Solving Coupled Systems of Differential Equations Using the Length Factor Artificial Neural Network Method

Kevin McFall, Kennesaw State University
Solving Coupled Systems of Differential Equations Using the Length Factor Artificial Neural Network Method

Dr. Kevin McFall
Assistant Professor of Engineering
The Pennsylvania State University
Lehigh Valley Campus
ANN training by gradient descent

\[E(w) = \sum_x (N_{\text{desired}} - N)^2 \]

- **Weight vector** \(w \)
- **Spatial vector** \(x \)
- **Output** \(N(x, w) \)
- **Error**
- **Sensitivity of** \(E \) **to changes in** \(w \)

Diagram:
- **Global minimum**
- **Saddle point**
- **Local minimum**
- **Plateau**

Equation:

\[\frac{dE}{dw} = -2 \sum_x (N_{\text{desired}} - N) \frac{\partial N}{\partial w} \]
Solving BVPs with ANNs

Heat conduction in board

\[
\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0
\]

\[
T = T_L + \frac{2(T_H - T_L)}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} + 1}{n} \sin \left(\frac{n\pi x}{L} \right) \frac{\sinh \left(\frac{n\pi y}{L} \right)}{ \sinh \left(\frac{n\pi W}{L} \right)}
\]

Ann output

\[T_t = N(x, y, w) \]

approximate solution

ANN weights

no guarantee BCs are satisfied

\[E(w) = \sum_{x,y} \left(\frac{\partial^2 T_t}{\partial x^2} + \frac{\partial^2 T_t}{\partial y^2} \right)^2 \]

\[\frac{dE}{dw} \] used to drive gradient descent
Automatic BC satisfaction

\[\psi_t = f(x, y, N) = A(x, y) + L(x, y)N(x, y, \mathbf{w}) \]

- **Boundary function** A
 - Satisfy BCs on domain boundary
 - Value of A inside domain unimportant

- **Length factor** L
 - Zero for locations on boundary
 - Non-zero everywhere inside domain

- **Approximate solution** ψ_t
 - Satisfies BCs regardless of ANN output N
 - Train ANN to satisfy DE inside domain
 - Values of ψ_t inside domain should be accurate
Example of training

\[\psi_t = A + LN \quad \text{Approximate solution} \]

\[G = \frac{\partial^2 \psi_t}{\partial x^2} + \frac{\partial^2 \psi_t}{\partial y^2} + e^\nu - 1 - x^2 - y^2 - \frac{4}{(1 + x^2 + y^2)^2} \quad \text{Error in DE} \]

\[D = \psi - \psi_t \quad \text{Error in solution} \]

\[\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + e^\nu = 1 + x^2 + y^2 + \frac{4}{(1 + x^2 + y^2)^2} \]

\[\psi(x, y) = \ln(1 + x^2 + y^2) \]
Solving coupled systems of DEs

\[\text{Nu}_x = 0.332 \text{Re}^{\frac{1}{2}} \text{Pr}^{\frac{1}{3}} \]

Energy

\[G_3 = u_t^* \frac{\partial T_t^*}{\partial x^*} + v_t^* \frac{\partial T_t^*}{\partial y^*} - \frac{1}{\text{Re Pr}} \frac{\partial^2 T_t^*}{\partial y^*} \]

Momentum

\[G_2 = u_t^* \frac{\partial u_t^*}{\partial x^*} + v_t^* \frac{\partial u_t^*}{\partial y^*} - \frac{1}{\text{Re}} \frac{\partial^2 u_t^*}{\partial y^*} \]

Continuity

\[G_1 = 0 \]

Self-similar method

\[\eta = y^* \sqrt{\frac{\text{L} u_x}{\nu x^*} u_x, T_x} \]

\[f''' + ff'' = 0 \]

\[T^* = 1 - \int_0^\eta \frac{(f^n)^{\text{Pr}}}{d\eta} \]

\[u_t^* = A_1 + L_1 N_1 \]

\[v_t^* = A_2 + L_2 N_2 \]

\[T_t^* = A_3 + L_3 N_3 \]

\[\text{Nu}_x = x^* \frac{\partial T_t^*}{\partial y^*} \bigg|_{y^*=0} \]

omitted BCs at \(y = \infty \)

% error

\[E(w_1, w_2, \ldots, w_n) = \sum_{i=1}^n \left(\sum_{x,y} G_i^2 \right) \]

ASME Early Career Technical Conference

October 1-2, 2010

Dr. Kevin McFall
Entrance length problem

- Parallel flat plates

\[
G_1 = \frac{\partial u^*}{\partial x} + \frac{\partial v^*}{\partial y}
\]

\[
G_2 = \frac{\partial p_t^*}{\partial x^*} + \left(u^* \frac{\partial u_t^*}{\partial x^*} + v_t^* \frac{\partial u_t^*}{\partial y^*} \right) - \frac{1}{\text{Re}} \left(\frac{\partial^2 u_t^*}{\partial x^* \partial y^*} + \frac{\partial^2 u_t^*}{\partial y^* \partial y^*} \right)
\]

\[
G_3 = \frac{\partial p_t^*}{\partial y^*} + \left(u_t^* \frac{\partial v_t^*}{\partial x^*} + v_t^* \frac{\partial v_t^*}{\partial y^*} \right) - \frac{1}{\text{Re}} \left(\frac{\partial^2 v_t^*}{\partial x^* \partial y^*} + \frac{\partial^2 v_t^*}{\partial y^* \partial y^*} \right)
\]

Volumetric flow rate

\[
\int u^* \, dA^* = \frac{1}{2} w^*
\]

Pressure gradient

\[
\left. \frac{\partial p^*}{\partial x^*} \right|_{x^*>l_e^*} = \frac{48}{\text{Re}} = 3.2
\]

\[
\left. \frac{\partial p_t^*}{\partial x^*} \right|_{x^*>l_e^*} = 3.19
\]
Benefits of ANN method

- Traditional solution method
 - Finite element method (FEM)

- Discretization comparison
 - FEM: polygon shaped meshing elements
 - ANN: rectangular grid

- Applicability comparison
 - FEM: complexity of method and DE linked
 - ANN: same method independent of DE

- Comparison with other ANN methods
 - Simpler to train
 - Unconstrained optimization
 - Boundary function A similar to true solution ψ