Physiological and psychological effects of exercise interventions in HIV disease

Kenneth D. Phillips, *University of South Carolina*
Review

Physiological and Psychological Effects of Exercise Interventions in HIV Disease

WESLEY D. DUDGEON, B.A.,¹ KENNETH D. PHILLIPS, Ph.D., R.N.,² CHRISTOPHER M. BOPP, M.S.,¹ and GREGORY A. HAND, Ph.D.¹

ABSTRACT

The use of both aerobic and resistance exercise has been shown to improve physiologic parameters such as strength, endurance, time to fatigue, and body composition in the HIV-infected population. Exercise has also been used successfully to treat psychologic conditions such as depression and anxiety that are common in HIV-infected individuals. However, the effects of exercise on immune function in these individuals are uncertain because of conflicting results found among studies. Additionally, many ventures into this area have been attempted with poor research design, resulting in inconclusive evidence or poor generalizability. The focus of this paper is to review the research that has been performed using exercise as an intervention for HIV-infected persons and to determine what needs to be done next to further our understanding of how the HIV-infected body and mind respond to exercise training.

INTRODUCTION

The complications resulting from HIV/AIDS radically alter the physiologic and psychological well-being of HIV-infected individuals. Treatment with highly active antiretroviral therapy (HAART) allows HIV-infected individuals to live longer, healthier, and more productive lives than was possible at the beginning of the HIV/AIDS pandemic. However, these life-extending antiretroviral medications often cause side effects that may adversely affect quality of life. Medical researchers are continually seeking more effective methods to treat infected individuals; a vaccine that effectively prevents HIV infection is the ultimate goal.

Health care providers are beginning to prescribe nonpharmacologic complementary and alternative therapies to prevent and manage complications associated with HIV/AIDS. An intriguing, nonpharmacologic treatment for preventing and managing complications of HIV infection is moderate intensity exercise training.¹⁻³ Moderate-intensity exercise training has been shown not only to be safe, but also beneficial for increasing lean muscle mass, decreasing fat mass, and improving muscular strength. Additionally, exercise has been shown

¹Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina.
²College of Nursing, University of South Carolina, Columbia, South Carolina.
to improve various mental health problems in noninfected individuals, thus exercise is being proposed to improve psychological parameters in HIV-infected individuals.4,5 The purpose of this paper is to identify physiologic and psychological alterations that result from HIV/AIDS and to analyze what is known regarding the effectiveness of exercise interventions in preventing and managing these complications.

A literature search was conducted on the MEDLINE database, with limits set for only original data, using combinations of the keywords “exercise,” “HIV,” “AIDS,” and “physical activity.” This search produced 29 research studies involving the use of exercise as an intervention for HIV-infected persons. Searching without limits also produced 12 review articles on this subject, as well as literature regarding the functional limitations of HIV-infected individuals.

Physiologic alterations of HIV infection

HIV-infected persons face many metabolic conditions that researchers have addressed with therapeutic exercise. One such condition, wasting syndrome, is recognized by involuntary weight loss of more than 10% baseline body weight in addition to prolonged fever, chronic weakness, and chronic diarrhea.6 The significant loss of tissue present with the wasting syndrome increases the risk of mortality and secondary infection.6

Lipodystrophy syndrome, a side effect of HAART, is characterized by fat accumulation in the abdomen and trunk with fat loss in the legs, arms, and face.7,8 HAART can increase the rate of lipid breakdown while decreasing the rate of lipid synthesis, especially in the periphery.9 Furthermore, the elevation of circulating cytokine levels, such as tumor necrosis factor (TNF)-\(\alpha\), that accompany HIV infection can decrease lipoprotein lipase levels resulting in a decrease in fat deposition.9

Immune response to chronic fever and infection results in an elevation of circulating cytokines such as interleukin-1 (IL-1) and TNF-\(\alpha\). Elevated levels of IL-1 and TNF-\(\alpha\) can increase resting energy expenditure, and TNF-\(\alpha\) has additionally been associated with decreased lipoprotein lipase activity, depletion of energy stores, and suppression of food intake.10 Increased circulating cytokines further influence metabolic rates by activating the hypothalamic-pituitary-adrenal axis (HPAA), which leads to an increase in glucocorticoid levels. Increased glucocorticoid levels have a catabolic influence on skeletal muscle by slowing protein synthesis rate and increasing protein degradation.11

Increased rate of protein turnover and elevated metabolic rate caused by the combined cytokine and glucocorticoid response can increase resting metabolic rates and lead to accelerated depletion of energy stores. During periods of infection, when cytokine and glucocorticoid levels rise significantly, resting energy levels are further elevated and food intake drops, thus causing accelerated and episodic weight loss.12-14

HIV-infected individuals also suffer from a high prevalence of anemia, with reports of up to 28% prevalence.15 The increase in circulating cytokines common with HIV-infection can inhibit the production of erythropoietin (EPO), which may partly explain the low EPO levels reported in HIV-infected individuals.16 Additionally, certain medications used in the treatment of HIV infection, including zidovudine and trimethoprim-sulphamethoxazole, have been linked to development of anemia.17

Psychological alterations of HIV infection

HIV-infected populations have higher incidences of psychiatric disorders than the uninfected population.18 The most notable psychological abnormalities include anxiety and depression. Heckman and colleagues19 found that 25% of people age 50 or older living with HIV presented with moderate to severe levels of depression. This is consistent with the 22% to 45% prevalence rate of depression in HIV-infected persons as reported by Penzak and others,20 who also link depression to altered course of infection due to impaired immune function and nonadherence to therapy.

Depressed and anxious HIV-infected individuals present with decreased natural killer cell activity, increased viral load, and elevated CD8\(^+\) T lymphocytes.21 With the exception of viral load levels, these are the typical immune disorders associated with chronic stress.22 Sup-
pression of immune function can be traced to hypoactivity of glucocorticoid receptors on immune cells and in limbic regions of the brain. This in turn may lead to increased secretion of proinflammatory cytokines and augmented HPAA activity. Thus, management of stress is significant in treating the HIV-infected population, as increased levels of stress and depression have been associated with more rapid progression to AIDS.

