Electrosynthesis of Organic Compounds from Carbon Dioxide Catalyzed by a Diversity of Acetogenic Microorganisms

Derek Lovley, University of Massachusetts - Amherst
Kelly P Nevin, University of Massachusetts - Amherst
Sarah A Hensley, University of Massachusetts - Amherst
Ashley E Franks
Zarath M Summers, et al.

Available at: https://works.bepress.com/kelly_nevin/21/
Electrosynthesis of Organic Compounds from Carbon Dioxide Catalyzed by a Diversity of Acetogenic Microorganisms

Kelly P. Nevin*, Sarah A. Hensley, Ashley E. Franks, Zarath M. Summers, Jianhong Ou, Trevor L. Woodard, Oona L. Snoeyenbos-West and Derek R. Lovley

Department of Microbiology, University of Massachusetts Amherst, Amherst MA

Running Title: Electrosynthesis by acetogens

* corresponding author
106B Morrill 4 North
University of Massachusetts, Microbiology
639 North Pleasant St.
Amherst, MA 01003
ph. 413-577-3103
fx. 413-577-4660
knevin@microbio.umass.edu
Abstract

Microbial electrosynthesis, a process in which microorganisms use electrons derived from electrodes to reduce carbon dioxide to multi-carbon, extracellular organic compounds, is a potential strategy for capturing electrical energy in carbon-carbon bonds of readily stored and easily distributed products, such as transportation fuels. To date, only one organism, the acetogen, *Sporomusa ovata*, has been shown to be capable of electrosynthesis. The purpose of this study was to determine if a wider range of microorganisms might be capable of this process. Several other acetogenic bacteria, including two other *Sporomusa* species, *Clostridium ljungdahlii*, *Clostridium aceticum*, and *Moorella thermoacetica* consumed current with the production of organic acids. In general acetate was the primary product, but 2-oxobutyrate and formate were also formed with 2-oxobutyrate being the predominant identified product of electrosynthesis by *C. aceticum*. *S. sphaeroides*, *C. ljungdahlii*, and *M. thermoacetica* had high (> 80 %) efficiencies of electrons consumed recovered in identified products. The acetogen *Acetobacterium woodii* was unable to consume current. These results expand the known range of microorganisms capable of electrosynthesis, providing multiple options for the further optimization of this process.

Introduction

Microbial electrosynthesis, the process in which microorganisms use electrons derived from an electrode to reduce carbon dioxide to multi-carbon, extracellular products (30), is a potential strategy for converting electrical energy harvested with renewable strategies, such as solar or wind, into forms that can be stored and distributed
on demand within existing infrastructure (22, 30). Storage and distribution is a particular
concern for solar energy because it is a vast energy resource, but harvests energy
intermittently and not necessarily coincident with peak demand (19). Conversion of
electrical energy to covalent chemical bonds may be one of the best storage and
distribution options (19). Microbial electrosynthesis powered by solar energy is an
artificial form of photosynthesis with the same net overall reaction as plant-based
photosynthesis: carbon dioxide and water are converted to organic compounds and
oxygen (30). Potential advantages of microbial electrosynthesis over biomass-based
strategies for the production of fuels and chemicals include: the 100-fold higher
efficiency of photovoltaics in harvesting solar energy; eliminating the need for arable
land; avoiding the environmental degradation associated with intensive agriculture; and
the direct production of desired products (22, 24, 30). However, microbial
electrosynthesis is a nascent concept and much more information on the microbiology of
this process is required.

Microbial electrosynthesis depends upon electrotrophy, the ability of some
microorganisms to use electrons derived from an electrode as an electron donor for the
reduction of a terminal electron acceptor (22). Although the ability of microorganisms to
transfer electrons to electrodes has been studied for some time (9, 23), the capacity for
electron transfer in the opposite direction, from electrodes to cells, has received less
attention. *Geobacter* species are capable of using electrons derived from graphite
electrodes for the reduction of a diversity of electron acceptors, including nitrate (12),
fumarate (11, 12), U(VI) (13), and chlorinated solvents (37). *Anaeromyxobacter
dehalogenans* can also reduce fumarate and reductively dehalogenate 2-chlorophenol
A wide diversity of undefined microbial consortia have been inferred to contain microorganisms capable of reducing these and other electron acceptors, including oxygen, with an electrode as the sole electron donor (22).

