Skip to main content
Article
Molecular tests support the viability of rare earth elements as proxies for fossil biomolecule preservation.
Scientific Reports (2020)
  • Paul V. Ullmann, Rowan University
  • Kristyn K. Voegele, Rowan University
  • David E. Grandstaff, Temple University
  • Richard D. Ash, University of Maryland, College Park
  • Wenxia Zheng, North Carolina State University
  • Elena R. Schroeter, North Carolina State University
  • Mary H. Schweitzer, North Carolina State University
  • Kenneth J. Lacovara, Rowan University
Abstract
The rare earth element (REE) composition of a fossil bone reflects its chemical alteration during diagenesis. Consequently, fossils presenting low REE concentrations and/or REE profiles indicative of simple diffusion, signifying minimal alteration, have been proposed as ideal candidates for paleomolecular investigation. We directly tested this prediction by conducting multiple biomolecular assays on a well-preserved fibula of the dinosaur Edmontosaurus from the Cretaceous Hell Creek Formation previously found to exhibit low REE concentrations and steeply-declining REE profiles. Gel electrophoresis identified the presence of organic material in this specimen, and subsequent immunofluorescence and enzyme-linked immunosorbant assays identified preservation of epitopes of the structural protein collagen I. Our results thereby support the utility of REE profiles as proxies for soft tissue and biomolecular preservation in fossil bones. Based on considerations of trace element taphonomy, we also draw predictions as to the biomolecular recovery potential of additional REE profile types exhibited by fossil bones.
Disciplines
Publication Date
September 23, 2020
DOI
10.1038/S41598-020-72648-6
Publisher Statement
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. 
Citation Information
Paul V. Ullmann, Kristyn K. Voegele, David E. Grandstaff, Richard D. Ash, et al.. "Molecular tests support the viability of rare earth elements as proxies for fossil biomolecule preservation." Scientific Reports Vol. 10 Iss. 1 (2020) p. 15566
Available at: http://works.bepress.com/kristyn-voegele/8/
Creative Commons license
Creative Commons License
This work is licensed under a Creative Commons CC_BY International License.