Mental health problems are also important to disease progression because of their negative effect on drug adherence. It has been found that HIV-infected individuals suffering from mental health disorders, regardless of the severity, have poorer drug adherence. Specifically, depression has been directly linked to nonadherence in HIV-infected persons. Nonadherence to therapy is a major concern because nonadherence leads to faster disease progression and to antiviral-resistant strains of HIV.

Aerobic training

The classification of aerobic as a method of exercise refers to exercise that requires oxygen to generate adenosine triphosphate (ATP) for the functioning of skeletal muscle. Aerobic metabolism of lipids occurs in the muscle mitochondria during β-oxidation, which involves energy production from plasma free fatty acids and intramuscular triglycerides. The β-oxidation cycle then feeds acetyl-CoA into the tricarboxylic acid (TCA) cycle, also located in the mitochondria, where carbon dioxide (CO₂) and hydrogen (H⁺) ions are removed. The H⁺ ions are then passed down the electron transport chain where they are oxidized to produce ATP. Additionally, glycolysis via the catabolism of blood glucose and/or muscle glycogen can directly produce energy for the active muscle, as well as producing pyruvate which eventually reaches the TCA cycle in the form of acetyl-CoA.

Exercise at a level of 3–6 METs (1 MET = the amount of energy expended during 1 minute of rest) or 50%–85% VO₂max for 20 to 60 minutes, is generally prescribed to elicit aerobic conditioning. Other methods of prescription involve training in a target heart rate zone, but because of the occurrence of cardiac neuropathy in HIV-infected persons, this prescription can be unreliable.

Current work to date in the prescription of aerobic exercise for HIV-infected persons has used stationary cycling and treadmill walking as modes of conditioning. Typical prescription has included work at 50%–85% VO₂max or 60%–85% maximum heart rate, 3 times per week for a duration ranging from 10–24 weeks.

Resistance training

Resistance training, or the overloading of skeletal muscle, serves to increase muscular strength and muscular endurance. These functional improvements are possible because skeletal muscle adapts to load by increasing in size, strengthening connective tissue, and improving bone density. Thus, muscle is better able to perform when a stress is again introduced, and functional performance is enhanced. It should be noted, that adaptation of muscle is specific to the type of training performed. In the reviewed literature progressive resistance training has also been used as a means of improving muscular strength and endurance. This type of programming aims at ensuring the appropriate training intensity by continually increasing resistance as the muscle adapts to the implemented load.

Most resistance training is of short duration, less than 60 seconds, thus anaerobic means of ATP production are sufficient. Anaerobic energy production can be carried out by glycolysis, with lactic acid as the byproduct instead of pyruvate. The creatine phosphate (CP) system, in which adenosine diphosphate (ADP) and CP together synthesize ATP, is also a method of anaerobic ATP production.

The reviewed work that has used resistance training as an intervention for HIV infected populations shows a common type of program; 3 sessions per week for 8 weeks consisting of 3 sets of 8 repetitions on each exercise. Proper resistance is based on a 1-repetition maximum (1-RM), preintervention effort on each exercise. Other programs implement a progressive model in which the number of repetition and sets remains constant, while the intensity of the exercise is increased at predetermined time points.
Additional studies have combined aerobic and resistance exercise into the same intervention. These programs usually last 12–16 weeks, and include 20 minutes of aerobic activity followed by 35 to 40 minutes of resistance training. Total workout time has usually been limited to 1 to 1.5 hours and stretching has periodically been included.

RESULTS

The immunologic and physiologic and psychologic effects of exercise are summarized in Tables 1–3.

Physiologic and physiological effects of exercise

Exercise is known to produce many desirable health benefits in apparently healthy populations. Studies have shown that regular exercise reduces the risk of adult onset diabetes, hypertension, and coronary artery disease. Exercise is also beneficial to those with cancer and arthritis, conditions that include wasting. Exercise has been shown to positively alter enzymatic activity and increase contractile protein mass, both effects that aid in combating wasting.

The literature regarding the effects of exercise on immune function, however, is ambiguous. The primary reason for this lack of cohesion is because of the various methods of data collection that make comparing results nearly impossible. The type of exercise prescribed, whether it is aerobic or resistance, as well as the intensity of the exercise (light, moderate, heavy) is also a factor that makes determining the overall effect of exercise on immune function difficult. Finally, it is absolutely necessary to determine the criteria by which immune function is measured, and whether that measure has any observable health consequence.

With this in mind, however, much information regarding the effects of exercise on immune function have been discovered. After exercise, there is a biphasic response of the immune system in which circulating monocytes and lymphocytes decrease below resting levels, while a rise in neutrophils is observed, even hours after exercise. A redistribution of lymphocytes occurs in which helper T cells are decreased and natural killer (NK) cell numbers are elevated, and the ratio of T-helper to T-suppressor cells can decrease by half.

Functioning of these immune components during and after exercise has been addressed. Exercising within the American College of Sports Medicine Guidelines (ACSM), 50%–85% \(\text{V} \text{O}_2 \text{max} \), will cause a transient decrease in T-lymphocyte proliferation, although no studies have shown this as being detrimental to health. Research has also not shown exercise to alter the functioning of B-lymphocytes or immunoglobulin production in any way. What is clear, however, is that exercise of less than 60 minutes in duration will cause a dose-dependent increase in NK cell function during and immediately postexercise, but NK cell activity can then be depressed for up to 180 minutes.

Regular exercise can also be beneficial to psychological functioning. The use of aerobic exercise has been shown to reduce the severity of depressive symptoms and improve mood. Both aerobic and resistance exercise were also found to decrease levels of anxiety over an 8-week period.

Efficacy of exercise in HIV-infected persons

Calabrese and LaPerriere found that exercise is safe and beneficial for HIV-infected persons. To be most beneficial, they recommend beginning exercise before symptoms present and also cite the potential of exercise to provide behavioral benefits. It has even been shown that exercise after periods of acute infection is safe and beneficial for regaining weight lost during the symptomatic period.