Mixed cultures produced methane from carbon dioxide with neutral red, reduced at an electrode surface, as the electron donor. *Methanobacterium palustre* has been reported to reduce carbon dioxide to methane with electrode-derived electrons (6), but there have been difficulties in confirming direct electron transfer in methanogens, because the low potentials required for methanogenesis can also produce significant hydrogen (22, 39).

The finding that an acetogenic microorganism, *Sporomusa ovata*, could use electrons derived from graphite electrodes for the reduction of carbon dioxide to acetate (30) provided the proof of concept that it is possible to convert carbon dioxide and water to extracellular, multi-carbon products with electricity as the energy source. Biofilms of *S. ovata* growing on electrode surfaces produced acetate and small amounts of 2-oxobutyrate concomitant with current consumption. Electron recovery in these products exceeded 85%, consistent with the reaction: $2\text{CO}_2 + 2\text{H}_2\text{O} \rightarrow \text{CH}_3\text{COOH} + 2\text{O}_2$. The fact that carbon dioxide reduction to acetate in acetogens proceeds through acetyl-CoA (10) and that acetyl-CoA is a central intermediate for the production of a diversity of useful organic products, including fuels (2), suggests that microbial electrosynthesis with *S. ovata* could be a strategy for storing electrical energy in chemical products (30).

The purpose of the study reported here was to screen a diversity of acetogenic bacteria available in culture to determine whether acetogens other than *S. ovata* were capable of electrosynthesis.
Materials and Methods

Source of organisms and culture maintenance

Sporomusa silvacetica (DSM 10669), *Sporomusa sphaeroides* (DSM 2875), *Clostridium ljungdahlii* (DSM 13528), *Clostridium aceticum* (DSM 1496), *Moorella thermoacetica* (DSM 21394), and *Acetobacterium woodii* (DSM 1030), were obtained from the Deutsche Sammlung Mikroorganismen und Zellkulturen.

The cultures were routinely grown with H$_2$/CO$_2$ (80:20) at 30 °C using standard anaerobic technique, unless otherwise noted. *Sporomusa* strains were cultured in DSM media 311 omitting betaine, fructose, casitone and resazurin. *C. ljungdahlii* was cultured at 37 °C in DSM media 879 omitting fructose. *A. woodii* and *C. aceticum* were cultured in DSM media 135 with resazurin and fructose omitted. *M. thermoacetica* was cultured at 37 °C in DSM media 60 omitting the fructose, glucose and reducing the yeast extract to 1 g/L.

Cathode Biofilms

Each culture was grown on at least four cathodes in ‘H-cell’ culturing systems as previously described (30). In these systems graphite stick cathodes and anodes (65 cm2, Mersen, Greenville, MI) are suspended in two chambers, each containing 200 ml of media, that are separated with a Nafion 117 cation-exchange membrane (Electrolytica, Amherst, NY). The anode chamber was continually gassed with N$_2$/CO$_2$ (80:20). A potentiostat provides the energy to extract electrons from water at the anode and poise the cathode at -400 mV (versus standard hydrogen electrode). This provides electrons at a
sufficiently low potential for microbial electrosynthesis without significant production of hydrogen (30). No organic products were produced in the absence of microorganisms. Hydrogen-grown cultures were inoculated into the cathode chamber, containing the media appropriate for the organism described above, and the culture was bubbled with a hydrogen-containing gas mixture (N₂/CO₂/H₂, 83:10:7) as electron donor to promote the growth of a biofilm on the cathode surface. As previously described (30), the media was replaced several times to remove planktonic cells and then the gas phase was switched to N₂/CO₂ (80:20). For those cultures capable of current consumption, current consumption was observed within 24 hours and at this point fresh media maintained under N₂/CO₂ was continuously introduced (0.1 ml/min; dilution rate 0.03 h⁻¹) with a peristaltic pump as previously described (29, 32).

