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Abstract

We study the quality of advice that an informed and biased expert gives to an

uninformed decision maker. We compare two scenarios: mandatory disclosure of

the bias and non-disclosure, where information about the bias can only be revealed

through cheap-talk. We find that in many scenarios non-disclosure allows for higher

welfare for both parties. Hiding the bias allows for more precise communication for

the more biased type and, if different types are biased in different directions, may

allow for the same for the less biased type. We identify contexts where equilibrium

revelation allows but mandatory disclosure prevents meaningful communication.
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1 Introduction

In a variety of contexts informed experts advise clients about what actions

to take. Stock analysts advise investors on how to allocate their portfolios.

Policy experts advise politicians on what policies to adopt. Medical researchers

advise the government on whether to approve a new drug. However, experts

are often prone to not provide accurate advice because they have conflicting

interests. They may have incentives to distort information so as to induce

decisions that are favorable to them. A stock analyst might have taken a short

or long position on the stock she recommends. A policy expert might have a

conservative or liberal bias or be beholden to special interests. A medical

researcher may wish to promote drugs from a company funding her research.

Conflicts of interest are at the heart of many recent corporate scandals and
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are often thought as major impediments to ideal information transmission in

markets.

A commonly advocated partial solution to the conflicts of interest problem

is mandatory disclosure. It is argued that mandatory disclosure eliminates

the need for the decision maker to second-guess the recommendations of the

expert and such transparency allows for decisions that are more aligned with

the interest of the decision-maker. 1 In contrast to this common presumption,

we find that for a wide range of environments, both the expert and the decision

maker benefit from keeping the expert’s conflict of interest private. Therefore,

disclosure often not only does not alleviate the conflict-of-interest problem,

but exacerbates it.

Our work extends the seminal cheap-talk model introduced by Crawford and

Sobel [7] (CS henceforth) by allowing the decision maker to be uncertain about

the expert’s bias. In their model, an expert who observes some payoff-relevant

information advises an uninformed decision maker through costless reports.

CS show that when the expert’s conflict of interest is common knowledge, the

expert cannot fully reveal the state to the decision maker, but may transmit

information about the state through noisy communication. In our model, the

1 For example, Stiglitz [26] argues that “conflicts of interest will never be fully

eliminated, either in the public or private sector. But by sensitizing ourselves to

their presence, by increasing required disclosure – as the old saying goes, sunshine

is the strongest antiseptic – by becoming aware of the incentives that are in place

that can exacerbate these conflicts of interest, and by imposing regulations that

limit their scope, we can do much to mitigate their consequences, both in the public

and the private sector.”
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expert’s bias is her private information. 2 The corresponding uncertainty that

the decision maker faces may concern both the direction and the degree of

the expert’s bias. The situation where a policy expert might be conservative

or liberal constitutes an example of the former; the situation where a stock

analyst might be more self-serving or less constitutes one of the latter.

To gain some intuition for the results of the paper, consider a world with five

possible states, decisions, and reports: “extremely low,” “moderately low,”

“average,” “moderately high,” or “extremely high.” Each state occurs with

equal probability. The expert has either a right or left bias with equal prob-

ability. A right-biased expert would like the decision maker’s action to be

one notch above the true state (for example, action “extremely high” in state

“moderately high”), and a left-biased expert would like it to be one notch

below. Assume also that the decision maker and the expert’s loss in utility

from suboptimal actions is symmetric around his or her most preferred ac-

tion. As a concrete example, one could think of a medical researcher (expert)

assessing the severity of the side effects of a newly developed drug and giving

recommendations to doctors or the government (decision maker). If the med-

ical researcher receives funding from the drug maker, then she might have an

incentive to understate its side effects (left bias); if she receives funding from

the drug maker’s competitor, then she might have an incentive to overstate

them (right bias).

As demonstrated by CS, when the expert’s bias is commonly known, effective

communication between the expert and the decision maker is hindered by mis-

2 In this paper, we use the word “bias” and the phrase “conflict of interest” inter-

changeably.
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aligned preferences. Only noisy communication is possible. Take, for example,

a right-biased expert. At the state “moderately low,” she is indifferent between

actions “extremely low” and “extremely high.” Therefore, she cannot credi-

bly distinguish between the three highest states. Hence, these three states are

pooled together into one message. But given the decision maker takes an action

equal to the expected state, the expert would also want to pool “moderately

low” with the high message. The only equilibrium with any information trans-

mission then involves the expert pooling the four highest states together and

reporting the “extremely low” state as a separate message. Much information

is lost here.

When there is uncertainty about the expert’s bias, however, the decision maker

can reason as follows. When he receives the message “moderately high,” it

could be because the state is “extremely high,” and the expert has the left

bias, or because the state is “average,” and the expert has the right bias. Thus,

the “expected value” of the state is moderately high and he finds it optimal to

take the action “moderately high.” This reasoning works for all three moderate

messages. 3 Given the decision maker’s actions, the expert finds it optimal to

report such messages, since by so doing she receives her most preferred action

for the bias-state combinations. This effect enables the expert and the decision

maker to achieve better communication. Clearly, the expert is better off under

nondisclosure. Because the decision maker has concave preferences, he too is

better off.

This example shows that uncertainty about the expert’s bias allows the deci-

sion maker to be more rather than less trusting of an actual recommendation

3 However, a right-biased expert still cannot separate the two highest states.
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because he does not know whether the expert is exaggerating or understating

the truth. The expert can then respond to this fact by giving more precise

recommendations which in turn improves the welfare of both parties. To gen-

eralize this intuition, we consider a model with a continuum of states and

allow for uncertainty both about the direction and the degree of the conflict.

We introduce two types of experts: a “high type” whose conflict takes a high

value and a “low type” whose conflict takes a low one.

We show that there always exist conflict-hiding equilibria, where each report is

issued by both types. However, each type issues the same report for a different

set of states: the high type for a lower set and the low type for a higher set. In

certain contexts, there can also be equilibria where for a limited set of states,

the conflict is revealed through cheap-talk: we call such equilibria partially

conflict-revealing.

We show that it is always true that the high type can communicate with

less noise in a conflict-hiding equilibrium than under disclosure. Because the

decision maker discounts her advice less than if the conflict were known, less

information is lost under nondisclosure. Given concave preferences, this implies

higher welfare for both players. If uncertainty concerns only the direction of the

conflict then the same is true for the low type. This implies that for all concave

preferences conflict-hiding equilibria allow for higher welfare than disclosure

for both players. If uncertainty concerns only the degree of the conflict but

its direction is known, the low-type expert’s advice is discounted more in

a conflict-hiding equilibrium than under disclosure. Thus, the low type can

communicate with less noise and become better off when her bias is disclosed.

In this case, the overall welfare implications of disclosure might depend on the

exact shape of the players’ preferences.
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In general, consider a case where uncertainty concerns the degree and possibly

also the direction of the conflict. We show that if players exhibit a sufficiently

increasing distaste for inaccurate advice, as reflected by the concavity of the

players preferences, then their dominant concern is to decrease the amount of

noise when communication is least accurate. Since this occurs when the conflict

of interest is known to be high and nondisclosure reduces the amount of noise

in the high type’s messages, we show that nondisclosure is welfare-improving.

All these results indicate that in a large set of environments, not requiring

disclosure could be a better policy. The situation where disclosure is clearly

a better choice happens if the only conflict-hiding equilibrium is a babbling

one yet it is possible for the low type to transmit information when her bias

is disclosed. This can only happen if there is no information transmission

in the disclosure equilibrium when the expert is of the high type. Even in

this case, however, disclosure is not necessarily better than nondisclosure.

In certain scenarios, the low-type expert is able to reveal the value of her

conflict through some equilibrium messages. We show that such partial conflict

revelation can allow meaningful communication in environments where neither

conflict-hiding equilibria nor disclosure equilibria do. In particular, this is the

case when the two possible values of conflicts are of large magnitudes and

opposite signs.

The rest of the paper is organized as follows. In Section 2, we review literature

related to our work. In Section 3, we develop a simple model of cheap-talk with

uncertainty about biases. In Section 4, we characterize conflict-hiding equilib-

ria. In Section 5, we present a welfare analysis, and show that in many scenarios

nondisclosure dominates disclosure. In Section 6, we discuss the possibility of

conflict revelation in nondisclosure equilibrium which improves welfare. Fi-
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nally, in Section 7, we summarize the results and propose directions for future

research. 4

2 Related literature

The paper most closely related to ours is that by Morgan and Stocken [21]. In

their model, a stock analyst could be “bad,” who prefers investors to overvalue

stocks, or “good,” who prefers investors to value them correctly. They show

that the presence of bad experts prevents good experts from revealing good

news but not from revealing bad news and induces good experts to issue

favorable reports more frequently.

Our model differs from that of Morgan and Stocken [21] in two key ways.

First, we consider how the players’ dislike of inaccurate advice determines the

welfare effects of uncertainty about the conflict. Second, through extensive

comparative static analysis, we compare welfare under disclosure and nondis-

closure to address the optimality of these two regimes. These departures from

their model allow us to identify the mechanism through which uncertainty

about incentives might benefit both the decision maker and the expert, which

in turn allows us to relate to a wide range of important policy considerations.

Papers on cheap-talk with uncertain biases also include those by Dimitrakas

and Sarafidis [10] and Morris [22]. Similarly to [21], they consider bias dis-

tributions skewed in one direction – unbiased and right-biased. In contrast,

we allow both the magnitude and the direction of the expert’s bias to be un-

4 In addition to the proofs in the Appendix, we provide an online supplement for

proofs we omitted from the paper.
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certain. Dimitrakas and Sarafidis [10] characterize cheap-talk equilibria with

uncertain biases, when the bias value is allowed to be distributed on a contin-

uum. 5 Morris [22] employs a discrete state space, allows two possible values

of bias, but assumes that the expert only imperfectly observes the state. He

shows how an expert’s concern for reputation as an unbiased expert may pre-

vent him from revealing information.

Cain, Loewenstein, and Moore [5] analyze the effects of disclosure of conflicts of

interest on expert advice in an experimental setting. They find that disclosure

leads to greater distortions than nondisclosure, i.e., more noise in advice and

lower earnings for the decision maker, both of which are consistent with our

results. Although they attribute some of these effects to a mix of strategic

and psychological factors (e.g., credulity, näıveté, and anchoring), our analysis

shows that these effects can arise in a perfectly Bayesian setting.

