist, including 
being unaware of risk; minimally symptomatic early HIV 
disease; stigma; and challenges with access, costs, and 
waiting times associated with testing at health facilities.4–6 
Moving HIV testing out of health facilities and into 
communities can overcome some of these barriers.7

Out-of-facility HIV testing approaches include home-
based testing (HBT),8–10 work-based testing,11 index 
testing,12 self-testing,13 and community health campaigns 

(CHCs).14,15 Each of these approaches has advantages; 
however, no single approach is likely to work across all 
diverse settings in sub-Saharan Africa. Of these, HBT and 
mobile health campaigns have achieved the highest levels 
of population coverage.7,16 Large-scale mobile health 
campaigns achieve high levels of coverage rapidly.14,15,17 By 
incorporating services for multiple diseases, campaigns 
might be able to normalise HIV testing as routine care, 
create a mechanism for coping with stigma, improve 
access to testing and treatment, and reduce transport 
costs and waiting times.

HBT also improves access and has proved eff ective in 
various settings.8,18 Unlike campaigns, HBT can include 
couples counselling and reaches those who do not seek 
venue-based testing.19,20 Technological improvements in 
data management, geographical information systems, 
and digital biometric identifi cation off er increasingly 
simple methods to enumerate large populations. 
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Goal: Determine risk factors for failing to test by a hybrid
testing strategy

“Variable importance measures”

- Determine importance of each predictor on risk of not
testing, after controlling for the others
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Hybrid Testing in SEARCH

Statistical parameter - marginal relative risk:

Ψ(P) =
E
[
E(Y |A = 1,W )

]

E
[
E(Y |A = 0,W )

]

- Each risk factor, in turn, serves as the “exposure” A and
then remaining predictors as the “covariates” W

- Estimates the marginal association after controlling for the
other risk factors

- As close to a causal interpretation given the limitations in
the data

For estimation, used TMLE with SuperLearner :)
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Hybrid Testing in SEARCH

“In multivariable analyses of adults with stable residence,
predictors of non-testing included . . . migration out of the
community for at least 1 month in the past year (1.60,
1.53-1.68)”.

The relative risk of not testing associated with living 1+
month away from the community was 1.60, after
controlling for measured confounders

The 95% confidence intervals were 1.53-1.68 (p < 0.001)
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Summary & Discussion

Causal roadmap according to Jennifer Ahern

Necessitates clearly defined scientific questions, and
assures the parameters being estimated will match the
questions posed

Elaborates what assumptions are necessary to interpret an
estimate causally

When the assumptions are not met, provides guidance on
how future research can be improved

Applicable to other causal questions and data structures

- Effects among the treated/untreated, mediation,
longitudinal interventions, stochastic interventions,
dynamic regimes...
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Summary & Discussion

We can all be SuperLearners!!

“SuperLearner . . .
It’s our hero . . .

Going to take bias down to zero”
(To the tune of “Captain Planet” theme

song)

“The Power is Yours”
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Summary & Discussion

TMLE as Robin Hood

Stealing from the rich

- Combining the best of IPTW and
GComp

and giving to the poor

- and giving us unbiased and
maximally efficient estimators

Bullseye!
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Thank you & Questions

More info:
http://www.ucbbiostat.com/

lbbalzer@hsph.harvard.edu
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Bonus Slides!!
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5. Assess Identifiability

Temporality: exposure precedes the outcome

- Indicated by an arrow on the DAG from the A to Y
- Equivalently, Y as a function of A in the causal model

Consistency: Ya = Y |A = a

- Recall our causal model provides a description of the study
under existing conditions (i.e. observed exposure) and
interventions (i.e. set exposure)

Stability: no interference between units

- Indicated by the outcome Y being only a function of each
individual’s exposure A in the causal model and DAG
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IPTW

More formally:

We can re-write our target parameter as

Ψ(P) = E
[
E(Y |A = 1,W )− E(Y |A = 0,W )

]

= E
[(

I(A = 1)

P(A = 1|W )
− I(A = 0)

P(A = 0|W )

)
Y

]

- where I(A = a) is an indicator function, equalling 1 if
A = a and 0 otherwise

Suggests an alternate estimator:

Ψ(P̂) =
1

n

n∑

i=1

(
I(Ai = 1)

P̂(Ai = 1|Wi )
− I(Ai = 0)

P̂(Ai = 0|Wi )

)
Yi
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Step 1: Estimation with SuperLearner

Requires

Data: O1, . . . ,On ∼ P0

Loss function: Measure of the dissimilarity between
estimate and target.

Candidate estimators: Throw in any parametric procedure,
non-parametric algorithm, histogram estimator...

Uses Cross-Validation

Evaluate estimator performance and prevent over-fitting

Returns the optimal prediction function as a weighted
combination of candidate estimators.

Optimal: minimizes the expected loss, called the “risk”
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How does SuperLearner work?

Discrete super learner selects the algorithm with the
smallest cross-validated risk.

Super learner uses the predicted outcomes to create the
best weighted combination of algorithms.
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How does SuperLearner work?

1 Define a loss function:

L
(
O,E(Y |A,W )

)
=
(
Y − E(Y |A,W )

)2

2 Define a library of candidate estimators:

En,1(Y |A,W ) = β0 + β1A + β2W1 + β3W2 + β4W3

En,2(Y |A,W ) = β0 + β2A + β2W1 + β3sin(W2) + β4A xW 2
1

En,3(Y |A,W ) = Stepwise

En,4(Y |A,W ) = Loess

...

En,k(Y |A,W ) = your advisor’s favorite algorithm

3 Split the data O1, . . .On into V = 10 “folds”.
- Divide the data into ten blocks of size n/10.
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How does SuperLearner work?

4 Define nine blocks (90% of the data) to be the training
set and the remaining block (10% of the data) to be the
validation set.

5 Fit each estimator on the training set.

- e.g. Use maximum likelihood estimation to fit
En,1(Y |A,W ) on 90% of the data.

6 Predict the outcomes for the validation set.

- e.g. Plug in the observed treatment Ai and covariates Wi

for validation set (the remaining 10% of the data).
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How does SuperLearner work?

7 Evaluate the empirical risk for each estimator.

Riskn,1(v = 1) =
1

n∗

n∗∑

i=1

(
Yi − En,1(Yi |Ai ,Wi )

)2

with n∗ as the number of observations in the validation set

8 Repeat steps 4-7 so that each block gets to serve as the
validation set.

9 Calculate the cross-validated risk for each algorithm.

CV-Risk1 =
1

10

10∑

v=1

Riskn,1(v)
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