Design of Carry Select Adder using Binary to Excess-3 Converter in VHDL

Brijesh Kumar, Vaagdevi college of engg. Pune, Andra Pradesh, India
Mamta Kulkarni, Vaagdevi college of engg. Pune, Andra Pradesh, India
Design of Carry Select Adder using Binary to Excess-3 Converter in VHDL

1Brijesh Kumar, 2Mamta Kulkarni

1,2Vaagdevi college of engg. Pune, Andra Pradesh, India
Email: 1 Brijkumar@yahoo.com, 2Kulanimamt77@gmail.com

Abstract: This paper presents a modified design of Area-Efficient Low power Carry Select Adder (CSLA) Circuit. In digital adders, the speed of addition is limited by the time required to transmit a carry through the adder. Carry select adder processors and systems. In digital adders, the speed of addition is limited by the time required to propagate a carry through the adder. The sum for each bit position in an elementary adder is generated sequentially only after the previous bit position has been summed and a carry propagated into the next position. The major speed limitation in any adder is in the production of carries.

Index terms: Area-efficient, Low power, CSLA, Binary to excess one converter, Multiplexer.

I. INTRODUCTION

Today, conventional carry select adder performs better in terms of speed. The delay of our proposed design increases lightly because of logic circuit sharing sacrifices the length of parallel path. However, the proposed area-efficient carry select adder retains partial parallel computation architecture as the conventional carry select adder to excess-1 code converters (BEC) to improve the speed of addition. This logic can be implemented with any type of adder to further improve the speed. Using Binary to Excess-1 Converter (BEC) instead of RCA in the regular CSLA we can achieve lower area and power consumption. The main advantage of this BEC logic comes from the lesser number of logic gates than the Full Adder (FA) structure. The basic idea of the proposed work is by using n-bit binary to excess-1 code converters (BEC) to improve the speed of addition. This logic can be implemented with any type of adder to further improve the speed. Using Binary to Excess-1 Converter (BEC) instead of RCA in the regular CSLA we can achieve lower area and power consumption. The main advantage of this BEC logic comes from the lesser number of logic gates than the Full Adder (FA) structure.

II. DELAY AND AREA EVALUATION OF THE BASIC ADDER BLOCKS

Excess-1 code converters (BEC) to improve the speed of addition. This logic can be implemented with any type of adder to further improve the speed. Using Binary to Excess-1 Converter (BEC) instead of RCA in the regular CSLA we can achieve lower area and power consumption. The main advantage of this BEC logic comes from the lesser number of logic gates than the Full Adder (FA) structure and area equal to 1 unit. We then add up the number of gates in the longest path of a logic block that contributes to the maximum delay. The area evaluation is done by counting the total number of AOI gates required for each logic block.

Based on this approach, the CSLA adder blocks of 2:1 mux, Half Adder (HA), and FA are evaluated and listed in Table I.

![Figure 1: Delay and Area evaluation of an XOR gate.](image)

Table 1

<table>
<thead>
<tr>
<th>Basic Blocks</th>
<th>Delay</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>XOR</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2:1 MUX</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Half Adder</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Full Adder</td>
<td>6</td>
<td>13</td>
</tr>
</tbody>
</table>

III. BASIC STRUCTURE OF BEC LOGIC

Conventional carry select adder performs better in terms of speed. The delay of our proposed design increases lightly because of logic circuit sharing sacrifices the length of parallel path. However, the proposed area-efficient carry select adder retains partial parallel computation...
Design of Carry Select Adder using Binary to Excess-3 Converter in VHDL

The structure of the 16-b regular SQRT CS conventional carry select adder performs better in terms of speed. The delay of our proposed design increases lightly because of logic circuit sharing sacrifices the length of parallel path. However, the proposed area-efficient carry select adder retains partial parallel computation architecture as the conventional carry select adder

\[
\begin{align*}
{c6, \text{sum } [6:4]} &= c3 \oplus \text{mux} \\
{c10, \text{sum } [10:7]} &= c6 \oplus \text{mux} \\
\text{Cout}, \text{sum } [15:11] &= c10 \oplus \text{mux}.
\end{align*}
\]

3) The one set of 2-b RCA in group2 has 2 FA for Cin=1 and the other set has 1 FA and 1 HA for Cin=0. Based on the area count of Table I, the total number of gate counts in group2 is determined as follows:

\[
\text{Gate Count} = 57 (\text{FA+HA+MUX})
\]

\[
\text{FA}=39 (3*13)
\]

\[
\text{HA}=6 (1*6)
\]

\[
\text{MUX}=12 (3*4)
\]

4) Similarly, the estimated maximum delay and area of the other groups in the regular SQRT CSLA are evaluated and listed in Table 3.

V. DELAY AND AREA EVALUATION OF CSLA USING BEC CONVERTER

The structure of the proposed 16-b SQRT CSLA using BEC for RCA with Cin=1 to optimize the area and power is shown in Fig. 4. We again split the structure into five groups. The steps leading to the conventional carry select adder performs better in terms of speed. The delay of our proposed design increases lightly because of logic circuit sharing sacrifices the length of parallel path. However, the proposed area-efficient carry select adder retains parallel partial computation architecture as the conventional carry select adder) are depending on \(s_3\) and \(\text{mux}\) and partial \(c_3\) (input to \(\text{mux}\)) and \(\text{mux}\), respectively. The \(\text{sum2}\) depends on \(c_1\) and \(\text{mux}\).

2) For the remaining group’s the arrival time of \(\text{mux}\) selection input is always greater than the arrival time of data inputs from the BEC’s. Thus, the delay of the remaining groups depends on the arrival time of \(\text{mux}\) selection input and the \(\text{mux}\) delay.

3) The area count of group2 is determined as follows:

\[
\text{Gate count} = 43 (\text{FA+HA+MUX+BEC})
\]

\[
\text{FA}=13 (1*13)
\]

\[
\text{HA}=6 (1*6)
\]
AND=NOT=1 \hspace{1cm} (15)
XOR=10(2*5) \hspace{1cm} (16)
MUX=12(3*4) \hspace{1cm} (17)

4) Similarly, the estimated maximum delay and area of the other groups of the modified SQRT CSLA are evaluated and listed in Table 4.

<table>
<thead>
<tr>
<th>Group</th>
<th>Delay</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>13</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>84</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>107</td>
</tr>
</tbody>
</table>

Comparing Tables 3 and 4, it is clear that the proposed modified CSLA saves 113 gate areas than the regular CSLA, with only 11 increases in gate delays.

VI. SIMULATIONS AND EXPERIMENTAL RESULTS

The proposed solutions have been designed using Xilinx.

A to excess-1 code converters (BEC) to improve the speed of addition. This logic can be implemented with any type of adder to further improve the speed. Using Binary to Excess-1 Converter (BEC) instead of RCA in the regular CSLA we can achieve lower area and power consumption. The main advantage of this BEC logic comes from the lesser number of logic gates than the Full Adder (FA) structure. is therefore, low area, low power, simple and efficient for VLSI hardware implementation.

REFERENCES

Design of Carry Select Adder using Binary to Excess-3 Converter in VHDL