Sobel [25] and Bénabou and Laroque [2] study reputation concerns of experts

when there are honest advisors and strategic ones. 6 Other authors focus on

uncertainty about another dimension – competence of experts or accuracy

of experts’ information. Austen-Smith [1], Ottaviani and Sørensen [24], and

Moscarini [23] are a few examples.

Farrell and Gibbons [14] study the effects of the presence of different audi-

ences on cheap-talk, under a setup based on a discrete state space. They find

5 However, they do not provide welfare comparisons between disclosure and nondis-

closure.
6 Dziuda [12] also studies a model with biased and honest types, but in her model,

the expert’s information is partially verifiable, in that the expert cannot claim to

have evidence she does not possess.
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the effect could be subversion, one-sided discipline, or mutual discipline. 7 In

contrast, we study the effect of the existence of different types of speakers.

The effect that one type of expert has on the other is close in spirit to their

“mutual discipline” effect.

3 Model

A privately informed expert (E or she) gives advice to an uninformed decision

maker (D or he). The decision maker’s decision affects both parties’ payoffs,

which also depend on the value of an underlying state, s. The state s is a

random variable uniformly distributed on [0, 1]. The expert privately observes

the realization of s and sends to the decision maker a costless message m from

an arbitrarily large message set M . After receiving the message, the decision

maker takes an action y ∈ R. In state s, the decision maker’s most preferred

action is equal to s. If the expert has bias β, her most preferred action is s+β.

If β > 0, we say that the expert has a right bias, while if β < 0, we say that

the expert has a left bias.

The decision maker’s and the expert’s utility functions are respectively

7 Subversion refers to cases in which the speaker is able to communicate to one

audience in private, but the presence of another audience prevents him from such

communication in public. One-Sided Discipline means that the speaker cannot com-

municate to one audience in private, but the presence of another audience enables

him to effectively communicate with this audience. Mutual discipline refers to cases

in which the speaker is not able to communicate to either audience in private, but

is able to do so in public.
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UD(y, s) =U(y − s),
UE(y, s, β) = Ũ(y − (s+ β)),

where both U and Ũ are strictly decreasing in the absolute value of their

sole argument, the difference between the actual action y and the decision

maker’s (expert’s) most preferred action. 8 At times, we refer to this property

as distance aversion. Note that distance aversion implies symmetry, i.e., U and

Ũ are even functions. In addition, we assume U and Ũ are strictly concave

and twice continuously differentiable functions. 9 We will use V to indicate

the expected utility of the decision maker or expert in a strategy profile, with

the appropriate subscripts/superscripts and arguments given the contexts. For

example, V D is the expected utility of the decision maker in a strategy profile.

The expert’s bias β is her private information and drawn from the following

distribution:

β =


bh with probability p,

bl with probability 1− p,

where −bh ≤ bl < bh. This is without loss of generality due to the symmetry

of players’ preferences. The following two quantities are useful in the charac-

terization of equilibrium:

d = bh − bl ∈ [0, 2bh], v =
bh + bl

2
∈ [0, bh].

8 This argument is sometimes called the “outcome” of the decision maker’s action

in the cheap-talk literature.
9 The assumption on the expert’s utility, Ũ , is only needed when we discuss welfare

results concerning the expert. For all the results concerning equilibrium characteri-

zation and the decision maker’s payoff, we need only assume it to be distance-averse.
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Thus, d is the difference between the two bias values, and v the average of

them.

We consider only pure strategies for the expert. This is without loss of gen-

erality in terms of players’ expected payoffs, as the set of states in which the

expert is indifferent between actions has measure zero. A pure strategy for an

expert with bias β can then be characterized by the function µβ : [0, 1]→M .

Let P (·|m) be the belief of the decision maker about the state when he re-

ceives the message m. Let y(m) be the action taken by the decision maker if

he receives message m.

We focus our attention on Perfect Bayesian Equilibrium: (E1.) The decision

maker’s beliefs, P (·|m), be formed using Bayes’ rule for any message m when-

ever possible; 10 (E2.) The decision maker’s actions, y(m), maximize his ex-

pected utility given his belief P (·|m) for all m; (E3.) The expert’s messages,

µβ(s), maximize her utility for all s among all m ∈ M given the decision

maker’s strategy. 11

To eliminate essentially equivalent equilibria we make two assumptions. First,

when an expert is indifferent between two equilibrium actions she induces the

lower one if she is of the high type and the higher one if she is of the low

type. 12 Second, we assume that if messages m and m′ induce the same action

10 To be precise, we need P (·|m) to be the regular conditional probability defined

by the joint distribution of m and s. See Durrett [11] for a detailed discussion.
11 When characterizing equilibria, we will omit beliefs, as beliefs about unsent mes-

sages can be specified the same as any message sent in equilibrium, so that they do

not disrupt E2 and E3.
12 This assumption ensures all equilibrium actions that are potentially optimal for

a type of expert will be induced by that type of expert.
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then m = m′ and adopt the language “the message that induces action y,” or

simply, “message y.”

We call an equilibrium “informative” if it gives the decision maker higher

payoffs than the babbling equilibrium, in which the expert’s reports do not

reveal any information about the state. 13

To study the welfare effects of mandatory disclosure of conflicts of interest, we

compare two information regimes. In the first regime, which we call disclosure,

there is a prior commitment to disclosing the conflict. In the second regime,

which we call nondisclosure, there is no such prior commitment and the conflict

cannot be verifiably revealed. We say that one regime allows for higher welfare

than another if there is an equilibrium which delivers higher welfare for both

players in the former than any equilibrium in the latter. We will talk about the

decision maker and the expert’s ex ante expected payoff, namely, before the

realization of both the expert’s bias and the underlying state. The ex interim

expected payoff of the expert refers to her expected payoff after the value of

her bias is realized, but before that of the state does.

Note that our characterization of the equilibrium under disclosure and nondis-

closure also characterizes the equilibrium in a third scenario, where the expert

could ex interim voluntarily disclose the conflict (mixing is not allowed). This

13 In cheap-talk games, it is not unreasonable to expect to observe informative equi-

libria when they exist. In fact, there is experimental evidence (Blume et al. [3]

and Cai and Wang [4]) to support this claim. A recent paper by Chen, Kartik,

and Sobel [6] provides a justification in the form of an equilibrium selection crite-

rion. However, there are also theoretical limitations to selecting such equilibria, as

discussed by Farrell [13] and Farrell and Rabin [15].
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is because if the strategy of disclosure is observable and one type finds it opti-

mal to disclose, then the decision maker will find out the value of the conflict

independently of the other type’s decision. Hence, this scenario reduces to the

disclosure case. If both types keep the conflict private then there is no change

in the decision maker’s prior beliefs about the conflict and it reduces to the

nondisclosure case. Under this scenario the expert’s voluntary decision not to

disclose her conflict regardless of its value accords with a stronger welfare cri-

terion. We say that in this case nondisclosure ex interim dominates disclosure

for the expert.

Our first lemma describes how an expert’s ranking of two actions depends on

the underlying state and her bias.

Lemma 1 Given two actions, y and y′ with y < y′, an expert of bias β strictly

prefers y to y′ in state s if and only if the expert’s most preferred action, s+β,

is less than y+y′

2
. When s+ β = y+y′

2
, the expert is indifferent between them.

PROOF. [Lemma 1, Page 14] Observe s + β ≤ y+y′

2
is equivalent to

|y − (s+ β)| ≤ |y′ − (s+ β)|, which is equivalent to Ũ(y − (s+ β)) ≥ Ũ(y′ −

(s+ β)) as Ũ is decreasing in the absolute value of its sole argument.

The lemma implies that in any equilibrium, for either type of expert, the set

of states in which she finds it optimal to induce a particular action is a closed

interval, as arbitrary intersections of closed intervals remain closed intervals.

In addition, the lemma is true regardless of the state distribution.

In general, there can be only a finite number of actions in equilibrium. 14

14 Our result generalizes Lemma 1 of [7] and Lemma 2 of [21].
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Lemma 2 There are only a finite number of actions in equilibrium as long as

neither bl nor pU ′(bh) + (1− p)U ′(bl) is equal to 0. Furthermore, there cannot

be an infinite number of actions induced by both types, unless pU ′(bh) + (1 −

p)U ′(bl) is equal to 0.

Unless one of the two expressions in the lemma is equal to zero (note they

cannot both be zero except in degenerate cases), actions in equilibrium must be

relatively far apart from one another, or equivalently, messages must contain

enough noise, to ensure that the expert stick to her equilibrium messages. As

a result, there can be only a finite number of equilibrium actions.

It is possible to have an infinite number of actions in equilibrium if one of the

expressions in Lemma 2 is zero. First, we consider a case where pU ′(bh)+(1−

p)U ′(bl) = 0, where it is possible to have an infinite number of equilibrium

actions that are induced by both types. 15

Lemma 3 Let bh = −bl = b < 1
2

and p = 1
2
. Then, the following strategy

profile constitutes an equilibrium:

1. An expert of bias β’s strategy satisfies

µβ(s) =



b if β = −b, and s ∈ [0, 2b];

s+ β if s ∈ [b− β, 1− b− β];

1− b if β = b, and s ∈ [1− 2b, 1].

2. Upon receiving message m, the decision maker takes action y(m) = m

for all m ∈ [b, 1− b].

15 The equilibrium construction also appears in [8].
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We omit the proof as it is straightforward. Figure 1 provides an illustration

of the equilibrium. For any message y in the interval (b, 1− b), both types of

expert induce their most preferred action. Also, as the expected misstatement

is zero, the decision maker finds it optimal to take action y when he receives

this message. Thus, any message y ∈ (b, 1− b) is precise, in that any variation

in the underlying state is reflected in the expert’s report. This already sug-

gests that nondisclosure generates higher welfare. We will return to this point

in Section 4. Here, we want to stress two points. The first point is regard-

ing comparisons between communication versus delegation. Dessein [9] shows

that under uniform distribution of state, quadratic preferences, and common

knowledge of bias, full delegation always gives the decision maker higher util-

ity than communication, as long as informative communication is possible.