While HIV-infected persons are encouraged to participate in exercise, certain limitations do exist. Many of these limitations are the result of loss of lean body mass, decreased muscular strength, or various metabolic changes that are side effects of HAART. A common deficiency directly affecting normal daily activities is maximal oxygen consumption, \(\text{V}_2 \text{max} \) (mL/kg/min), a measure of functional capacity, which was found to be “well below average” in adolescents seropositive for the HIV virus compared to age-matched, uninfected controls.
<table>
<thead>
<tr>
<th>Author</th>
<th>Subjects</th>
<th>Number</th>
<th>Intervention</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaPerriere et al., 1990</td>
<td>Males</td>
<td>Total 23:</td>
<td>45-minutes of aerobic exercise on a stationary bicycle at 80% age predicted max HR</td>
<td>Control: 61 cells/mm³ decrease in CD4⁺ count</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exercise (n = 10)</td>
<td></td>
<td>Exercise: 38 cells/mm³ increase in CD4⁺ count</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control (n = 13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaPerriere et al., 1991</td>
<td>Males, 18–40 yrs old</td>
<td>Total 39:</td>
<td>5 weeks of interval training on stationary bicycle at 70–80% max HR, 3 times per week for 45 minutes a session</td>
<td>Significant increase in exercise group CD4⁺ cells (904 vs. 1020 mm³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HIV + exercise (n = 12)</td>
<td></td>
<td>CD45RA⁺CD4⁺ (no quantification given)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HIV + controls (n = 10)</td>
<td></td>
<td>Week 12: No significant change in CD4⁺ cells (170 µL vs. 190 µL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HIV-exercise (n = 11)</td>
<td></td>
<td>Week 24: No significant change in CD4⁺ cells (185 µL vs. 195 µL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HIV-controls (n = 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MacArthur et al., 1993</td>
<td>Males and females, 21–46 yrs old</td>
<td>Total 32:</td>
<td>24 weeks of cardiovascular exercise at 50–60% V̇O₂ max for low-intensity group and 75–85% V̇O₂ max for high-intensity group, 3 times a week with a caloric expenditure of 250, 350, and 500 k/cal per session for weeks 1–8, 9–16, and 17–24, respectively</td>
<td>Week 12: No significant change in CD4⁺ cells (170 µL vs. 190 µL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Females (n = 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 completed 12 wks,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 completed 24 wks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaPerriere et al., 1994</td>
<td>Males, 18–40 yrs old</td>
<td>Total 14:</td>
<td>10 weeks of training on stationary bicycle at 70–80% max HR, 3 times per week for 45 minutes per session</td>
<td>Significant increases in: CD2⁺ (1717 vs. 2183 mm³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exercise (n = 7)</td>
<td></td>
<td>CD4⁺ (942 vs. 1280 mm³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control (n = 7)</td>
<td></td>
<td>CD8⁺ (655 vs. 816 mm³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD45RA⁺CD4⁺ (312 vs. 955 mm³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD20⁺ (162 vs. 244 mm³)</td>
</tr>
<tr>
<td>Stringer et al., 1998</td>
<td>Males and females, 27–45 yrs old</td>
<td>Total 26:</td>
<td>6 weeks of training on stationary bicycle at an increasing work rate from 15–25 W/min until exhaustion, with time adjusted so each group produced the same work, 3 times per week</td>
<td>Moderate: No significant changes in CD4⁺ count (297 vs. 310 mm³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Females (n = 3)</td>
<td></td>
<td>Moderate: No significant change in viral load (56,101 vs. 45,698/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control (n = 8)</td>
<td></td>
<td>Heavy: No significant changes in CD4⁺ count (342 vs. 339 mm³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate (n = 9)</td>
<td></td>
<td>Heavy: No significant change in viral load (11,706 vs. 10,326/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heavy (n = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terry et al., 1999</td>
<td>Males and females, 23–39 yrs old</td>
<td>Total 21:</td>
<td>12 weeks of treadmill training at 60% max HR (moderate) or 84% max HR (high) 3 times a week for 30 minutes</td>
<td>No significant changes from baseline at 6 or 12 weeks for: CD4⁺ cells (592 vs. 614 vs. 683 mm³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Females (n = 17)</td>
<td></td>
<td>CD8⁺ cells (1030 vs. 1242 vs. 1252 mm³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High intensity (n = 11)</td>
<td></td>
<td>Leukocytes (6344 vs. 6400 vs. 6930 mm³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate intensity</td>
<td></td>
<td>Lymphocytes (2148 vs. 2627 vs. 2638 mm³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(n = 10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mustafa et al., 1999</td>
<td>Males</td>
<td>Total 156</td>
<td>Self-report of exercise 3–4 times per week considered exercise and less being nonexercisers</td>
<td>Exercise group showed slower progression to AIDS and slower progression to death from AIDS as well as increase in CD4⁺ counts each year</td>
</tr>
</tbody>
</table>

