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Abstract – Research has shown that training multi-layer 
perceptron networks to solve ordinary and partial differential 
equations (DEs) can be accelerated by reusing network 
weights from a previously solved similar problem. This paper 
compares weight reuse for two existing methods of defining 
the network error function. Weight reuse is shown to 
accelerate training of one ordinary and two partial DEs even 
for equations with significantly different parameters or 
boundary/initial conditions. The second method outperforms 
the first for partial DEs where multiple boundary/initial 
conditions are defined, but fails unpredictably when weight 
reuse is applied to accelerate solution of the diffusion 
equation. 
 

I. INTRODUCTION 
 

Artificial neural networks (ANN) provide an effective 
tool in solving a large variety of differential equations 
(DE) [1-7]. Solution using ANNs offers several advantages 
over standard numerical methods. First, a continuous 
solution is obtained over the entire domain rather than 
simply at discrete points. Additionally, computational 
complexity does not increase considerably for higher 
dimensional problems since the number of parameters to 
be optimized remains constant. Also, round-off error 
propagation is not an issue in neural network solutions as it 
is with standard numerical methods. Finally, this approach 
handles boundary and/or initial conditions of any type. 
Since boundary and initial conditions are mathematically 
equivalent, the distinction between them is dropped in the 
remainder of this paper. 

Solving differential equations requires optimization of 
the ANN with the additional difficulty of satisfying the 
boundary conditions. This added constraint can be dealt 
with in several ways. The error function to be minimized 
can be defined as a sum of two components: one concerned 
with satisfying the DE and another associated with the 
boundary conditions. This method can lead to competition 
between the two error components, and thus slow down the 
training process. More sophisticated methods use 
evolutionary algorithms to adjust weights [5], or reduce the 
constrained optimization task to an unconstrained one [6]. 
Also, coding the boundary conditions with radial basis 
functions [7] is advantageous for dealing with irregular 
boundaries [6]. 

Research in ANN methods for solving DEs has 
concentrated on solving specific, individual problems. 
However, DEs are parametric by nature; solutions to 
similar DEs have the same form albeit with differing 
spectral content, time constants, amplitudes, etc. 
Intuitively, the solution to one DE is expected to be helpful 
in solving another with slightly different parameters. 
Training an ANN to solve a second problem can begin 
with the final weights obtained after solving a first 

problem. This method has proven beneficial for similar 
problems [8] and has even been applied successfully to the 
solution of DEs [9]. 

The authors in [9] extended the idea to a class of 
problems: the problem class consisted of solutions to the 
same second order, ordinary DE where one of the 
boundary conditions changed. A single network was 
selected using evolutionary algorithms which could 
quickly solve the DE for all of the boundary conditions in 
the problem class [10]. Significant improvements were 
observed in both speed and accuracy in solving the DEs. 

Results have proven that weight reuse increases both 
speed of training and overall accuracy if the problems in 
questions are sufficiently similar. The work in [10] already 
assumed, and correctly so, that DEs with a slightly 
modified boundary condition belong to the same problem 
class. The next obvious question is how similar must the 
DEs be in order for them to still belong to the same 
problem class? With an answer to this question, a system 
could be designed which quickly solves a large variety of 
differential equations. This system would first decide to 
which of the known problem classes a new DE belongs, 
and then solve it with the appropriate network for that 
problem class. 

This paper launches an investigation into where the 
boundaries between problem classes in DEs lie. The 
problems are solved using multi-layer perceptron  
networks (MLPN). The benefits of weight reuse are 
examined for three DEs: the classic second-order, ordinary 
differential equation, the diffusion equation, and the 
potential equation. As mentioned previously, various 
methods exist for simultaneously satisfying both the DE 
and the boundary conditions. Two methods which make 
use of gradient descent optimization are employed, and 
their applicability to weight reuse is examined.  