However, the equilibrium in the above lemma demonstrates this need not be

the case when the decision maker is uncertain about the expert’s bias. Full

delegation gives the decision maker a payoff of −b2. But when p = 1
2
, the most

informative communication equilibrium gives the decision maker a payoff of

−b2 + 4
3
b3, which is always higher. 16 The second point is regarding the as-

sertion by CS that the expert’s bias is self-defeating in that the expert would

prefer to commit to telling the truth if possible. However, under quadratic

preferences, in Lemma 3, either type of expert’s payoff is −8
3
b3. In contrast,

if the expert committed to truth-telling, her payoff would be −b2. Therefore,

the expert does not want to commit to truth-telling if b ≤ 3
8
. In other words,

only large biases are self-defeating.

When bl = 0, it is also possible to have an infinite number of actions in

16 Due to continuity of preferences, for any b ∈ (0, 1/2), if p is close to 1/2, the

decision maker is better off with communication than with delegation.
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Fig. 1. Equilibrium when bh = −bl and p = 1
2 , where Yβ maps from the true state

to the action through an expert of bias β and the decision maker.

equilibrium.

Example 4 Let bh = 1
4
, bl = 0, and p = 1

2
. Suppose also the decision maker’s

preferences are quadratic. Then the following strategy profile is an equilibrium

and it features an infinite number of actions – the interval [0, 0.2156), and two

points y1 = 0.2156, and y2 = 0.6403. The low type induces actions equal to the

state in [0, 0.2156), action y1 in [0.2156, 0.4280), and action y2 in [0.4280, 1];

the high type induces y1 in [0, 0.1780] and y2 in (0.1780, 1].

Note that in the above example, some actions (namely, those in [0, 0.2156))

are induced by only one type of expert (the low type). Therefore, messages

inducing such actions reveal the type of the expert. We call this type of equilib-

rium partially conflict-revealing equilibrium. Alternatively, if each equilibrium

action is induced by both types, we call the equilibrium conflict-hiding equilib-

rium. 17 In this kind of equilibrium, no equilibrium message reveals the type

17 In the context of stock recommendations, Morgan and Stocken [21] analyze two
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of the expert, hence the term conflict-hiding. The equilibrium in Lemma 3 is a

limiting case of these two types of equilibria. In the equilibrium, all actions are

induced by both types, but there are actions that are induced by one type in

an interval and the other type at only one point. When receiving such a mes-

sage, the decision maker can infer with probability one what the expert’s bias

is. We will nevertheless call equilibria of this type conflict-hiding equilibria, as

our results on conflict-hiding equilibria do apply to them.

While conflict-hiding equilibrium always exists, the same is not true for partially-

conflict revealing ones. In the rest of Section 4 and Section 5, we will focus on

conflict-hiding equilibria and return to revelation of conflicts in Section 6.

kinds of equilibria, semiresponsive and categorical ranking. The categorial rank-

ing equilibria correspond to our conflict-hiding equilibria, while the semireponsive

equilibria are a kind of partially conflict-revealing equilibria in which certain mes-

sages exclusive to the unbiased expert perfectly reveal the underlying states to the

decision maker, just as in our Example 4.
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4 Conflict-Hiding Equilibria

In our characterization of conflict-hiding equilibrium, we will focus on the case

where at least one of the following holds: 18

p ≥ 1

2
or bl ≥ 0.

Consider an equilibrium with n actions, y1, . . . , yn, arranged in ascending or-

der. Lemma 2 asserts that these are the only possible conflict-hiding equilibria,

unless pU ′(bh) + (1 − p)U ′(bl) is equal to 0. For i = 1, . . . , ..., n, the point at

which an expert of bias bj (j = h, l) is indifferent between yi and yi+1 is

aji =
yi + yi+1

2
− bj. (1)

In addition, let aj0 = 0 and ajn = 1. Thus,
{
aji
}n
i=0

(j = h, l) forms a partition of

the interval [0, 1]. In the i−th interval for type j, the expert sends the message

that induces yi, where j = h, l and i = 1, . . . , n. For economy of notation, let

ai≡ ahi .

Thus, ali = ai + d when i = 1, . . . , n− 1. 19

18 In the case where both p < 1/2 and bl < 0 hold, we cannot fully characterize the

set of conflict-hiding equilibria without additional assumptions. We know that if an

n−action equilibrium exists, then it is unique. The difficulty lies in showing that the

existence of an (n+1)−action equilibrium implies that of an n−action one. When the

decision maker’s preferences are quadratic, results similar to that of Theorem 5 can

be established. We should note, however, that the difference equations characterizing

an n−action equilibrium does apply to the case with p < 1/2 and bl < 0.
19 From this relationship, we can immediately observe that d < 1 is necessary for
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Let y(ah, ãh, al, ãl) be the action that maximizes the expected utility of the

decision maker given that the high type sends the corresponding message in

[ah, ãh] and the low type in [al, ãl]. Thus, the equilibrium actions can be written

as

y1 = y(0, a1, 0, a1 + d),

yi = y(ai−1, ai, ai−1 + d, ai + d), i = 2, . . . , n− 1, (2)

yn = y(an−1, 1, an−1 + d, 1).

Adding adjacent equations in (2) and using (1), we may obtain a system of

difference equations of ai.
20 The following theorem fully characterizes the

conflict-hiding equilibria.

Theorem 5 Consider the game {U, Ũ , p, bh, bl} and assume p ≥ 1
2

or bl ≥ 0.

Unless p = 1
2

and bh = −bl, there exists some positive integer N(p, bh, bl)

such that for each n = 1, 2, ..., N(p, bh, bl) there exists a unique solution,

({ai}ni=0 , {yi}
n
i=1) to (1) and (2). The solution corresponds to a unique equi-

librium with n partition intervals for each type. Furthermore, these are the

only conflict-hiding equilibria. When p = 1
2

and bh = −bl < 1
2
, there exists a

partition equilibrium with n partition intervals for each positive integer n.

Let {m1, ..,mn} be a set of distinct messages. The equilibrium with n partition

the existence of informative conflict-hiding equilibrium.
20 Please refer to Equation (11) in the appendix for the exact form of the difference

equations. The set of difference equations satisfies a version of “condition M” used

by CS. That is, keeping a1, . . . , ai−1 unchanged and increasing ai, in the forward

solution (solving the difference equations while ignoring the last equation), all cutoff

points from ai+1 onward will be shifted to the right. This guarantees the uniqueness

of an n−action equilibrium.
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elements can be characterized by:

(1) Each type (j = h, l) of expert partitions [0, 1] into n intervals with cutoff

points {aji}n−1
i=1 and sends message mi in the i-th interval, where ahi = ai

and ali = ai + d.

(2) The decision maker takes action yi upon receiving message mi.

In addition, ai+1−ai ≥ ai−ai−1 for all i = 1, . . . , n−1, and ali+1−ali ≥ ali−ali−1

for all i = 1, . . . , n− 1 when bl ≥ 0.

Theorem 5 establishes that, for each positive integer up to an upper bound,

there exists a single equilibrium with that number of actions. Given our as-

sumption that the expert on average has a right bias, the theorem also implies

that higher messages contain more noise than lower ones, similar to the con-

clusion of CS.

The equilibrium under disclosure is a limit case of the conflict-hiding equi-

librium when p goes to 1. To compare equilibria as p changes, we define two

measures: balancedness and precision of an equilibrium. We say an equilibrium

is more balanced the smaller is the increment in noise from a lower message to

a higher message; we say an equilibrium is more precise if it includes a higher

number of distinct actions. The decision maker prefers a more balanced and

precise equilibrium since he has concave preferences. We also say that a mes-

sage is more precise or less noisy than another if the set of states where it is

sent in equilibrium has a lower measure than the other one.

To examine the properties of the conflict-hiding equilibria more closely, let us

define xi by

yi =
ai−1 + ai

2
+ xi. (3)
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where the xi depend on the shape of U . They are decreasing in p, equal to

d for p = 0, and 0 for p = 1. 21 Then, the system of difference equations for

{ai}ni=0 can be written

a2 − a1 = a1 − 0 + 4bh − [2y1 − a1 + 2x1],

ai+1 − ai = ai − ai−1 + 4bh − 2[xi + xi+1], i = 2, . . . , n− 1, (4)

1− an−1 = an−1 − an−2 + 4bh − [2yn − an−1 − 1 + 2xn].

When there is no uncertainty about the conflict, i.e., bh = bl = b, the above

equation reduces to

ai+1 − ai = ai − ai−1 + 4b for i = 1, 2, ..., n− 1. (5)

with a0 = 0 and an = 1. This case also corresponds to the disclosure equilib-

rium (the equilibrium studied by CS) where the value of the bias b is common

knowledge. In such a disclosure equilibrium the increment in noise is 4b. Note

that this quantity is negative if b < 0, implying that when the expert has

a left bias then higher messages are more precise than lower messages. The

increments in noise in conflict-hiding messages is always smaller than 4bh and

greater than 4bl. In addition, given our assumption that the expert on average

has a right bias, higher messages are always less precise. The following two

corollaries pin down the comparative statics with respect to the distribution

of the conflict.

Corollary 6 Fixing n ≥ 2, the equilibrium cutoff points ai are strictly de-

creasing in p if an n−action equilibrium exists.

21 For i = 2, ..., n − 1, there exists a function x such that xi = x(p, ai − ai−1)

and x(1/2, ·) = d/2. The latter makes it easy to characterize the conflict-hiding

equilibrium when p = 1/2.
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Corollary 7 The maximum number of intervals (actions) in an equilibrium,

N(p, bh, bl), is nonincreasing in p.

Corollary 6 states that for an equilibrium with a given number of actions,

the cutoff points move to the left as the probability of high type increases.

Intuitively, a higher p corresponds to the bias value being more right-biased

“on average.” This causes an increase in the increments in the noise of messages

moving from the left to the right. Therefore, the first message has to be more

accurate, and the noise in all equilibrium messages becomes less balanced. This

intuition is the same as identified by CS. As we will see in Section 5, since

the decision maker’s preferences are strictly concave, this leads to a decrease

in his payoffs. Corollary 7 states that a higher p renders it less likely for there

to exist equilibria with larger number of actions. The total amount of noise in

all messages is fixed since the set of states is a fixed interval. Since higher p

requires increments in noise to increase, it makes it less likely for an n−action

equilibrium to exist.