HR, heart rate.
<table>
<thead>
<tr>
<th>Author</th>
<th>Subjects</th>
<th>Number</th>
<th>Intervention</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigsby et al., 1992</td>
<td>Males, 29–41 yrs old</td>
<td>Total 31:</td>
<td>12 weeks for 3 days per week for 1 hour, 20 min cycling at 60–80% max HR followed by 35 minutes of strength and flexibility training</td>
<td>Significant improvements in strength for exercise group only: Chest press (189.4 ± 25.6 vs. 239.7 ± 33.2 n-m) Leg extension (158.7 ± 43.4 vs. 206.3 ± 43.1 n-m) Total time completed during the cycle test (996.15 ± 170.43 vs. 1388.46 ± 224.45 s)</td>
</tr>
<tr>
<td>Wagner et al., 1998</td>
<td>Males</td>
<td>Total 29:</td>
<td>Exercised an average of 3.4 days per week, for an average of 87 minutes, at an average intensity of 6.1 out of 8</td>
<td>Significant ($p < 0.000$) improvement in lean body mass (61.6 ± 7.2 vs. 64.2 ± 8.2 kg) for exercise group</td>
</tr>
<tr>
<td>Roubenoff et al., 1999</td>
<td>Males and females, 25–56 yrs old</td>
<td>Total 25:</td>
<td>3 sets of 8 repetitions for 8 weeks with week 1 repetitions at 50% RM, week 2 repetitions at 60% RM, and week 3–8 at 75–80% RM</td>
<td>Significant ($p < 0.0002$) increase in lean body mass (1.75 ± 1.94 kg) Significant percent increases in strength (as tested by 1-RM) on the: Chest press (31 ± 18%) Leg press (40 ± 23.6%) Upper back (50 ± 27%) Quadriceps extension (38 ± 31%). Significant ($p < 0.05$) decrease in fat mass (0.92 ± 2.22 kg)</td>
</tr>
<tr>
<td>Terry et al., 1999</td>
<td>Males and females, 23–39 yrs old</td>
<td>Total 21:</td>
<td>12 weeks of treadmill training at 60% max HR (moderate) or 84% max HR (high) 3 times per week for 30 minutes</td>
<td>Functional capacity significantly improved in moderate intensity group 680 ± 81 vs. 750 ± 151s and high intensity group 651 ± 122 vs. 841 ± 158s</td>
</tr>
<tr>
<td>Bhasin et al., 2000</td>
<td>Males, 18–50 yrs old/w 5% loss of BW</td>
<td>Total 49:</td>
<td>3 exercise sessions per week for 16 weeks, weeks 1–4 60% 1-RM for 12–15 repetitions, weeks 5–10, 4 sets of 4–6 repetitions at 90% 1-RM intensity on heavy days, 80% 1-RM on medium days, and 70% 1-RM on light days</td>
<td>Significant increase in strength with exercise only (29–36%) and with testosterone only (17–28%) Significant increase in thigh muscle volume in the testosterone only (40 cm3, ($p < 0.001$) and the exercise only group (62 cm3, $p = 0.03$) Significant increase in LBM: 2.3 kg with training 4.2 kg with/without training + testosterone</td>
</tr>
<tr>
<td>Grinspoon et al., 2000</td>
<td>Males with AIDS wasting</td>
<td>Total 43:</td>
<td>3 exercise sessions per week for 12 weeks consisting of 20 minutes on stationary bicycle at 60–70% age predicted max HR, week 1 & 2, 2 sets 8 repetitions at 60% RM, weeks 3–6, 2 sets 8 repetitions 70%, weeks 7–12, 3 sets 8 repetitions at 80%</td>
<td>Significant increase in strength with exercise only (29–36%) and with testosterone only (17–28%) Significant increase in thigh muscle volume in the testosterone only (40 cm3, ($p < 0.001$) and the exercise only group (62 cm3, $p = 0.03$) Significant increase in LBM: 2.3 kg with training 4.2 kg with/without training + testosterone</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Total</td>
<td>Exercise Protocol</td>
<td>Outcome</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------</td>
<td>-------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Fairfield et al., 2001</td>
<td>Males with AIDS</td>
<td>Total 43: Placebo ($n = 12$) Testosterone ($n = 10$) Placebo + training ($n = 10$) Testosterone + training ($n = 11$)</td>
<td>3 times per week for 12 weeks, 30 minutes on stationary bicycle at 60–70% age predicted max HR, week 1 & 2, 2 sets 6–8 repetitions at 60% 1 RM, week 3–6, 2 sets 6–8 repetitions at 70%, week 7–9, 2 sets 6–8 repetitions at 70% and 1 set 80%, week 10–12, 3 sets 6–8 repetitions at 80%</td>
<td>Significant increase in thigh muscle area and attenuation with testosterone and training</td>
</tr>
<tr>
<td>Roubenoff and Wilson, 2001</td>
<td>Males and females</td>
<td>Total 25: Females ($n = 5$) Males w/wasting ($n = 6$) Males and females w/o wasting ($n = 19$)</td>
<td>3 times per week for 8 weeks, performed 3 sets of 8 repetitions at 80% 1-RM</td>
<td>Significant increase ($p < 0.00001$) in strength for wasting group (60%) and nonwasting group (44%) Significant 2.3% increase in LBM in nonwasted group, wasted group had 5.3% improvement Significant ($p < 0.05$) improvement on the physical functioning subscale of the SF-36 in wasted group</td>
</tr>
<tr>
<td>Sattler et al., 1999 and</td>
<td>Males over 18 yrs</td>
<td>Total 30: Nandrolone ($n = 15$) Nandrolone + exercise ($n = 15$)</td>
<td>3 sets of 8 repetitions at 80% 1-RM for 12 weeks at 3 times per week</td>
<td>Significant increase ($p < 0.03$) in LDL particle size in nandrolone with exercise group Significant increase ($p < 0.001$) HDL cholesterol and decrease in fasting triglycerides ($p < 0.01$) in the total population Nandrolone only group had a significant increase in body weight (3.2 ± 2.7 kg) and lean body mass (3.9 ± 2.3 kg) Exercise group had significant increases in body weight (4.0 ± 2.0 kg), LBM (5.2 ± 5.7 kg), and significant decrease in fat mass (1.2 ± 1.3 kg) Significant ($p < 0.001$) increases in total thigh, quadriceps, and hamstring muscle volume</td>
</tr>
<tr>
<td>Sattler et al., 2002</td>
<td></td>
<td></td>
<td></td>
<td>(continued)</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Author</th>
<th>Subjects</th>
<th>Number</th>
<th>Intervention</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith et al.,</td>
<td>Males and females</td>
<td>48 total:</td>
<td>Aerobic exercise 3 times a week, for 30 minutes a session for 12 weeks</td>
<td>Exercise group significantly reduced BMI ($p < 0.04$), decreased body weight by an average of 1 kg more than the control group. Significant reduction of the triceps skinfold ($p < 0.01$), the peripheral skinfolds ($p < 0.02$), the sum of central skinfolds ($p < 0.02$), and reduction of abdominal girth ($p < 0.02$). $\text{Vo}_{2\text{max}}$ increased in the exercise group by 1.6 mL/kg more than control group.</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td>Females ($n = 8$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exercise ($n = 18$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control ($n = 30$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HR, heart rate; RM, repetition maximum; LBM, lean body mass; LDL, low-density lipoprotein; HDL, high-density lipoprotein; BMI, body mass index.
<table>
<thead>
<tr>
<th>Author</th>
<th>Subjects</th>
<th>Number</th>
<th>Intervention</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaPerriere et al., 1990</td>
<td>Males</td>
<td>Total 23:</td>
<td>45-minutes of aerobic exercise on a stationary bicycle at 80% age predicted max HR</td>
<td>Exercise group had lower anxiety (12.8 ± 2.0 vs. 12.9 ± 2.5) and significantly lower depression (14.0 ± 3.7 vs. 10.9 ± 1.7) scores on the POMS</td>
</tr>
<tr>
<td>Stringer et al., 1998</td>
<td>Males and females, 27–45 yrs old</td>
<td>Total 26:</td>
<td>6 weeks of training on stationary bicycle at an increasing work rate from 15–25 W/min until exhaustion, with time adjusted so each group produced the same work, 3 times per week</td>
<td>Significant (p < 0.01) improvement in quality of life, hope, and desire to continue living did in both exercise groups</td>
</tr>
<tr>
<td>Wagner et al., 1998</td>
<td>Males</td>
<td>Total 29:</td>
<td>Exercised an average of 3.4 days per week, for an average of 87 minutes, at an average intensity of 6.1 of 8</td>
<td>Significant (p < 0.000) improvements on HAM-D, BSI-total, BSI-depression, Q-LES-Q</td>
</tr>
<tr>
<td>Neidig et al., 2003</td>
<td>Males and females</td>
<td>Total 48:</td>
<td>See as Smith et al., 2001</td>
<td>Improvement (p = 0.03) in CES-D scores, POMS (p = 0.01), and depression/rejection subscale (p = 0.05)</td>
</tr>
</tbody>
</table>