 
II. METHODS FOR ERROR FUNCTION DEFINITION 

 
Consider the DE to be solved given by 
 

( ) ( ) ( )( ) ,  ;0,,,, 2 nG ℜ∈=∇∇ xxxxx Kψψψ  (1) 
 
where ψ(x) denotes the solution subject to certain 
boundary conditions. The first method (hereafter referred 
to as method 1) for solving the equation defines the 
approximate solution as 
 

( ) ( ) , ,θxx Nt =ψ      (2) 
 
where N is the output of the MLPN and θ is the vector of 
network weights to be optimized. The error function to be 
minimized is then 
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accounts for error in the differential equation itself and the 
second term 
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accounts for error in satisfying the boundary conditions 
with a weighting factor of η = 10 as recommended by [9]. 
Equations (4) and (5) are defined where D is given by a 
finite set of points within the desired domain, S1 is the set 
of points where the boundary value ψBC is specified, S2 is 
the set of points where the boundary derivate ∂ψBC/∂x(j) is 
specified, and x(j) is the jth component in the vector x. Error 
defined in (3) is the same method used in [9-10] with the 
added possibility of Neuman boundary conditions. 

The second method (hereafter denoted method 2) for 
defining the error function involves recasting the 
approximate solution to the differential equation so that the 
boundary conditions are automatically satisfied. The 
approximate solution takes the form 
 

( ) ( ) ( )( ). ,, θxxxx NFAt +=ψ    (6) 
 

The function A satisfies the boundary conditions, while F 
is chosen to return zero at all of the boundaries. A 
systematic approach exists for finding A and F for any 
Dirichlet and/or Neuman conditions on a uniform 
boundary [6]. Since the boundary conditions are 
automatically satisfied, the error function 
 

DEEE =      (7) 
 

is sufficient to solve the problem. As an example, consider 
the classic second-order ordinary DE (hereafter called the 
oscillator equation) 
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with initial conditions 
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The approximate solution to (8) and (9) would then be 
 

( )[ ]θ,ttNbtaxt ++= ,    (10) 
 
which automatically satisfies the initial conditions no 
matter what the output of the MLPN.  

Minimizing the error functions in either (3) or (7) 
involves the various partial derivatives of N with respect to 
the inputs x(j) and the weights in the θ vector. 
Determination of these partial derivatives is detailed in [6] 
for an MLPN structure with one hidden layer of nodes with 
logarithmic sigmoid transfer functions and a linear output 
node without a bias. The partial derivative of error with 
respect to the weights, θ∂∂E , is then applied using the 
RPROP algorithm [11] to update the network weights. All 
of the MLPNs used contain a hidden layer of 10 nodes. 
 

III. SOLVING THE OSCILLATOR EQUATION 
 

Consider Fig. 1 illustrating the solutions to the ordinary 
DE in (8) with initial conditions (9) for various values of 
m, R, and k with 1=a , and 0=b . The solid curve 1 in Fig. 
1 is under-damped and will be used as the base problem to 
be learned. The other three curves include under-damped, 
over-damped, and critically-damped solutions which will 
be used to produce the weights for reuse. 

Results for both methods 1 and 2 appear in Fig. 2 for 
solving problem 1 when reusing the weights after first 
solving problems 2 through 4. The curves in Fig. 2 plot the 
RMS error of the approximate solution as a function of 
training epoch averaged over 25 runs. The error functions 
(3) and (7) for methods 1 and 2 respectively are evaluated 
on a domain of 10 equally spaced points in time. 
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Fig. 1. Four solutions to the DE defined 

by (6) and (7) with 1=a  and 0=b . 
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Fig. 2. Learning curves for solving the oscillator problem 1 after reusing weights 

from the other three problems for both method 1 (left) and method 2 (right). 
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Fig. 7. Learning curves for solving the diffusion equation problem 1 after reusing weights 

from the other three problems for both method 1 (left) and method 2 (right). 
 
Notice first that the training curves for both methods are 

essentially identical; neither method provides an advantage 
over the other. Automatic satisfaction of the single initial 
condition at 0=t  apparently provides little advantage 
when using method 2. Also, significant improvement with 
weight reuse is only observed when first trained with 
problem 2, which is the other under-damped case. 
However, the improvement is not on the order of a factor 
of ten as reported in [10]. This reduction in performance is 
expected as the entire shape of the solution curve is 
different, whereas [10] investigated only slight changes in 
a single boundary condition or single parameter of the 
differential equation. It is also not surprising that 
improvement is only observed for the case of problem 2, 
whose solution is certainly closest to the solution to 
problem 1. 

These results indicate that weight reuse does accelerate 
training, at least for the case of similar damping. More 
cases must be studied, including varying the initial 
condition as well, to discover how far-reaching this 
conclusion might be.  