In the conflict-hiding equilibrium, the high type and the low type induce the

same action in two different intervals: a higher one for the low type and a

lower one for the high type. The decision maker knows this fact, but from

observing a message he cannot tell the type of the expert. As a result he

is more willing to believe the expert than if he knew that she was the high

type. Consequently, the high type will be able to communicate with a more

balanced noise distribution in an n-action conflict-hiding equilibrium than in

an n-action disclosure equilibrium. Furthermore, from Corollary 7, it follows

that whenever there is an n-action disclosure equilibrium with the high type

there is also an n−action conflict-hiding equilibrium. Therefore, nondisclosure

allows for more precise and more balanced communication for the high type.
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If uncertainty concerns only the degree of the bias then at the same time the

decision maker is less willing to believe the expert than if he knew that she

was the low type. Yet if there is uncertainty about the direction of bias then

the decision maker might be more willing to believe the expert than if he knew

she was a low type. Thus, if the low type’s bias is of the same direction as that

of the high type, then noise is less balanced in a conflict-hiding equilibrium

than under disclosure. Also, a disclosure equilibrium with the low type allows

for more precise communication as follows from Corollary 7. When there is

uncertainty about the direction of the conflict however, it is possible that

the low type can communicate with more evenly distributed noise in an n-

action conflict-hiding equilibrium than in an n-action disclosure equilibrium.In

particular, when p = 1/2, bl < 0, and |bl| > v, we can show that conflict-hiding

equilibrium can be more precise than a disclosure equilibrium with bias bl.
22

5 Welfare

With the help of the comparative static results of the previous section, we

now turn to the welfare comparison between the conflict-hiding and disclosure

equilibria. We maintain our assumption that either p ≥ 1/2 or bl ≥ 0..

Our first results concerns how the decision maker’s expected payoff depends

on the bias distribution when we fix the number of equilibrium actions.

Lemma 8 Given any n ≤ N(p, bh, bl) and n ≥ 2, the decision maker’s equilib-

rium expected payoff in the n-action equilibrium, V D
n (p, b), is strictly decreasing

in p.

22 Please refer to [20].
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This lemma says that the decision maker strictly prefers an equilibrium in

which the probability of the high type, p, is smaller, given a fixed number of

actions in the equilibrium. A lower p corresponds to a lower weight placed on

the expected utility from consulting the high type. This increases the decision-

maker’s payoff as his expected payoff from consulting the low type is higher.

A lower p also leads to a change in the noise in each type of expert’s messages

due to a rightward shift of cutoff points. When bl ≥ 0 this shift causes the

noise of the low type’s messages to become more balanced. When bl < 0, it

makes it less balanced. However, it always causes the noise of the high type’s

messages to become more balanced. When p ≥ 1
2

this offsets the effect of the

noise of the low type’s messages becoming less balanced. Thus, given p ≥ 1
2

or bl ≥ 0, the decision makes becomes better off as a result of the change

in the noise distributions of each type of expert’s messages. Intuitively, the

combination of the two effects means that the overall noise in communication

becomes more balanced, which benefits the decision maker due to his strictly

concave preferences. 23

We now turn to welfare comparisons for the expert. Intuitively, the high type

prefers not to have her bias disclosed because she can imitate the low type

under nondisclosure, thereby improving her influence on the decision maker.

For the low type, the comparison depends on whether her bias is of the same

direction as the high type. The following theorem shows that if it is the case,

the low type prefers disclosure to nondisclosure.

Theorem 9 Assume the expert’s utility function, Ũ , is concave. Then,

23 The equilibrium actions also change as p changes. But, they are chosen by the

decision maker to maximize his expected payoff. The envelope theorem tells us that

such changes have no marginal effect on the decision maker’s expected payoff.
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(1) For the high type, the highest expected payoff achievable under nondisclo-

sure is higher than that under disclosure;

(2) For the low type, when bl ≥ 0, the highest expected payoff achievable under

nondisclosure is lower than that under disclosure.

The intuition of the result is as follows. First, fixing the number of equilib-

rium actions, the noise across the high type’s messages under nondisclosure is

more balanced than under disclosure. Even if the decision maker knows the

messages are sent by the high type and takes the corresponding optimal ac-

tion (the average of the two cutoff points, as he would under disclosure), the

high type’s expected payoff would still be higher than that under disclosure,

since her preferences are concave. However, in the conflict-hiding equilibrium

under disclosure, the decision maker has to account for the possibility that the

message may have been sent by the low type. As a result, he chooses an action

that is more favorable to the high type than if he knew the message has been

sent by the high type. Combining these two comparisons, the high type is bet-

ter off under nondisclosure than under disclosure, given the same number of

actions in equilibrium. Finally, Corollary 7 states that nondisclosure allows at

least as many actions as disclosure for the high type. Therefore, the high type

is better off under nondisclosure. The argument is analogous for why the low

type prefers disclosure when her bias is of the same direction as the high type,

except that all three comparisons in the argument go the opposite direction.

As we have shown above, nondisclosure allows for more balanced and more

precise communication between the high type and the decision maker than a

disclosure equilibrium, which benefits both the decision maker and the high

type. Our next result shows that the same argument applies for the low type

if the low type’s bias is of the same magnitude but opposite direction of the
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high type’s. That is, bh = −bl = b. In this case, symmetry of the players’

preferences implies that the set of equilibria when p = p0 is simply the mirror

image of that when p = 1 − p0. 24 As a result, the welfare comparison of

Lemma 8 can be generalized to imply that fixing the number of actions, the

decision maker’s expected payoff becomes higher as p becomes closer to 1
2
. The

following theorem then follows from Lemma 8 and Theorem 9.

Theorem 10 When bh = −bl, the highest expected payoff the decision maker

can receive is higher under nondisclosure than under disclosure. In addition,

the highest expected payoff the expert receives is also higher under nondisclo-

sure than under disclosure, both ex ante and ex interim.

PROOF. In terms of the decision maker’s expected payoff, disclosure is

equivalent to p = 0 and p = 1. According to Lemma 8, the n-action equilibrium

under nondisclosure gives the decision maker higher payoff than the n−action

equilibrium under disclosure. In addition, as we have shown in Corollary 7,

the maximum number of actions allowed decreases as p increases from 1
2

to 1

(or, by symmetry, decreases from 1
2

to 0). Combining these two statements,

we conclude the most informative equilibrium under nondisclosure gives the

decision maker higher payoff than disclosure.

The second part follows from Theorem 9. Without loss of generality, we focus

on the case p ≥ 1
2
. First, note that the high type’s and the low type’s highest

expected payoffs under disclosure are the same, again, due to symmetry. The-

orem 9 implies the high type ex interim prefers nondisclosure to disclosure. In

24 In fact, Theorem 12 in Section 6 implies that in this case all equilibria are conflict-

hiding.
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a conflict-hiding equilibrium under nondisclosure, it can be shown that the low

type’s ex interim expected utility is higher than the high type’s. 25 Therefore,

the low type also ex interim prefers nondisclosure to disclosure. Hence, the

expert’s ex ante expected payoff under nondisclosure is also higher than that

under disclosure.

As we have seen in Lemma 3, when p = 1/2 the expert can induce an infinite

number of actions. In that case, the conflict-hiding equilibrium is more precise

and more balanced than any disclosure equilibrium, implying higher welfare for

both players. The above theorem shows that this results extends to all p. Thus,

when uncertainty concerns only the direction of the conflict, nondisclosure

always allows for higher welfare. For the expert, this is true both before and

after she learns her bias. 26

When the decision maker faces uncertainty about the magnitude of the con-

flict, the welfare analysis is more ambiguous. We have shown that when the

expert is of the high type, not disclosing the conflict always allows for higher

expected payoffs for the decision maker and the expert. The case for the low

type is more complex. As long as uncertainty about the direction of the con-

flict is dominant then in the spirit of Theorem 10 both the low type and the

decision maker are also better off. When uncertainty concerns only the de-

gree of the conflict then by Lemma 8 and Theorem 9 the decision-maker and

the low type can be made better off in a disclosure equilibrium than in any

25 The proof is omitted here, but is available in the online supplement.
26 Under quadratic preferences, we may obtain additional welfare results. For exam-

ple, the decision maker’s highest expected payoff is decreasing in the value of b. We

would like to refer the interested reader to [19].
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conflict-hiding equilibrium. In these scenarios, the welfare comparison depends

on whether the improvement in the quality of communication when the conflict

is high or the deterioration when the conflict is low is more important. This

tradeoff depends on the concavity of the players’ preferences. Concavity of the

preferences implies that everything else equal, players will incur losses from a

decrease in the balancedeness of the noise distribution in the expert’s advice.

The more concave preferences are, the greater is the loss. When preferences

are sufficient concave, the most important factor affecting the players’ welfare

is the loss from the least precise messages. From Corollary 6, it follows that

the noise in communication is more balanced in an n-action conflict-hiding

equilibrium than in an n-action disclosure equilibrium with the high type.

This suggests that nondisclosure may allow for higher welfare than disclosure

for both the decision maker and the expert, simply because the least precise

message under disclosure is more precise than its counterpart in nondisclosure.

Our next theorem formalizes this idea.

Theorem 11 Fix (p, bh, bl) such that N(1, bh, bl) ≥ 2. Then, there exists suf-

ficiently concave utility functions for the players such that there is a conflict-

hiding equilibrium that ex-ante allows for higher welfare than any disclosure

equilibrium for both the decision maker and the expert.

This theorem shows that when there is meaningful communication in a conflict-

hiding equilibrium and preferences are sufficiently concave, the players can

both achieve higher ex-ante welfare when the conflict remains private to the

expert. Thus, the last two theorems above lead to the conclusion that there

exists a wide range of scenarios where transparency about conflicts of interest

does not improve communication. Thus, in our admittedly stylized framework,

it is not optimal to implement a policy that requires mandatory disclosure of
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the expert’s conflicts of interest prior to communication.

It is important to note that unlike Theorem 10, Theorem 11 holds only ex

ante, i.e., before the expert learns her bias. In addition, a necessary condition

for the theorem to be true is that meaningful communication is possible in

a conflict-hiding equilibrium, which is implied by our assumption that there

can be meaningful communication between the high type and the decision

maker under disclosure. In the next section, we consider cases where there is

no meaningful communication when the conflict is hidden yet nondisclosure

might still allow for higher welfare than disclosure.