POMS, Profile of Mood States; HAM-D, Hamilton Depression Scale; BSI-total, Brief Symptom Inventory-distress, depression, anxiety; BSI-depression, Brief Symptom Inventory depression; Q-LES-Q, Endicott Quality of Life Enjoyment and Satisfaction Questionnaire; CES-D, Centers for Epidemiological Studies—Depression Scale.
High-intensity exercise, which was shown to decrease the effectiveness of the immune system for up to 21-hours in a non-HIV-infected population in one study, was previously avoided and moderate-intensity exercise was prescribed. However, Terry et al. later found that high-intensity exercise in an HIV-infected person may not be detrimental to the immune system based on data that showed no difference in CD4+ and CD8+ cell counts after 12 weeks between groups that exercised at 80% maximum rate and 60% maximum heart rate.

Immunologic, physiologic, and psychological effects of aerobic exercise in HIV-infected samples

For these reasons, aerobic training has been used in many different forms as an intervention for HIV-infected persons. LaPerriere and colleagues used an interval training method on a cycle ergometer to examine changes in lymphocyte cell counts in 16 men who began exercising prior to undergoing HIV screening. Patients worked at 70%–80% maximum heart rate for 3 minutes followed by 2-minute sessions at a lower intensity. Findings showed that 45 minutes of training 3 times per week for 5 weeks significantly increased CD4+ helper cell counts (904 vs. 1020 mm³) and the CD8+-inducer subset CD45RA+CD4+ (no quantification given) in those who presented as HIV positive. LaPerriere and coworkers also exercised HIV-infected males, 18–40 years of age, on cycle ergometers 3 times per week for 45 minutes per session at 70%–80% maximum age-predicted heart rate for 10 weeks. After comparing preexercise to postexercise blood lymphocyte levels, a significant increase was observed in CD2+ (1717 vs. 2183 mm³), CD4+ (942 vs. 1280 mm³), CD8+ (655 vs. 816 mm³), CD45RA+CD4+ (312 vs. 955 mm³), and CD20+ (162 vs. 244 mm³) cell counts. These studies by LaPerriere and associates are unique in that they are the only two to show an actual increase in lymphocyte populations. Other studies have shown that exercise does not decrease lymphocyte numbers, as well as showing that exercise may attenuate the decrease in lymphocytes that occurs with normal disease progression, but none have shown an increase in cell numbers. This observed increase might actually be the measurement of the mobilization of cells from the lymphoid tissue, rather than an actual increase in cell quantity.

Mustafa and colleagues also addressed CD4+ cell counts while performing a longitudinal study on 415 homosexual males (156 HIV-infected [CD4+ count 555 + 304] and 259 HIV-negative [988 + 380] at the time of enrollment) from 1985–1991 aimed at examining the association between exercise and HIV disease progression. Of the 156 HIV-infected men sampled, 68 progressed to AIDS, and 49 died of AIDS-related complications. Individuals were asked how many times per week they exercised, with an answer of 3–4 times per week being considered the minimum for inclusion in the exercise group and those who exercised less considered nonexercisers. Using a linear combination of parameter estimates, it was found that exercise slowed progression to AIDS and time to death with AIDS. Simple linear regression using CD4+ cell counts as the dependent variable, showed that CD4 counts increased 1 year, and had a lesser decline in other years compared to the nonexercising group.

MacArthur and colleagues evaluated various immunologic and cardiovascular parameters of 25 HIV-infected persons (24 males and 1 female), currently on antiretroviral therapy, following a 24-week exercise program. Subjects who exercised at 50%–60% VO2max in four 10-minute intervals comprised the low-intensity group, and a high-intensity group worked at 75%–85% VO2max for six 4-minute intervals. Both groups performed exercise 3 times per week on a treadmill, stationary bicycle, rower, or stair-stepper. The 6 individuals who completed the program, 3 in each group, showed no significant change in CD4+ cell counts at week 24 (185 vs. 195 cells per microliter), however, significant improvements were seen in VO2max (33.2 + 3.3 vs. 41.2 + 4.9 mL/kg per minute), submaximal heart rate (137 + 8 vs. 124 + 7 beats per minute), and Relative Perceived Effort (RPE) (12.2 + 2.4 vs. 8.5 + 1.4). Individual group data were not analyzed because of small number of subjects who completed the intervention resulted in low power to detect group differences.

Aerobic exercise interventions have also been designed to evaluate changes in body
composition and fatigue indices. Smith et al.74 implemented a regimen of 30-minute exercise sessions 3 times per week for 12 weeks for 60 HIV-infected individuals (52 males and 8 females). Workloads were set at 60%–80% \(V_{O2\text{max}} \) and were increased as needed to keep the subject’s heart rates within set parameters. Forty-nine subjects (75% taking antiretrovirals) completed the program and showed a 1-minute increase in time to fatigue on a treadmill (a measure of physical endurance). Subjects in the exercise group significantly reduced body mass index \((p < 0.04)\) and decreased body weight by an average of 1 kg more than the control group (1.5 kg lost vs. 0.5 kg lost). Included in the loss of body weight was a significant reduction of the triceps skinfold \((p < 0.01)\), the peripheral skinfolds \((p < 0.02)\), and the sum of central skinfolds \((p < 0.02)\), as well as a reduction of abdominal girth \((p < 0.02)\). \(V_{O2\text{max}} \) increased in the experimental group by 2.6 mL/kg compared to a 1 mL/kg increase in the control group.