Analytical methods

Acetate and other organic acids were measured via HPLC (29). Organic acids were separated on an Aminex NPX-87H column with 8mM H₂SO₄ as the eluent and detected at 210nm with a detection limit of ca. 5μM acetate, formate and 2-oxobutyrate. Hydrogen was measured with a Trace Analytical Model ta3000R gas analyzer (Ametel Process Instruments, Newark, DE). Biofilms were visualized with confocal scanning laser microscopy using LIVE/DEAD BacLight viability stain (29, 32). Samples of graphite electrode were prepared for scanning electron microscopy as previously described (1) using hexamethyldisilazane after ethanol dehydration in order to remove all remaining liquids from the sample. Scanning electron microscopy was performed with a Field Emission...
Gun SEM, model JEOL JSM 6320F. Protein was measured with the bicinchoninic acid method (Sigma, St. Louis, MO) as previously described (29).

Results and Discussion

The previous finding that *Sporomusa ovata* was capable of electrosynthesis led to the evaluation of two additional species of *Sporomusa*, *S. sphaeroides* and *S. silvacetica*. Both *Sporomusa* species consumed current (Figure 1) and formed thin biofilms on the cathode surface, similar to those previously reported for *S. ovata* reducing carbon dioxide as the sole electron donor (30). Cells stained green with Live/Dead stain, suggesting that they were metabolically active, even after extended incubation.

S. sphaeroides produced primarily acetate during current consumption (Figure 1A). Of the electrons consumed, 84% ± 26% (mean ± standard deviation; n= 3) were recovered in acetate. The rate at which *S. sphaeroides* consumed current was ca. 20-fold slower than that previously reported for *S. ovata*. *S. silvacetica* produced primarily acetate with trace accumulations of 2-oxobutyrate (Figure 1B). The recovery of electrons in acetate and 2-oxobutyrate was only 48 ± 6%. This low recovery is attributed to the production of other products, which have yet to be identified, because peaks were observed in HPLC analysis that could not be attributed to any of a wide range of potential products/metabolites. Rates of current consumption for *S. silvacetica* were better than those of *S. sphaeroides*, but still only about 10% those of *S. ovata*. These results demonstrate that the capacity for electrosynthesis can vary significantly within a single genus.
Although *Sporomusa* species are within the *Clostridium* phylum (5), they are gram negative (28), as are the *Geobacter* (12, 13, 37) and *Anaeromyxobacter* (35) species that have previously been shown to accept electrons from electrodes. However, a diversity of gram-positive microorganisms have the capacity to produce current in microbial fuel cells (26, 27, 31, 40), demonstrating that it is possible for gram-positives to establish electrical connections with electrodes. Therefore, the possibility that gram-positive acetogens could reduce carbon dioxide with an electrode as the sole electron donor was evaluated.

Clostridium ljungdahlii consumed current with a concomitant accumulation of acetate and minor production of formate and 2-oxobutyrate over time (Figure 2). Electron recovery in these products accounted for $82 \pm 10\%$ (n=3) of the electrons consumed with $88 \pm 2\%$ of the electrons in these products appearing in acetate. Scanning electron microscopy (Figure 3A) and confocal scanning laser microscopy (Figure 3B) revealed a thin layer of metabolically active cells on the cathode surface, similar to the cathode biofilms of the *Sporomusa* strains.

Clostridium aceticum consumed current more slowly than *C. ljungdahlii* (Figure 4). Unlike any of the other cultures evaluated, 2-oxobutyrate was as important a product as acetate. Recovery of electrons consumed in acetate and 2-oxobutryate was low ($53 \pm 4\%$ n=2). This poor recovery is attributed to the formation of other products that have yet to be identified. As with the other strains evaluated only a thin biofilm developed on the cathode surface.

