Skip to main content
Article
Microbial Electrosynthesis:Feeding Microbes Electricity to Convert carbon Dioxide and Water to Multi Carbon Extracellular Organic Compounds
mBio (2010)
  • Derek Lovley, University of Massachusetts - Amherst
  • Kelly P Nevin
  • Trevor L Woodward
  • Ashley E Franks
  • Zarath M Summers
Abstract

The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small amounts of 2-oxobutyrate. Electrons appearing in these products accounted for over 85% of the electrons consumed. These results demonstrate that microbial production of multicarbon organic compounds from carbon dioxide and water with electricity as the energy source is feasible. Importance Reducing carbon dioxide to multicarbon organic chemicals and fuels with electricity has been identified as an attractive strategy to convert solar energy that is harvested intermittently with photovoltaic technology and store it as covalent chemical bonds. The organic compounds produced can then be distributed via existing infrastructure. Nonbiological electrochemical reduction of carbon dioxide has proven problematic. The results presented here suggest that microbiological catalysts may be a robust alternative, and when coupled with photovoltaics, current-driven microbial carbon dioxide reduction represents a new form of photosynthesis that might convert solar energy to organic products more effectively than traditional biomass-based strategies.

Disciplines
Publication Date
2010
Publisher Statement

DOI: 10.1128/​mBio.00103-10


This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
Citation Information
Derek Lovley, Kelly P Nevin, Trevor L Woodward, Ashley E Franks, et al.. "Microbial Electrosynthesis:Feeding Microbes Electricity to Convert carbon Dioxide and Water to Multi Carbon Extracellular Organic Compounds" mBio Vol. 1 (2010)
Available at: http://works.bepress.com/kelly_nevin/46/