Terry et al.69 divided aerobically exercising groups into a moderate intensity group who worked at 60% maximal heart rate \((n = 11)\) and high intensity group who exercised at 84% maximal heart rate \((n = 10)\). Subjects were seen 3 times per week, and each session lasted approximately 1 hour with the first 15 minutes and the last 15 minutes devoted to stretching and the remaining 30 minutes consisting of treadmill exercise at the prescribed intensity. At the completion of the 12-week study, functional capacity, as measured by time to fatigue on a maximal exercise test, increased in both groups but more so in the high intensity group \((680 + 81 \text{ vs. } 750 + 151 \text{ seconds for the moderate-intensity group and } 651 + 122 \text{ vs. } 841 + 158 \text{ seconds for the high-intensity group})\), while no changes in body fat were observed. Immunologic variables such as CD4\(^+\) cells \((592 \text{ vs. } 614 \text{ vs. } 683 \text{ mm}^3)\), CD8\(^+\) cells \((1030 \text{ vs. } 1242 \text{ vs. } 1252 \text{ mm}^3)\), leukocytes \((6344 \text{ vs. } 6400 \text{ vs. } 6930 \text{ mm}^3)\) and lymphocytes \((2148 \text{ vs. } 2627 \text{ vs. } 2638 \text{ mm}^3)\) increased at 6 and 12 weeks, respectively, but were not statistically significant. Depression scores, as obtained with the Montgomery-Asberg scale for depression, remained unchanged from preintervention to postintervention. These results, however, lack authority because of low statistical power to detect changes.

Aerobic exercise has also been linked to improvements in the psychological health of HIV-infected persons. Stringer and others5 evaluated immune indices and quality-of-life scores before and after a 6-week exercise program. Twenty-six HIV-infected individuals, 24 of whom were on antiretroviral therapy, were divided into a control group \((n = 8)\), a moderate-intensity exercise group \((n = 9)\), and a high-intensity exercise group \((n = 9)\). Aerobic training, consisting of 6 weeks of 3 sessions per week on a stationary bicycle, was prescribed with the moderate-intensity group working approximately 60 minutes per session and the high-intensity group working less time, approximately 30–40 minutes, to produce equal work. Results showed no significant change in CD4\(^+\) count \((\text{moderate, } 297 \text{ vs. } 310 \text{ mm}^3; \text{heavy, } 342 \text{ vs. } 339 \text{ mm}^3)\) or viral load \((\text{moderate, } 56,101 \text{ vs. } 45,698/ \text{mL}; \text{heavy: } 11,706 \text{ vs. } 10,326/ \text{mL})\) in any group, but quality of life scores in the areas of quality of life, hope, and desire to continue living did significantly \((p < 0.01)\) improve in both exercise groups.

LaPerrriere and colleagues75 recruited 50 homosexual males unaware of their HIV status to exercise prior to learning their HIV status. Exercise was performed on a cycle ergometer for 45 minutes, with 3-minute stages at 80% age predicted maximum heart rate alternated with 2-minute stages at 60%–79% predicted maximal heart rate. Based on results from the Profile of Mood States and the State-Trait Anxiety Inventory, the 10 men in the exercise group who were diagnosed HIV positive had lower anxiety \((12.8 \pm 2.0 \text{ vs. } 12.9 \pm 2.5)\) and depression \((14.0 \pm 3.7 \text{ vs. } 10.9 \pm 1.7)\) scores than did those HIV-positive men who did not exercise. Nonexercisers also had a decrease in CD4\(^+\) cell number \((61 \text{ cells/mm}^3)\) that was blunted in the exercise group \((\text{increase of } 38 \text{ cells/mm}^3)\).

The effects of aerobic exercise on depression in HIV-infected individuals were studied by Neidig and colleagues.76 The 49 subjects who completed the previously mentioned study by Smith et al. were also given tests to determine depression levels using the Center for Epidemiological Studies-Depression Scale (CES-D), the Beck Depression Inventory (BDI), Pro-
file of Mood States (POMS), and stress was assessed with the Perceived Stress Scale 4 (PSS-4). Those who completed the exercise intervention showed significant improvement in CES-D scores \((p = 0.03)\), the 65-item POMS \((p = 0.01)\), and on the depression/rejection subscale \((p = 0.05)\).

Physiologic effects of resistance training in HIV-infected samples

To assess the ability of the HIV-infected person to adapt to load, Roubenoff and coworkers\(^7\) prescribed an 8-week regimen of 3 weekly sessions consisting of resistance training with 3 sets of 8 repetitions performed at 80% of the subjects’ 1-RM. The men \((n = 20)\) and women \((n = 5)\), all of whom were taking antiretroviral therapy, rated the difficulty of each exercise set on the Borg RPE Scale, and resistance was increased following the session if the RPE was less than 16. At the conclusion of the 8-week intervention, there was a significant \((p < 0.0002)\) increase in lean body mass \((1.75 + 1.94 \text{ kg})\), and strength (as tested by 1-RM) on the chest press \((31 + 18\%\)\), leg press \((40 + 23.6\%\)\), upper back \((50 + 27\%\)\), and quadriceps extension \((38 + 31\%\)\). There was also a significant \((p < 0.05)\) decrease in fat mass \((0.92 + 2.22 \text{ kg})\), while overall body weight remained the same.

Roubenoff and Wilson\(^1\) next compared the effects of progressive resistance training (PRT) on physical functioning in wasted \((n = 6)\) and nonwasting \((n = 19)\) HIV-infected populations. The wasted group was classified by involuntary weight loss of greater than 10% baseline body weight, fewer documented for more than 30 days, chronic weakness, and/or chronic diarrhea independent of any conditions other than HIV-infected that may lead to weight loss.\(^7\) Three subjects with wasting were on antiretroviral therapy and 10 nonwasted subjects were on antiretroviral therapy. The training regimen was consistent with the previous study (3 sessions per week for 8 weeks, with subjects performing 3 sets of 8 repetitions at 80% 1-RM on the chest press, leg press, leg extension, and upper back machines). A significant increase \((p < 0.0001)\) in strength, assessed by average 1-RM on four machines, was observed in the wasting group \((60\% \text{ increase})\) and the nonwasting group \((44\% \text{ increase})\). A significant, 2.3% increase in lean body mass (LBM) was observed in the nonwasted group, while the wasted group exhibited at 5.3% improvement. Wasted subjects also had a significant \((p < 0.05)\) 6-point improvement on the physical functioning subscale of the Medical Outcomes Study (MOS) Short Form 36 (SF-36) questionnaire.

