Skip to main content
Article
Changes Produced by Cathodic Polarization in the Electrical Conduction Behavior of Surface Films on Aluminum
Journal of the Electrochemical Society
  • Ching-Feng Lin, Iowa State University
  • Kurt R. Hebert, Iowa State University
Document Type
Article
Disciplines
Publication Date
1-1-1994
DOI
10.1149/1.2054667
Abstract

The electrochemical behavior of aluminum during cathodic polarization was investigated with the quartz crystal microbalance, to identify changes in the electrical conduction properties of the surface film, which result in strongly enhanced electrochemical reaction rates. As a consequence of cathodic charging at potentials more negative than about −1.45 V vs. NHE in 0.1M solution, the surface film transforms from a high field electrical conductor to an ohmic conductor, and then begins to grow. The critical potential for forming this ohmically conducting film agrees with the potential below which aluminum hydroxide is expected to be more stable than aluminum oxide, near the metal/film interface. The conductivity of the cathodic film is within an order of magnitude of the proton conductivity of bulk hydrated aluminum hydroxide, . When the potential is stepped above the open‐circuit potential subsequent to cathodic charging, there is a characteristic current decay during several seconds, after which the conductivity is three orders of magnitude smaller than at the cathodic potential. A mechanism is given, based on calculated overpotentials for interfacial reaction and transport processes, through which the oxide film transforms to hydroxide at cathodic potentials.

Comments

This article is from Journal of the Electrochemical Society 141 (1994): 104–110, doi:10.1149/1.2054667. Posted with permission.

Copyright Owner
ECS—The Electrochemical Society
Language
en
File Format
application/pdf
Citation Information
Ching-Feng Lin and Kurt R. Hebert. "Changes Produced by Cathodic Polarization in the Electrical Conduction Behavior of Surface Films on Aluminum" Journal of the Electrochemical Society Vol. 141 Iss. 12 (1994) p. 104 - 110
Available at: http://works.bepress.com/kurtr_hebert/28/