6 Revelation of the Conflict

In the previous sections we have characterized conflict-hiding equilibria and

given sufficient conditions for a conflict-hiding equilibrium to Pareto dominate

a disclosure equilibrium. One of these sufficient conditions is that there is

meaningful communication in a disclosure equilibrium when the conflict is high

because this ensures that there is meaningful communication when the conflict

is hidden. If this condition fails, then the above welfare comparison will not

necessarily hold. In particular this happens in the case where |bl| < 1/4 but

N(bh, bl, p) = 1. Here, there is meaningful communication in the disclosure

equilibrium with the low type, but there is no meaningful communication

either in the conflict-hiding equilibria or in the disclosure equilibrium with

the high type. It follows that as long as p > 0 the disclosure equilibrium will

Pareto dominate the conflict-hiding one for all utility functions. In this section,

we show that even in this case it’s not true that nondisclosure necessarily leads

to lower welfare. The reason is that there might exist equilibria other than the
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conflict-hiding ones under nondisclosure. To investigate this, we turn to the

other possible type of equilibria – the partially conflict-revealing ones.

An equilibrium message can reveal the expert’s type only if there exist states

for one type such that the induced action is preferred to all other equilibrium

actions but there do not exist such states for the other. Therefore, the high

(low) type can reveal her type only if her message induces an action that is

higher (lower) than any other equilibrium action, otherwise the other type

would have an incentive to also send this message. Our next theorem shows

that only the low type can be revealed through cheap-talk. Furthermore, the

only actions that the low type can induce without the high type wanting to

imitate her are sufficiently low actions.

Theorem 12 For all distributions of the conflict, no equilibrium reveals the

conflict of the high type and no equilibrium reveals the conflict of the low type

for s > d.

It follows from this theorem that conflict revelation is necessarily partial and

that any message revealing the conflict has to contain information about s.

While the high type cannot be revealed, there can be several conflict-revealing

messages for the low type. In fact when bl = 0, as in Example 4, there can

be an infinite number of such messages. In addition, a corollary of the above

theorem is that when bh = −bl there can only be conflict-hiding equilibria.

The above theorem establishes only necessary but not sufficient conditions for

conflict revelation. To see that conflict revelation might not be possible even

for the low type at s < d consider the following example:

Example 13 Suppose players have quadratic preferences and (p, bh, bl) = (1
2
, 1

5
, 1

6
).
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Theorem 12 implies that conflict revelation is only possible if s < d = 1
30

and

if b = bl. Since bl = 1/6 > 1
30

there can be at most one conflict-revealing

message. Let’s denote this action by y1. It has to be true that y1 <
d
2

= 1
60
.

Since at s = 2y1 the low type has to be indifferent between y1 and y2, it follows

that y2 = 3y1 + 2bl ∈ [20
60
, 23

60
]. Suppose y2 is the only other action induced.

This means that the high type induces y2 for all s, but then y2 > 1
2
> 23

60
,

a contradiction. Alternatively, suppose that there is a third action y3. Then

2al2 +2bl = y3 +y2 has to be true in equilibrium. The lower bound for y3 occurs

when y1 → 0, but then y2 → 20
60

and al2 → 0.68291 and as a result the lower

bound on y3 is 1.3658, which is impossible since the rationalizable action space

is the unit interval.

This example shows a reason why a partially conflict-revealing equilibrium

might not exist. Intuitively, if the two types want to distort the decision

maker’s action to the same direction and similar extents, then low type can

only reveal her type for low values of the state. But since the low type only

wants to reveal her type if this gives her higher expected utility, the lowest

commonly induced action cannot contain too much noise and hence cannot

be far from the highest action induced by a conflict-revealing message. On the

other hand, in order for the expert to be credible the increase in noise from

a lower action to a higher one has to be sufficiently large and this increment

becomes larger as the conflict of the low type increases. If these two forces

are in conflict, as the above example suggests, there might not be room for

conflict-revelation.

When d is large and there is uncertainty about the direction of the conflict,

then the same logic is suggestive about a surprising property of partially

conflict-revealing equilibria. Since the low type would like to induce lower
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actions and the high type higher ones than the state, there is more room for

actions induced by only the low type. Furthermore, when bl is negative then

for the expert to remain indifferent, higher states have to be communicated

with less noise. This means that the conflict-revealing message is credible if

it is less precise than the first conflict-hiding message. When bl < 0 < bh and

N(1, bh, bl) = N(0, bh, bl) = 1 then partially conflict-revealing equilibria might

be the only way to transmit information. The following example illustrates

this possibility.

Example 14 Suppose bl = −1/4, bh = 1/3, and p = 1/2 and assume the

decision maker has quadratic preferences. Then, the following outcome is an

equilibrium. There are two actions y1 = 0.38763 and y2 = 0.66289. The high

type always induces action y2; the low type induces action y1 when s ∈ [0, 2y1]

and action y2 when s ∈ (2y1, 1].

Note that in this example the expert can never be informative if the conflict

is common knowledge. It is the combination of hiding the conflict for certain

values of s and revealing it for others that greatly improves communication.

Simple calculation shows that both players are better off than in the unique

babbling equilibrium under disclosure. This phenomenon is not limited to the

above parameter values and we conjecture that it is true in a much wider range

of contexts. In fact, in the limiting case of partially conflict-revealing equilib-

rium when bl = −bh and p = 1/2 there is always an informative nondisclosure

equilibrium with the structure described in Lemma 3 in Section 3 as long as

b < 1/2. In contrast, informative equilibria are only possible in the disclosure

case if b < 1/4.
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7 Conclusion

In this paper, we considered a model of strategic information transmission

in which the decision maker is uncertain about the conflict of interest of the

expert. We found that in a wide range of scenarios, it is not beneficial to the

decision maker to have the conflict of interest mandatorily disclosed. We iden-

tified scenarios in which the expert is better off under nondisclosure, before

or after she learns her conflict of interest. Our result shows that mandatory

disclosure of conflicting interests might hurt rather than help parties to reach

their desired outcomes because it often leads to less efficient communication.

If the expert is not forced to verifiably disclose her bias but is allowed to

hide or reveal her bias through equilibrium cheap-talk, then she can often be

more precise and more credible. For all distributions of the conflict we con-

sider, if there is meaningful communication under mandatory disclosure when

the conflict is high and the players are sufficiently averse to inaccurate advice,

then there is always a conflict-hiding equilibrium that allows for higher welfare

than any equilibrium under mandatory disclosure. A surprising result that we

did not fully explore in this paper is that, when there is uncertainty about

the direction of the conflict, equilibrium revelation of the conflict may trigger

meaningful communication even when mandatory disclosure prevents it. Fu-

ture research could provide a more general characterization of such partially

conflict-revealing equilibria.

As indicated by our discussion following Lemma 3, the equilibrium character-

ization and welfare analysis might be connected to variety of applications of

the CS model such as legislative procedures (Gilligan and Krehbiel [16] and

Krishna and Morgan [18]), organizational structure (Dessein [9]), and political
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lobbying (Grossman and Helpman [17]). Furthermore, although we consider

a simple static framework our results might matter for the understanding of

the quality of information transmission in settings that involve repeated inter-

actions or multiple experts. Further research is needed to deepen our under-

standing of important issues such as the welfare effect of reputation concerns

and the dynamics of conflict revelation.
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Appendix: Detailed Derivations and Proofs

The following discussion (preceding the proof of Lemma 2) contains some def-

initions and conditions that are useful for the characterization of equilibrium.

The online supplement has further details.

Let

y(l, p, d)

≡ argmaxyV (y, l, p, d)≡ p
∫ l

0
U(y − s) ds+ (1− p)

∫ l+d

d
U(y − s) ds. (6)

We use l > 0 to denote the length of the two intervals in which the message

is sent. When l = 0, the maximand becomes pU(y) + (1− p)U(y − d). 27

Recall that y(ah, ãh, al, ãl) is the action that maximizes the expected utility of

the decision maker given that the high type sends the corresponding message

in [ah, ãh] and the low type in [al, ãl]. By the distance aversion of U , we have

y(ah, ãh, ah + d, ãh + d) = y(ãh − ah, p, d) + a. (7)

Now we find the solution to Problem (6). First, since U is a strictly concave

C2 function,we have ∂2V
∂y2

< 0. Therefore, the optimal solution y(l, p, d) is the

unique y that satisfies

0 =
∂V

∂y
= p

∫ l

0
U ′(y − s) ds+ (1− p)

∫ l+d

d
U ′(y − s) ds, (8)

27 We have slightly abused notations with the use of functions y and V , in that their

arguments change according to the optimization problem. However, we believe the

meaning is clear from the context. In the rest of the Appendix, occurrences of the

function y will be as defined in (6), unless otherwise noted.
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if a solution to it exists. The following lemma affirms its existence and describes

the range of y(l, p, d).

Lemma 15 Assume d > 0 and p ∈ (0, 1). There exists a unique value of y,

y(l, p, d), that solves (8). When p > 1
2
, y(l, p, d) ∈ ( l

2
, l

2
+ d

2
). When p = 1

2
,

y(l, p, d) = l
2

+ d
2
. When p < 1

2
, y(l, p, d) ∈ ( l

2
+ d

2
, l

2
+ d).

PROOF. [Lemma 15, Page 37] The proof is by inspecting (8) and is

omitted here. But, it is available in the online supplement.

PROOF. [Lemma 2, Page 15] The proof utilizes similar ideas to those

in [21]. It can be found in the online supplement.

The following (preceding the proof of Theorem 5) further characterizes the

conflict hiding equilibrium for the general setup.