The effects of resistance exercise, along with whey protein supplementation, was tested in 30 HIV-infected women by Agin et al.\(^9\) Subjects were divided into a protein only group \((n = 10)\), an exercise only group \((n = 10)\), and a combined therapy group \((n = 10)\). After a 6-week control period, 14 weeks of resistance training was implemented. Results showed no significant changes in strength or quality of life (QOL) during the control period. Protein only patients gained 3.6 kg \((p = 0.001)\), and 2.5 kg of fat \((p = 0.002)\), with no change in skeletal muscle mass \((0.6 \text{ kg}; p = 0.12)\). The exercise-only group increased skeletal muscle mass \((1.2 \text{ kg}; p < 0.001)\) and decreased fat mass \((1.7 \text{ kg}; p = 0.02)\). The combined therapy group had no change in skeletal muscle \((0.6 \text{ kg}; p = 0.30)\). Strength increased for both exercise groups \((40.6 \text{ to } 95.3\%; p < 0.001)\). The QOL physical activity score improved for the exercise group \((p = 0.02)\) and worsened for protein group \((p = 0.01)\).

Physiologic effects of combined aerobic and resistance training in HIV-infected samples

The combination of aerobic and resistance training has been used to treat HIV-infected persons. Rigsby and colleagues\(^8\) subjected 16 patients to a 12-week exercise program consisting of 3 visits per week, and 15 patients attended 1.5 to 2 hour counseling sessions at least 1 time per week during the same 12-week period. Subjects in the exercise group performed 20 minutes of aerobic exercise on a stationary bicycle at 60%–80% maximum heart rate followed by 35 minutes of combined strength and flexibility exercises. Strength training was conducted on a hydraulic isokinetic weight-training machine and 3 sets were limited to no more than 30 repetitions total. The results showed that subjects in the exercise group significantly improved muscular strength in the chest press...
Physiologic effects of exercise and anabolic supplementation

It has become common practice to combine progressive resistance training and anabolic supplementation when treating AIDS patients. These treatments are effective in increasing body weight, but they have been shown to cause liver toxicity and elevated serum lipid levels, thus strict monitoring is required.81 Grinspoon and colleagues82 showed that greater increases in LBM occurred when combining testosterone and exercise as compared to testosterone treatment alone. Subjects with AIDS wasting were divided into four study groups: placebo with no exercise ($n = 12$), placebo with exercise ($n = 10$), testosterone with no exercise ($n = 10$), testosterone with exercise ($n = 11$). Participants placed in the testosterone groups received intramuscular testosterone enanthate injections (200 mg/wk) for the 12-week duration of the study. The exercise groups trained 3 times per week, beginning each session with 20 minutes of aerobic exercise followed by resistance training. Resistance training involved 6 exercises (3 lower body and 3 upper body). Training was conducted as follows: weeks 1 and 2, 2 sets of 8 repetitions at 60% 1-RM; weeks 3 through 6, 2 sets of 8 repetitions at 70% 1-RM; weeks 7 through 12, 3 sets of 8 repetitions at 80% 1-RM. LBM significantly increased with training, independent of testosterone (2.3 kg), and with testosterone an increase of 4.2 kg increase was observed. Isometric strength testing showed no effect of training or testosterone, but trained subjects did double their training volume.

Bhasin and others83 showed that testosterone and exercise independently increased LBM and muscular strength in 16 weeks, although no additive effect was observed. Forty-nine HIV-infected males, 18–50 years of age with low serum testosterone levels and a 5% or greater weight loss in the previous 6 months completed the study. Subjects in the exercise groups trained 3 times per week at 60% of their 1-RM for 3 sets of 12–15 repetitions for the first 4 weeks. Weeks 5–10 consisted of 4 sets of 4–6 repetitions, with a 90% 1-RM intensity on heavy days, 80% 1-RM on medium days, and 70% 1-RM on light days. A similar pattern was followed for the remaining weeks, with upper body exercise resistance being increased by 7% and lower body resistance by 12%. Subjects in the exercise alone group showed a 29%–36% increase in strength, while the testosterone only group showed a 17%–28% increase, but there was no additive effect of the two therapies combined. Thigh muscle volume increased by 40 cm3 ($p < 0.001$) in the testosterone-only group, by 62 cm3 ($p < 0.003$) in the exercise-only group, and volume increased by 44 cm3 ($p < 0.001$) in the combined therapy group. Body weight significantly increased in the testosterone only group ($p < 0.001$), but did not change in the other two groups receiving therapy. There was no additive effect of the two therapies on LBM, however, both the testosterone-only ($p < 0.001$) and exercise-only ($p < 0.04$) increased significantly.

Sattler and others84 had 14 subjects perform 3 sets of 8 repetitions of resistance exercise at 80% 1-RM, while simultaneously treating them with a 200-mg injection of nandrolone decanoate (anabolic steroid) during week 1, 400 mg for week 2, and 600 mg for the remainder of the exercise intervention; 14 other subjects received only the nandrolone decanoate. After 12 weeks, the nandrolone-only group had a significant increase in body weight (3.2 \pm 2.7 kg) and lean body mass (3.9 \pm 2.3 kg), but no significant change in body fat. The exercise group also had significant increases in body weight (4.0 \pm 2.0 kg) and lean body mass (5.2 \pm 5.7 kg), which were greater than those observed in the steroid only group, as well as a significant decrease in fat mass (1.2 \pm 1.3 kg). Both groups also showed significant ($p < 0.001$) increases in total thigh, quadriceps, and hamstring muscle area.