 
IV. SOLVING THE HEAT DIFFUSION EQUATION 

 
The second problem investigated is the heat diffusion 
equation given by  
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with boundary conditions 
 
( ) atT =,0 , ( ) btLT =,  and ( ) ( )xfxT =0, .  (12) 
 
Four sets of boundary conditions are examined for this 

DE as well. Problem 1, whose solution is plotted in Fig. 3, 
is the base problem to be solved with an initial condition of 
 

( )
L
xTxf πsinmax=     (13) 

 
with a peak at Tmax = 1 and homogenous boundary 
conditions .0== ba  This DE leads to a simple analytic 
solution in order to evaluate the fitness of the approximate 
solution. Problems 2 through 4 are used to generate the 
weights for reuse, and their solutions appear in Figs. 4 
through 6. Problem 2 also has homogenous boundary 
conditions a = b = 0 while problems 3 and 4 have a = 0.2 
and b = 0.1. Problems 2 and 3 have parabolic initial 
conditions 
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where coefficients c0, c1, and c2 are chosen to satisfy the 
boundary conditions as well producing peaks at Tmax = 1 
and Tmax = 5

3  for problems 2 and 3 respectively. Problem 4 
has the quartic initial condition 
 
( ) 0
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4
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where coefficients c0, c2, and c4 are again chosen to satisfy 
the boundary conditions and produce a peak of Tmax = 5

3 . 
Notice that the peaks in for problems 3 and 4 are not 
centered in space as they are for problems 1 and 2. 

The training curves for weight reuse in the diffusion 
equation appear in Fig. 7, where results are again averaged 
over 25 runs and the error function is evaluated on a 10×10 
grid of points. The solutions to problems 1 and 2 are so 
similar that one certainly expects an improvement when 
reusing weights between these two problems. This 
expectation is confirmed for method 1, but results for 
method 2 are catastrophically poor. The cause for this 
failure is unknown. Results improve somewhat when the 
MLPN is trained with a more dense 15×15 grid, but even 

Fig. 3. Solution of the diffusion 
equation for problem 1. 

Fig. 4. Solution of the diffusion 
equation for problem 2. 

Fig. 5. Solution of the diffusion 
equation for problem 3. 

Fig. 6. Solution of the diffusion 
equation for problem 4. 
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these results are still worse than when learning problem 1 
alone without weight reuse. The standard deviation of the 
error over the 25 runs is much larger for this DE than 
either of the other two examined; most runs produce a 
reasonably small error while a few isolated runs destroy 
the average with errors orders of magnitude larger. More 
investigation is necessary to uncover why experimental 
observations so clearly contradict intuition for this case – 
and only for method 2. 

Unlike solution of the oscillator equation, method 2 
outperforms method 1 significantly. After only 200 epochs, 
method 2 has reached an error nearly an order of 
magnitude lower than method 1 after 2000 epochs. The 
reason for the difference is that the approximate solution 

 

( ) ( ) ( )θ,, txNLxxtxfTt −+=    (16) 
 

automatically satisfies the DE at three of the four 
boundaries. This is apparent in Fig. 8, which illustrates the 
approximate solutions for both methods after 250 epochs   
of training.  The correct solution is only beginning to take 
shape for method 1, whereas values between the 
boundaries need simply be “filled in” between the three 
given boundaries for method 2. Even if method 1 offers 
significantly accelerated training with weight reuse, results 
are still better using method 2 without weight reuse. 

 
V. SOLVING THE POTENTIAL EQUATION 

 
The final problem to be investigated is the potential 

equation given by 
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with boundary conditions  
 

( ) ( ),,0 0 yfyu = ( ) ( )yfyu 1,1 = ,   (18) 
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Solutions to the four problems used appear in Figs. 9 
through 12, where problem 1 is again used as the base and 
the other three for weight reuse. Problem 1 has a simple 
analytic solution with boundary conditions 
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and 
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All four problems share the boundary condition (19) but 
differ for the other three. These boundary conditions are 
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for problems 2, 3, and 4 respectively. 

The learning curves in Fig. 13 have essentially the same 
shape for both methods; weight reuse starting from 
problems 2 and 3 experiences significantly accelerated 
training  while   starting  with   problem   4  produces   only  
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Fig. 8. Approximate solutions of the diffusion equation problem 1 
after 250 epochs when using method 1 (left) and method 2 (right). 
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Fig. 13. Learning curves for solving the potential equation problem 1 after reusing weights from the other three problems 

for both method 1 (left) and method 2 (right). Note that y-axis scales are different for the two plots. 

Fig. 9. Solution of the potential 
equation for problem 1. 

