Skip to main content
Article
Acetaminophen Improves Protein Translational Signaling in Aged Skeletal Muscle
MIIR Faculty Research
  • Miaozong Wu, Marshall University
  • Hua Liu, Marshall University
  • Jacqueline Fannin, Marshall University
  • Anjaiah Katta, Marshall University
  • Yeling Wang, Marshall University
  • Ravi Kumar Arvapalli, Marshall University
  • Satyanarayana Paturi, Marshall University
  • Sunil K. Karkala, Marshall University
  • Kevin M. Rice, Marshall University
  • Eric R. Blough, Marshall University
Document Type
Article
Publication Date
10-1-2010
Abstract

Background: Age-related muscle atrophy is characterized by increased oxidative stress, diminished Akt enzymatic function, and reduced phosphorylation of the mammalian target of rapamycin (mTOR), which can be attenuated by chronic acetaminophen ingestion. Here we hypothesize that age-related impairments in Akt/ mTOR function are associated with reduced protein translational signaling, and that these changes, if present, can be attenuated by acetaminophen treatment.

Results: Compared to 6- and 27-month old animals, the expression of the mTOR-complex proteins raptor and GbL and the phosphorylation of tuberin/TSC2 (Thr1462) were reduced in the soleus muscles of very aged rats (33 months old). These changes in Akt/mTOR pathway signaling proteins were in turn associated with decreased phosphorylation of S6 kinase p85S6K (Thr412) and eukaryotic translation initiation factor-4E (eIF4E) binding protein-1 (4EBP1, Thr37/46), reduced phosphorylation of S6 ribosomal protein (Ser235/236), and increased inhibition of eIF4E by binding to 4EBP1. Age-associated alterations in the Akt/mTOR pathway signaling and in the phosphorylation of the stress-responsive eIF2a protein were attenuated by chronic acetaminophen treatment (30 mg/kg body weight per day). Ex vivo incubation of adult muscles with hydrogen peroxide mimicked the age-related decreases seen in eIF4E and 4EBP1 phosphorylation, whereas the inclusion of acetaminophen in the muscle bath attenuated this effect.

Conclusion: Aging is associated with impairments in the regulation of proteins thought to be important in controlling mRNA translation, and acetaminophen may be useful for the treatment of age-related muscle atrophy by reducing oxidative stress.

Comments

This is a copy of an article published in REJUVENATION RESEARCH © 2010 copyright Mary Ann Liebert, Inc.; REJUVENATION RESEARCH is available online at: http://online.liebertpub.com.

Citation Information
Miaozong Wu, Hua Liu, Jacqueline Fannin, Anjaiah Katta, Yeling Wang, Ravi Kumar Arvapalli, Satyanarayana Paturi, Sunil K. Karkala, Kevin M. Rice, and Eric R. Blough. Acetaminophen Improves Protein Translational Signaling in Aged Skeletal Muscle. Rejuvenation Research. October 2010, 13(5): 571-579. doi:10.1089/rej.2009.1015.