Wagner et al.85 recruited 54 men to partici-
pate in biweekly treatments of testosterone at 200 mg during weeks 1 and 2, and 400 mg during weeks 3–8. Prior to the intervention, and again at week 12, psychiatrists administered the Structural Clinical Inventory (used to diagnose mood disorders), the Hamilton Rating Scale for Depression (HAM-D), the Brief Symptom Inventory (measures distress [BSI-total], anxiety [BSI-anxiety], and depression [BSI-depression]), and the Endicott Quality of Life Enjoyment and Satisfaction Questionnaire (Q-LES-Q). Additionally, total body weight, lean body mass, and body fat were measured by bioelectrical impedance at week 0 and week 12. Twenty-nine men reported engaging in exercise during the study, with 10 reporting only resistance exercise and 2 reporting only cardiovascular exercise. These men reported exercising an average of 3.4 days per week, for an average of 87 minutes, at an average intensity of 6.1 of 8, with 8 being the most intense. Exercisers showed significant \(p < 0.000 \) improvements in each of the psychological evaluations, while nonexercisers showed a significant \(p < 0.000 \) improvement in only the HAM-D. The nonexercisers exhibited no changes in body composition, while the exercisers had a significant \(p < 0.000 \) improvement in lean body mass (61.6 ± 7.2 vs. 64.2 ± 8.2 kg). In addition to skeletal muscle adaptations and changes in fat mass, exercise and testosterone used in combination can cause other metabolic changes. Using the exercise and nandrolone deconate treatment schedule as previously discussed, Sattler et al. evaluated the effects of nandrolone on various risk factors of cardiovascular disease. Measurement at week 12 showed a significant increase \(p < 0.03 \) in low-density lipoprotein (LDL) particle size in the nandrolone and exercise group, as well as in total high-density lipoprotein (HDL) cholesterol in the total population \(p < 0.001 \). The LDL changes returned to no significance at week 24, while the total HDL remained significantly higher \(p < 0.01 \) in the exercise-group only. Fasting triglycerides were significantly reduced \(p < 0.01 \) in the total population at week 12, but this was not sustained throughout the 24-week study. These results do not allow for a definitive statement as to the efficacy of anabolic therapy in HIV-infected persons in terms of cardiovascular disease risk factors.

Forty-three HIV-infected men with AIDS wasting syndrome were recruited by Fairfield et al. to participate in this study. The men were randomly assigned to the following groups: placebo with no training \((n = 12) \), testosterone (200 mg/wk) with no training \((n = 10) \), placebo with training \((n = 10) \), and testosterone (200 mg/wk) with training \((n = 11) \). The exercise protocol consisted of 3 sessions per week for 12 weeks. Each workout consisted of 30 minutes on a stationary bicycle at 60%–70% the subjects age predicted maximum heart rate. The resistance exercise for weeks 1 and 2 included 2 sets of 6–8 repetitions at 60% 1-RM; weeks 3 to 6, 2 sets of 6–8 repetitions at 70%; weeks 7 to 9, 2 sets of 6–8 repetitions at 70% and 1 sets 80%; and weeks 10 to 12, 3 sets of 6–8 repetitions at 80%. Both testosterone therapy and exercise were found to increase thigh muscle attenuation, while the combination proved to elicit the greatest increase (no data). No research that examines the effects of lower intensity resistance exercise in HIV-infected populations has been found. The physiologic benefits of resistance training can be attained at intensities below 80% 1-RM, yet investigators have failed to examine this type of training. The rationale for using 80% 1-RM for a resistance training protocol is not described by the researchers, but may stem from recommendations by agencies such as the ACSM, which state that resistance exercise above 80% 1-RM is beneficial for rapid gains in strength. The ACSM manual goes on to say that resistance exercise at 40%–60% 1-RM is sufficient for the development of strength, again begging the question as to why this intensity of training has not been tested.

DISCUSSION

More attention is needed to determine the type, duration, frequency, and intensity of exercise needed to elicit physiologic and psychological changes in the HIV-infected population. It is evident that no distinct connection has been made between exercise duration and intensity on CD4+ cell counts, leaving more research to be done regarding exercise and immune indices in the HIV-infected person. These cell counts can differ by compartment and time
after exercise, so researchers need to be consistent in retrieving data so true comparisons can be made. Furthermore, mixed results have been obtained regarding aerobic exercise prescription and psychological evaluations. Studies of this nature should include a control group that attends some form of therapy for the same amount of time the exercise group is in contact with the research team. Additionally, with prevalence rates as high as 28%, some consideration should be given to examining the effects of exercise in the HIV-infected anemic.

Inflammatory and repair mechanisms of the trained muscle of HIV-infected persons have yet to be fully documented. Changes in inflammatory cytokines (IL-1, IL-6, TNF-α) with HIV-infection, as well as the presence of chronic inflammatory markers caused by chronic infection, may alter the healing process, and consequently, the adaptive ability of muscle to stress. Muscle biopsy would provide invaluable insight into these, and many other questions surrounding muscle in an HIV-infected host.

Finally, a major problem with a number of these studies is low statistical power and major threats to internal validity. The problems can be attributed to differential attrition, with nonequivalent treatment and control groups. Validity of the control groups is also compromised by not having the same amount of personal interaction between treatment and control groups. Error is also present when using heart rate as a measure of work rate because cardiac neuropathy is common to many HIV-infected persons. All study designs should include a nutritional assessment to rule diet out as a confounding variable. Improvement in study design would allow for better comparisons between studies, and may help to explain discrepancies that exist among them, particularly in terms of impact on CD4+ cells.

Study sample characteristics also limit the generalizability of many of these studies. Many studies have been done only using males, leaving the effects of exercise on females relatively unknown.

CONCLUSION

Current research shows that high- and moderate-intensity aerobic training and resistance training implemented by trained professionals are both safe and effective in HIV-infected persons. The intervention studies reviewed in this paper have shown the ability to increase muscular strength and endurance, improve body composition, and improve mood while not adversely compromising the immune system. For persons suffering from symptoms, exhaustive exercise should be avoided, but activity of moderate intensity is still encouraged. It should be noted that all HIV-infected individuals and their trainers should be in constant contact with the patient’s physician regarding progress and changes in health and performance levels. Programs should be designed in accordance with the ACSM guidelines for exercise testing and prescription, and careful attention should be given to avoid overtraining.

REFERENCES

40. Gordon NF, Scott CB, Wilkinson WJ, Duncan JJ, Blair
72. Mustafa T, Sy FS, Macera Ca, et al. Association be-

Address reprint requests to:
Kenneth D. Phillips, Ph.D., R.N.
College of Nursing
University of South Carolina
1601 Greene Street
Columbia, SC 29208

E-mail: Ken.Phillips@sc.edu