Using (1) and (2), we obtain

2(a1 + bh) = a1 + y(a2 − a1, p, d) + y1(a1, p, d),

2(ai + bh) = ai−1 + ai + y(ai+1 − ai, p, d) + y(ai − ai−1, p, d),

i = 2, . . . , n− 2, (9)

2(an−1 + bh) = an−2 + y(an−1 − an−2, p, d) + yn(an−1, p, d),

where y1(a1, p, d) is the action y that maximizes 28

V (y, 0, a1, p, d)≡ pE(U(y − s)| s uniform between 0 and a1)

+(1− p)E(U(y − s)| s uniform between 0 and a1 + d),

28 The value of V (y, 0, a1, p, d) is not written in integration form because we allow

a1 to be negative. Thus, comparisons between the various bounds depend on the

value of a1. The case is similar for V (y, an−1, 1, p, d) below.
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and yn(an−1, p, d) is the y that maximizes

V (y, an−1, 1, p, d)≡ pE(U(y − s)| s uniform between an−1 and 1)

+(1− p)E(U(y − s)| s uniform between an−1 + d and 1).

Let us define the function δ(·) as

δ(a, p, bh, d)≡ a+ bh − y1(a, p, d).

Observe that when a = 0 or −d, δ(0, p, bh, d) = v. Also, since y1(a, p, d) ∈

[a
2
, a+d

2
], we have

δ(a, p, bh, d) ∈ [
a

2
+ v,

a

2
+ bh]. (10)

Observe that yn(an−1, p, d)− 1 = y1(an−1 − 1, p, d). Therefore,

(an−1 + bh)− yn(an−1, p, d) = δ(an−1 − 1, p, d).

With the introduction of the function δ, we may rewrite (9) as

δ(a1, p, bh, d) = y(a2 − a1, p, d)− bh
(ai − ai−1)− [y(ai − ai−1, p, d)− bh] = y(ai+1 − ai, p, d)− bh

i = 2, . . . , n− 2, (11)

(an−1 − an−2)− [y(an−1 − an−2, p, d)− bh] =−δ(an−1 − 1, p, d).

The following lemma concerns properties of the functions δ and y.

Lemma 16 The functions δ (with arguments a, p, bh, and d) and y (with

arguments l, p, and d) have the following properties:

(1) δ is continuously differentiable; for a ≥ 0 or a ≤ −d, ∂δ
∂a
≥ 0 and = 0

only when a = 0 or −d; when a ≥ 0 or a ≤ −d, ∂δ
∂p
≥ 0 and = 0 only

when a = 0 or a = −d.
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(2) y is continuously differentiable; 0 < ∂y
∂l
< 1; ∂y

∂p
< 0; ∂y

∂d
≥ 0 and = 0 only

when l = 0.

PROOF. [Lemma 16, Page 38] The proof is by applying the implicit

function theorem to the first order conditions that determine y(·) and δ(·)

and is omitted here. But, it is available in the online supplement.

PROOF. [Theorem 5, Page 20] First, we claim when p ≥ 1
2

or bl ≥ 0,

y(0, p, d)− bh≤ v, (12)

l − [y(l, p, d)− bh]≥ y(l, p, d)− bh, (13)

The proof of these claims follows from Lemma 15. First,

y(0, p, d)− bh≤
d

2
− bh = −v ≤ v when p ≥ 1

2
,

y(0, p, d)− bh≤ d− bh = −bl ≤ v when bl ≥ 0,

which gives us (12). Second,

y(l, p, d)− bh≤
l

2
+
d

2
− bh =

l

2
− v when p ≥ 1

2
,

y(l, p, d)− bh≤
l

2
+ d− bh =

l

2
− bl when bl ≥ 0,

which implies (13) in both cases. Together with (11-i) and the fact ∂y
∂l
> 0

from Lemma 16, it implies for n ≥ 4,

ai+1 − ai≥ ai − ai−1, (14)

where i = 2, . . . , n− 2.

By (12) and (13) we may specify an arbitrary a1 ≥ 0, and solve (11) forward

up to (11-(n-1)), and be assured that ai is increasing with its index. Note that

39



in order for an n-action equilibrium to exist, there must exist an a1 ≥ 0 such

that the forward solution satisfies (11-(n-1)). We claim that in order for an

n−action equilibrium to exist, it is necessary and sufficient that when a1 = 0

the forward solution satisfies

(i) an−1 ≤ 1− d;

(ii) the LHS of (11-(n-1)) is less than or equal to the RHS of (11-(n-1)).

The following chain of argument shows that the LHS of (11-(n-1)) is increasing

in a1 ≥ 0.

a1 ↑ ((11-1), δ is increasing in a ≥ 0) ⇒ y(a2 − a1, p, d) ↑
(
∂y

∂l
> 0

)

⇒ a2 − a1 ↑
(

1− ∂y

∂l
> 0

)
⇒ (a2 − a1)− (y(a2 − a1, p, d)− bh) ↑ ((11-2))

⇒ y(a3 − a2, p, d) ↑
(
∂y

∂l
> 0

)
⇒ . . . ⇒ an−1 − an−2 ↑

(
1− ∂y

∂l
> 0

)
⇒ (an−1 − an−2)− (y(an−1 − an−2, p, d)− bh) ↑ .

In the above process, a statement in the parentheses preceding each “⇒” are

needed to justify the statement that follows the “⇒”. Note the above argument

also shows an−1 is increasing in a1 as we solve (11) forward since

an−1 = a1 + (a2 − a1) + . . .+ (an−1 − an−2).

By Lemma 16, ∂δ
∂a
≥ 0 when a ≤ −d or a ≥ 0, and ∂δ

∂a
= 0 only when a = −d

or a = 0. Thus, the RHS of (11-(n−1)) is decreasing in a1 when we solve (11)

forward, as long as the resulting an−1 is strictly less than 1− d.

Note we have shown in the forward solution, the LHS of (11-(n-1)) is increasing

in a1, an−1 is increasing in a1, and the RHS of (11-(n − 1)) is decreasing in

a1. Also, they vary continuously with a1 by the continuity of all the functions
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involved in the difference equations.

If n ≥ 3, for a1 = 0,

LHS of (11-1) = δ(0, p, bh, d) = v = y(a2 − a1, p, d)− bh = RHS of (11-1).

Now, we solve (11) forward. By (13), we have for n ≥ 3 and a1 = 0, LHS of (11-(n− 1)) ≥

v. Since the LHS of (11-(n− 1)) is increasing in a1, it is also true for a1 ≥ 0.

Since an−1 is continuously and strictly increasing in a1, and an−1 is greater

than or equal to 1 − d when a1 = 1 − d, condition (i) is equivalent to there

existing ā1 ≤ 1 − d such that the forward solution starting at a1 = ā1 gives

an−1 = 1 − d. This would imply the RHS of (11-(n − 1)) is equal to −v

(δ(−d, ·) = v), and hence

LHS of (11-(n− 1))≥RHS of (11-(n− 1)). (15)

Given the above inequality, and the continuity of both sides of (11-(n− 1)) in

a1, in order for there to exist an a1 to equate both sides of (11-(n− 1)), it is

necessary and sufficient that condition (ii) holds. Also, the strict monotonicity

of both sides of (11-(n− 1)) in a1 ensures the solution is unique.

If n = 2, there is only one equation in (11). Conditions (i) and (ii) entail

0≤ 1− d
δ(0, p, bh, d) = v ≤ −δ(0− 1, p, bh, d),

where the first condition holds if d ≤ 1 and the second condition ensures the

existence of a unique a1 that satisfies the lone equation.

Since fixing a1, the LHS of (11-(n-1)) is larger for larger n, and the RHS of (11-

(n-1)) is smaller for larger n. Therefore, if conditions (i) and (ii) hold for n,
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they also hold for all n′ < n. That is, the existence of an n-action equilibrium

implies the existence of a unique n′-action equilibrium for each n′ < n.

When bh = −bl < 1
2

and p = 1
2
, both (i) and (ii) are trivially satisfied, as for

any n, at a1 = 0, the forward solution of (11) yields a1 = . . . = an−1 = 0.

Finally, we claim in equilibrium, a2 − a1 ≥ a1 and 1 − an−1 ≥ an−1 − an−2;

furthermore, when bl ≥ 0, a2 − a1 ≥ a1 + d and 1− (an−1 + d) ≥ an−1 − an−2.

These statements, combined with (14), constitute the last statement in the

Theorem. 29 Here, we only show 1− (an−1 +d) ≥ an−1−an−2 when bl ≥ 0, but

the other statements can be proved analogously. First, −δ(an−1−1, p, bh, d) ≤

−an−1−1
2
− v by (10). Second, (an−1 − an−2) − [y(an−1 − an−2, p, d) − bh] ≥

an−1−an−2

2
+bl. Last, bl ≥ 0 implies d ≤ 2v. These three facts, together with (11-

(n-1)), imply 1− an−1 − d ≥ an−1 − an−2.

PROOF. [Corollary 6, Page 22] Suppose p > p′. Let ai and a′i be the

corresponding equilibrium cutoff points. We want to prove ai < a′i for all

i = 1, ..., n− 1.

First we show a1 < a′1. The proof is by contradiction. Suppose a1 ≥ a′1. In the

chain of argument below, we will make use of Lemma 16 without explicitly

referring to it. We have

29 The corresponding statements in the case n = 2, though slightly different, can be

shown similarly.
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a1 ≥ a′1 ≥ 0, p > p′ ⇒ δ(a1, p, bh, d) ≥ δ(a′1, p
′, bh, d) ((11-1))

⇒ y(a2 − a1, p, d) > y(a′2 − a′1, p′, d)⇒ y(a2 − a1, p, d) > y(a′2 − a′1, p, d)

⇒ a2 − a1 > a′2 − a′1 ⇒ (a2 − a1)− [y(a2 − a1, p, d)− bh] > (a′2 − a′1)− [y(a′2 − a′1, p, d)− bh]
⇒ (a2 − a1)− [y(a2 − a1, p, d)− bh] > (a′2 − a′1)− [y(a′2 − a′1, p′, d)− bh] ((11-2))

⇒ y(a3 − a2, p, d) > y(a′3 − a′2, p′, d)⇒ . . .

⇒ LHS of (11-(n− 1)) of p > LHS of (11-(n− 1)) of p′.

In addition, the above argument implies an−1 = a1 + (a2− a1) + . . .+ (an−1−

an−2) > a′1 + (a′2 − a′1) + . . .+ (a′n−1 − a′n−2) = a′n−1. In equilibrium, an−1 and

a′n−1 must be both not more than 1 − d. Thus, by Part 1 of Lemma 16, we

conclude

RHS of (11-(n− 1)) of p = −δ(an−1 − 1, p, d) < −δ(a′n−1 − 1, p′, d) = RHS of (11-(n− 1)) of p′.