Fig. 10. Solution of the potential 
equation for problem 2. 

Fig. 11. Solution of the potential 
equation for problem 3. 

Fig. 12. Solution of the potential 
equation for problem 4. 
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Fig. 14. Separation of training error into DE and boundary condition components for method 1 

when solving problem 1 of the oscillator (left), diffusion (center), and potential (right) equations. 
 
moderate improvement. The linear boundary conditions in 
problems 2 and 3 are evidently sufficiently similar to those 
in problem 1 to ensure improvement from weight reuse. 

While the shapes of the learning curves are similar, the 
difference in absolute performance between methods 1 and 
2 is dramatic (note the difference in vertical axis scales in 
Fig. 13). Adding the fixed boundary on the fourth side 
completely encloses the domain with an automatically 
satisfied boundary for method 2. Apparently the more 
boundaries which are specified, the faster and more 
accurate method 2 becomes. 

Since the error function (3) for method 1 is composed of 
components satisfying both the DE and the boundary 
conditions, reducing the overall error involves a trade-off 
between competing components. Fig. 14 illustrates the 
breakdown of total error into these two components during 
training of problem 1 for the three DEs studied. The 
oscillator equation has a single initial condition and thus 
EBC is easily reduced early during training – focusing the 
majority of training effort on satisfying the DE. For this 
reason, methods 1 and 2 produce similar results for the 
oscillator equation. Increasingly more effort must be 
channelled toward satisfying boundary conditions with 
method 1 when solving the diffusion and potential 
equations. This is especially apparent in Fig. 14 for the 
potential equation, as EBC dominates the error in early 
training and overall error, E, in fact increases temporarily 
as the MLPN attempts to reduce it. As the constraints on 
the boundary conditions increase, interplay between 
reducing EBC and EDE impedes reduction of the overall 
error. Thus method 2 performs significantly better than 
method 1 for the diffusion and potential equations. 

 
VI. CONCLUSION 

 
Previous work has shown that multi-layer perceptron 

networks (MLPN) are powerful tools for solving various 
differential equations (DEs). Additionally, solution of a 
second DE with slightly different boundary conditions or 
parameters can be accelerated by reusing the weights from 
solving a previous problem. The intent of this research is to 
identify significantly different DEs that are still sufficiently 
similar to accelerate training with weight reuse. Results 
have revealed several cases where this is true. 

Numerical experiments were conducted for two methods 
of defining the MLPN error function. The first (method 1) 
simply optimizes the MLPN so that its output is the desired 
approximate solution. The second method (method 2) 
rewrites the approximate solution so that the boundary 

conditions are automatically met, regardless of the MLPN 
output. Comparison of these two methods led to the 
intriguing observation that method 2 produces extremely 
accurate solutions in a small number of training epochs 
even without weight reuse. This second method is 
especially useful when solving partial DEs where several 
of the boundaries are specified, as in the cases of the 
diffusion and potential equations examined here. 

Weight reuse with method 1 produced results which 
were largely expected: the more similar the second 
problem was to the first, the more weight reuse accelerates 
training. For example, training time to solve an under-
damped problem (problem 1 in Fig. 1) to the same error 
was halved when starting from a different under-damped 
problem (problem 2 from Fig. 1). Starting from an over- or 
critically-damped problem (problems 3 and 4 respectively 
from Fig. 1) produced no appreciable acceleration  
however. Results for method 2 with weight reuse were 
similar for the oscillator and potential equations, but 
contradicted expectation for the diffusion equation. In this 
case, weight reuse in fact affected training detrimentally 
(see Fig. 7), and most significantly when the problems had 
nearly identical solutions (see Figs. 3 and 4). Rewriting the 
approximate solution to automatically satisfy boundary 
conditions apparently adds an extra dynamic which can 
cause weight reuse to fail completely. 

This paper has shown that DEs with significantly 
different parameter values or boundary conditions are still 
sufficiently similar to experience accelerated training from 
weight reuse. What constitutes “similar” can be predicted 
intuitively when using method 1, at least for the DEs 
studied here. Method 2 generates lower error solutions than 
method 1 when multiple boundaries are specified, but does 
not always perform as expected when reusing weights (see 
solution of the diffusion equation). These results indicate 
the need for continued investigation in order to 
quantitatively classify DEs as similar with respect to 
weight reuse, and to understand and predict the unexpected 
behavior when using method 2. 
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