The above two statements directly contradict (11-(n− 1)). Thus, a1 < a′1.

That ai < a′i can be proved by induction and contradiction. Let j be the

smallest index i such that ai ≥ a′i. Then,

aj − aj−1 > a′j − a′j−1.

With a similar chain of argument to the one above, we arrive at a contradiction.

Therefore, ai < a′i for all i = 1, . . . , n− 1.

Note that the above proof applies to the case n ≥ 3. In the case n = 2, (11)

has only one equation, and the proof is straightforward there.

PROOF. [Corollary 7, Page 23] We want to show that if p > p′, and

there exists an n−interval equilibrium for p, then there exists an n−interval

equilibrium for p′.
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In the proof of Theorem 5, we have shown that an n-action equilibrium exists

if and only if when a1 = 0 the forward solution satisfies

(i) an−1 ≤ 1− d;

(ii) the LHS of (11-(n-1)) is less than or equal to the RHS of (11-(n-1)).

Let us fix a1 = a′1 = 0. When n ≥ 3, using the same argument as that in the

proof of Corollary 6, we have

an−1>a
′
n−1,

LHS of (11-(n− 1)) of p>LHS of (11-(n− 1)) of p′,

RHS of (11-(n− 1)) of p<RHS of (11-(n− 1)) of p′.

Since there exists an n−interval equilibrium for p, Conditions (i) and (ii) hold

for p. The inequalities above then imply that they also hold for p′. The case

n = 2 is straightforward.

PROOF. [Lemma 8, Page 24] Note

V D
n (p, b)≡

n∑
i=1

p
∫ ah

i

ah
i−1

U(yi − s)ds+ (1− p)
∫ al

i

al
i−1

U(yi − s) ds.

By the Envelope Theorem, we may ignore the dependence of V D
n on p through

yi as the yi satisfy the relevant first order conditions. Thus,

∂V D
N (p, b)

∂p
=A1 + A2, (16)

where
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A1 =
n−1∑
i=1

p[U(yi − ahi )− U(yi+1 − ahi )]
∂ahi
∂p

+ (1− p)[U(yi − ali)− U(yi+1 − ali)]
∂ali
∂p

A2 =
n∑
i=1

∫ ah
i

ah
i−1

U(yi − s)ds−
∫ al

i

al
i−1

U(yi − s) ds.

The expression A1 can be viewed as the change in the decision maker’s ex-

pected payoff due to shifts in cutoff points. The expression A2 is the difference

between the decision maker’s expected payoff from consulting a high type and

that from consulting a low type. We claim:

(1) A1 ≤ 0 with equality if and only if p = 1/2 and bh = −bl;

(2) A2 ≤ 0 with equality if and only if bh = −bl.

In the online supplement, we provide detailed proofs of these two statements.

Here, we provide intuition for the signs of each term. Note that we are fixing

the number of equilibrium actions/messages. Hence, the welfare implications

are due to changes in the balancedness of messages only.

First, consider the term A1. As p increases from 1/2 to 1, all cutoff points are

shifted to the left, which makes a right-biased expert’s messages less balanced

(including the high type and the low type when bl ≥ 0) but a left-biased

expert’s messages more so (the low type when bl < 0). When bl ≥ 0, the

total effect is to make both types’ messages less balanced. When bl < 0 and

p ≥ 1/2, the balancedness-enhancing effect for the high type dominates the

balancedness-reducing effect for the low type. Thus, the total effect is also to

reduce the balancedness of all messages. Due to the strict concavity of the

decision maker’s preferences, he becomes worse off.

Now, consider the term A2. It reflects the fact that as p increases, it becomes

more likely that the decision maker is consulting the high type. Since the high
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type’s messages are less balanced, the decision receives a lower expected payoff

from consulting the high type. Therefore, he becomes worse off as more weight

is put on the high type.

Given the above two statements about A1 and A2, we have

∂V D
N (p, b)

∂p
=A1 + A2 ≤ 0,

when p ≥ 1
2

and bl ≥ 0, with equality only when p = 1
2

and bh = −bl.

PROOF. [Theorem 9, Page 25] By Corollary 6, the cutoff points un-

der nondisclosure, {ai}n−1
i=1 , are strictly decreasing in p. Let us use {adhi }n−1

i=1

({adli }n−1
i=1 ) to denote the cutoff points for the high (low) type under disclosure.

Then, ai is equal to adhi when p = 1, and ai + d = adli when p = 0. Therefore,

the corollary implies that for all i = 1, ..., n − 1, (i) for p ≥ 1
2
, adhi ≤ ai; (ii)

when bl ≥ 0, for all p ∈ [0, 1], ai + d ≤ adli .

The following lemma is crucial to the proof of this theorem.

Lemma 17 Let {li}ni=1 and {l′i}ni=1 be two sets of nonnegative numbers satis-

fying:

(1)
∑n
i=1 li =

∑n
i=1 l

′
i = 1;

(2) li+1 ≥ li and l′i+1 ≥ l′i for all i = 1, ..., n− 1;

(3) l1 ≥ l′1, ln ≤ l′n and li+1 − li ≤ l′i+1 − l′i for all i = 1, ..., n− 1;

Let f : R→ R be a concave function. Then,

n∑
i=1

∫ li

0
f(
li
2
− s)ds ≥

n∑
i=1

∫ l′i

0
f(
l′i
2
− s)ds.
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If f is strictly concave and li 6= l′i for some i, then the inequality is strict.

The intuition of the lemma is as follows. Let there be two size-n partitions

of the interval [0, 1], {li} and {l′i}. The conditions state that {li} is more

balanced than {l′i}. If an agent’s payoff is measured by a concave function of

the deviation of the state from the mean of each interval, as is the case for the

payoffs of the decision maker and the expert in our model, then the agent has

higher expected utility from the more balanced partition, {li}.

Now, let li = ai−ai−1 and l′i = adhi −adhi−1. First, they clearly satisfy Condition

1 of Lemma 17. To see they satisfy Condition 2, we may refer to (5) (as adhi

satisfies (5) with b = bh) and Theorem 5. Finally, they satisfy Condition 3 by

Corollary 6 and (4). Let f(x) = Ũ(x − b). Since Ũ is concave, we may apply

Lemma 17 and conclude

n∑
i=1

∫ ai

ai−1

Ũ(
ai + ai−1

2
− (s+ b)) ds =

n∑
i=1

∫ li

0
Ũ((

li
2
− s)− b) ds

≥
n∑
i=1

∫ l′i

0
Ũ((

l′i
2
− s)− b) ds =

n∑
i=1

∫ adh
i

adh
i−1

Ũ(
adhi + adhi−1

2
− (s+ b)) ds.

In other words, for the partition under nondisclosure, the high type would have

been better off than under disclosure, even if the decision maker takes action

ai+ai−1

2
after receiving mi. Observe that the action ai+ai−1

2
+ bh would have

maximized the expert’s expected payoff. Furthermore, yi ∈ (ai+ai−1

2
, ai+ai−1

2
+

bh) for p ∈ (0, 1). Thus, the high type’s expected payoff in equilibrium under

nondisclosure is even higher. Our discussion so far is based on a fixed n. In

addition, N(p, bh, bl) ≥ N(1, bh, bl) by Corollary 7. Hence, the high type’s

highest payoff achievable under nondisclosure is strictly higher than under

disclosure.

We now turn to the case bl ≥ 0 and show that the low type prefers to have
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her bias disclosed. Let li = adli − adli−1 and l′i = ali − ali−1 (note that al0 = 0,

ali = ai + d for i = 1, . . . , n − 1, and aln = 1). Following similar procedures

to the one for the high type, we can show they satisfy the three conditions of

Lemma 17. Finally, Corollary 7 implies N(p, bh, bl) ≤ N(0, bh, bl) when bl ≥ 0.

Thus, we conclude the low type’s highest payoff achievable under nondisclosure

is strictly lower than that under disclosure.

PROOF. [Theorem 11, Page 29]

Consider a game Γ = {U, Ũ , p, bh, bl} and fix a conflict-hiding equilibrium with

N = N(1, bh, bl) actions. From Corollary 7 it follows that such an equilibrium

always exists since N(p, bh, bl) ≥ N(1, bh, bl). Let Yj(·) be the equilibrium

mapping from states into actions as the result of a type-j expert’s strategy in

the nondisclosure conflict-hiding equilibrium. Let Ydj(·) (d for disclosure) be

its counterpart in the disclosure equilibrium.

Part 1 In this part, we show that there exists a sufficiently concave utility

function TU : R → R and z∗ > 0 such that (i) |Yj(s)− s| ≤ z∗ for all

s ∈ [0, 1] and j = h, l; (ii) but, there exist j and a set of non-zero measure

s ∈ [0, 1] such that |Ydj(s)− s| > z∗. Similarly, for the expert we show that

given TU there exists a z∗∗ > 0 such that (i) |Yj(s)− s− bj| ≤ z∗∗ for all

s ∈ [0, 1] and j = h, l; (ii) but, there exist j and a set of non-zero measure s

such that |Ydj(s)− s− bj| > z∗∗.

Take the conflict-hiding equilibrium and consider the case when β = bh. First

note that 0 < |ai−1 − yi−1| < yi−ai−1 for all i > 1 since ai−1 = (yi−1+yi)/2−bh.

Claim 18 yi+1 − ai > yi − ai−1 > 0 and maxs |Yh(s)− s| ≤ yN − aN−1.
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Let us substitute yi+1 = 2ai + 2bh− yi into yi+1− ai > yi− ai−1 so that we get

yi <
ai−1+ai

2
+ bh. This inequality holds because if bl > 0 then bh − d = bl > 0

and if p ≥ 1/2 then bh − d/2 = (bh + bl)/2 > 0. Note that for 1 < i ≤ N ,

|ai−1 − yi−1| < yi − ai−1 since 2ai−1 + 2bh = yi + yi−1 where bh > 0. From the

fact that yi+1−ai is increasing in i and that |ai−1 − yi−1| < |yi − ai−1| it follows

that the maximum is either yN − aN−1 or 1 − yN . Since yN > (1 + aN−1)/2

the maximum equals yN − aN−1.

Claim 19 maxs |Yl(s)− s| ≤ yN − aN−1.

Note that 0 < yi−ali−1 < ali−yi for all i < N since yi <
al

i−1+al
i

2
. Equation (??)

in the proof of Lemma 8 implies ali−yi > ali−1−yi−1 > 0 for all i = 2, . . . , N−1.

Given that ali − yi > ali−1 − yi−1 and that yi − ali−1 < ali − yi it follows that

the maximum is achieved either for alN−1 − yN−1 or for 1 − yN . Note that

alN−1−yN−1 = aN−1 +d−yN−1 = yN −aN−1−2bh+d = yN −aN−1− (bh+ bl)

< yN − aN−1. Given the proof of Claim 18, it follows that maxs |Yl(s)− s| <

yN − aN−1 .

Claim 20 There exists a sufficiently concave utility function TU such that

yN − aN−1 < (1− adhN−1)/2.

Consider a concave transformation of U denoted by TU . Assume that TU

satisfies our assumptions from Section 3 and dTU/dx > dU/dx > 0 for x < 0

and dTU/dx < dU/dx < 0 for x > 0. Now, we demonstrate that there is a

sufficiently concave transformation, TU , which will move yN sufficiently close

to aN−1 such that yN−aN−1 < (1−adhN−1)/2 is satisfied. Consider the following

condition that determines yN .

∂V D

∂y
= p

∫ l

0
U ′(y − s)ds+ (1− p)

∫ l

d
U ′(y − s)ds = 0 (17)
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and consider a concave transformation TU. Then given this transformed utility

function the equilibrium condition is satisfied if

p
∫ l

0
TU ′(y − s)ds+ (1− p)

∫ l

d
TU ′(y − s)ds = 0. (18)

Let y∗ satisfy the equilibrium condition with U and consider the following two

quantities:

L = p
∫ y∗

0
U ′(y∗−s)ds+(1−p)

∫ y∗

d
U ′(y∗−s)ds−p

∫ y∗

0
TU ′(y∗−s)ds−(1−p)

∫ y∗

d
TU ′(y∗−s)ds

and

R =
∫ l

y∗
U ′(y∗ − s)ds−

∫ l

y∗
TU ′(y∗ − s)ds

Since |dTU/dx| > |dU/dx| it follows that L < 0 < R. Furthermore, given that

TU is a concave transformation of U and l/2 < yN < (l + d)/2, it follows

that there is a function TU such that |L| > |R|, which implies L + R > 0.

Using Equation (17), we know the left hand side of Equation (18) is equal

to −(L + R), hence negative. The strict concavity of TU implies that left

hand side of Equation (18) is decreasing in y, hence yN under TU has to be

lower than y∗ since Equation (18) has to be satisfied in equilibrium. Given the

assumption that U and TU are continuously differentiable, it is easy to see that

for every ε > 0 there exists TU such that | yN−aN−1 |< (1+aN−1)/2+ε. Since

|yN − aN−1| < max |Ydh(s)− s| =
∣∣∣1− adhN−1

∣∣∣ /2 this proves the inequality for

the decision maker.

Note that in the game Γ = {TU, Ũ , p, bh, bl} the number of conflict-hiding

equilibria might be different than in Γ = {U, Ũ , p, bh, bl} but N(p, bh, bl) ≥

N(1, bh, bl) is true in both cases. Also note that the disclosure equilibrium

strategies in Γ = {TU, Ũ , p, bh, bl} and Γ = {U, Ũ , p, bh, bl} are the same. These

equilibria are fully determined by (p, bh, bl) as long as the player’s preferences
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satisfy our assumptions from Section 3.

Claim 21 maxj,s |Yj(s)− s− bj| ≤ 1−aN−1

2
+ bh <

1−adh
N−1

2
+ bh.

It follows from CS that in the disclosure equilibrium the maximum of |Ydj(s)− s− bj|

is achieved for s = 1 and j = h and is equal to
1−adh

N−1

2
+ bh.

To obtain an upper bound on maxj,s |Yj(s)− s− bj| consider first that β =

bh. In this case |Yj(s)− s− bh| is maximal for either s = aN−1 and equals

aN−1 − yN−1 + bh > 0 or for s = 1 and equals 1− yN + bh. This follows from

the fact |Yj(s)− s− bh| is always maximal at a cut-off point and that|yi − ai|

is increasing in i. An upper bound on max{aN−1 − yN−1 + bh, 1− yN + bh} is

obtained when yN → 1+aN−1

2
and equals 1−aN−1

2
+bh. Combining this inequality

with adhN−1 < aN−1 from Corollary 6 it follows that maxs |Yj(s)− s− bh| <

maxj,s |yd(s)− s− bj| as long as p < 1.

Consider now the case when β = bl and bl > 0. Since
∣∣∣yi − ali − bl∣∣∣ =

∣∣∣yi+1 − ali − bl
∣∣∣

for 1 < i < N and
∣∣∣yi − ali∣∣∣ is increasing in i, the maximum is achieved for

alN−1− yN−1 + bl = aN−1− yN−1 + bh. Finally, consider β = bl and bl < 0. Here

the maximum is achieved either for
∣∣∣yN − alN−1 − bl

∣∣∣ = aN−1 − yN−1 + bh or

for |1− yN − bl| < 1−aN−1

2
− d/2− bl = 1−aN−1

2
− (bh + bl)/2 <

1−aN−1

2
+ bh.

Part 2. Let V I (I = D,E) denote the expected utility of the decision maker

(expert) in the N -action nondisclosure equilibrium and let V I
dl and V I

dh (I =

D,E) denote their counterparts in the N−action disclosure equilibria with

the low type and the high type respectively. If V I > pV I
dl + (1 − p)V I

dh for a

player, then we are done. So, assume that V I < pV I
dl + (1 − p)V I

dh. Consider

TU such that the conditions that yN − aN−1 > (1 − adhN−1)/2 is already

satisfied. As the proof of Part 1 shows such TU always exists. Since TU
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is continuous, it is bounded on [0, 1] and there exists H ∈ (0,∞) such that

pV D
dh +(1−p)V D

dl < V D +H. Now consider a function F which is continuously

differentiable, concave around zero, and distance-averse. Let’s define MU to

be MU(x) = TU(x) if x ≤ z∗and MU(x) = F (TU(x)) if x ≥ z∗, where F

is continuously differentiable symmetric around zero and MU(x) satisfies our

assumptions from Section 3. Since H <∞, and TU is distance-averse, we can

choose F such that

∫
Φ∗
TU(x)Q(x | Ydh)dx−

∫
Φ∗
MU(x)Q(x | Ydh)dx > H,

where Φ∗ = {x ≥ z∗} and with a slight abuse of notion for every x in Φ∗,

Q(x | Ydh is the likelihood that the outcome of the game equals x given

the mapping Ydh from state to action of the N -action disclosure equilibrium.

This proves the theorem for the decision maker. The same type of argument

shows that there is a function G such that if MŨ(x) = Ũ(x) if x ≤ z∗∗ and

MŨ(x) = G(Ũ(x)) if x ≥ z∗∗ then V E > [(1 − p)V E
dl + pV E

dh]. Clearly given

the properties of the integral, if the welfare result holds for MU or MŨ(x)

then given our discussion above on how y depends on the concavity of the

decision maker’s preferences, it holds for any concave transformation of these

functions as long as the these new functions satisfy our assumptions on the

utility functions of the players from Section 3.

PROOF. [Theorem 12, Page 31] To show that the high type cannot be

revealed, suppose there is an action y ∈ [0, 1] that is induced by the high type

only. Then either y < bl (when bl > 0) or y > 1 + bl (when bl < 0). Otherwise,

the low type would find it optimal to induce the action in some states. Let Y ∗

be the set of equilibrium actions.
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The case y < bl is possible only if bl > 0. In equilibrium there could be at

most one action less than or equal to bl. If there were two such actions, then

by Lemma 1, both types would strictly prefer the higher action to the lower

one in all states. Therefore, y is an isolated point in Y ∗. Let y′ be the lowest

equilibrium action other than y, which is well-defined since Y ∗ is a closed

set. 30 By Lemma 1, the set of states in which the high type induces y is then

[0, y+y′

2
− bh], which has to be nonempty. But the low type wants to induce y

in [0, y+y′

2
− bl], again nonempty since bl ≤ bh, contradicting y being induced

only by the high type.

Now, suppose y > 1 + bl. This is possible only if bl < 0. In equilibrium, the

high type can induce at most one action higher than or equal to 1 + bl. The

reason is as follows. In order for the decision maker to optimally choose to

take an action higher than 1 + bl, the inducing message must be sometimes

sent in states higher than 1 + bl. But in all states in the interval [1 + bl, 1],

the high type prefers the highest such action to any other action. Note that it

also implies y is the highest equilibrium action. Let y′ be the second highest

action in equilibrium. Again, it is well defined since Y ∗ is closed and y is not a

limit point of Y ∗ (see the proof of Lemma 2). Let a be the cutoff point for the

high type between y and y′. By Lemma 1, a = y+y′

2
− bh. In addition, y = a+1

2
.

Also, a cannot be lower than 1 − d, since the low type would then want to

induce y in [a+ d, 1]. Since y = a+1
2

and y′ < y, we have

a<
a+ 1

2
− bh,

or a< 1− 2bh.

30 The proof of this fact can be found in the proof of Lemma 2 in the online sup-

plement.
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This contradicts a ≥ 1 − d ≥ 1 − 2bh. To conclude, there exist no equilibria

that reveal the high type’s bias.

Now, we show the low type can send conflict-revealing messages only for s ≤ d.

Let y be the maximal action that is induced only by the low type. 31 Then,

y ≤ bh. Let y′ be the minimal action induced by both types. Then, y′ ≥ y.

Otherwise, in all states the high type would prefer y to y′ as y+y′

2
− bh < 0, a

contradiction. By Lemma 1, for the low type, the cutoff point between y and y′

is y+y′

2
−bl. Unless it is less than d = bh−bl, we would have y+y′

2
−bh ≥ 0, which

makes it optimal for the high type to induce y in [0, y+y′

2
− bh], contradicting y

being induced only by the low type. Thus, the low type can only be revealed

in states s < d.

31 Take the supremum if no maximum exists. Similarly for the y′ below.
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