Moorella thermoacetica was able to consume current with the production of mainly acetate (Figure 5). The electron recovery was $85 \pm 7\%$ (n=3).
Acetobacterium woodii was the only acetogen tested that appeared unable to accept electrons from an electrode. Although A. woodii grew well in the cathode chamber when hydrogen was provided as an electron donor, more than ten attempts to establish cultures with the cathode as the electron donor failed.

Mechanisms for Electron Transfer and Energy Conservation

Mechanisms for microbe-electrode interactions can best be critically evaluated with detailed genetic studies (4, 16, 30, 36), which have not yet been carried out on any microorganisms capable of electrosynthesis. However, as was genetically verified for cathode electron transfer with G. sulfurreducens (12), it does appear that hydrogen is not an intermediary electron carrier between the cathode and the cells. As in previous studies (30), there was no accumulation of hydrogen (<10 ppm) with poised cathodes in the absence of microorganisms. Low, steady-state concentrations (10-100 ppm) of hydrogen were detected when cells were consuming current. This is attributed to the fact that metabolically active anaerobic microorganisms with hydrogenases produce hydrogen to levels that reflect the redox status of the cells (7, 21). These hydrogen levels were well below the > 400 ppm that acetogenic microorganisms require for acetogenesis (8).

Further evidence for a lack of hydrogen production was the finding that A. woodii, which was able to reduce carbon dioxide with hydrogen as the electron donor in the cathode chamber, did not metabolize once the hydrogen was removed.

Many potential mechanisms for microorganisms to accept electrons from cathodes have been proposed (17, 22, 34), based primarily on better established concepts for electron transfer in the reverse direction, i.e. from electrodes to cells. However, the
only experimental study on the proteins that might be involved in electron transfer at the
cathode (36) has indicated that mechanisms for electron transfer from the cathode to
microorganisms may be much different than electron transfer from microorganisms to an
anode. We are currently developing genetic approaches to better evaluate electron
transfer during electrosynthesis.

The inability of *A. woodii* to function on the cathode is consistent with a working
model for how acetogenic microorganisms may conserve energy with electrons directly
derived from cathodes serving as the electron donor (22). In this model, the reduction of
carbon dioxide to organic acids in the cytoplasm consumes protons, generating a proton
gradient, and ATP is generated with proton-dependent ATPases. *A. woodii* would not be
able to conserve energy in this manner because it contains sodium-dependent ATPases
(14, 33).

Outlook for Electrosynthesis

These results demonstrate that a wide diversity of microorganisms are capable of
reducing carbon dioxide to organic acids with electrons derived from an electrode. Such
proof-of-concept studies are needed because microbial electrosynthesis has potential to
be an environmentally sustainable approach for the large-scale production of fuels and
other chemicals from carbon dioxide (22, 30). However, substantial optimization will be
required. The rates of electron transfer reported here are comparable to those in earlier
studies on current production in microbial fuel cells fashioned from the same H-cell
devices (3). Transforming microbial electrosynthesis to a practical process is likely to
require a combination of improved reactor and material design to enhance electron transfer.

Electrodes are not natural extracellular interfaces for microorganisms (20). Adaptive evolution has proven to be an effective strategy for improving the rates of electron exchange between microorganisms and external electron acceptors (38, 41) and could be a strategy for improving the current-consuming capabilities of microbes capable of microbial electrosynthesis. Furthermore, sequencing the genomes of adapted strains can provide insights into the mechanisms of extracellular electron exchange (38).

Generating products other than acetate will probably require modifying metabolic pathways of electrosynthesis microorganisms. *C. ljungdahlii*, which as shown here, is capable of electrosynthesis, has already been engineered to produce small amounts of butanol (18) and may be suitable for large-scale biofuel production (15). Genome-scale modeling and analysis can rapidly enhance the understanding of under-studied microorganisms (25) and is likely to be key to optimizing microbial electrosynthesis.

Acknowledgements

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency – Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000087” and the Office of Science (BER), U. S. Department of Energy, Cooperative Agreement No. DE-FC02-02ER63446.
References

biofilms of *Geobacter sulfurreducens* comparable to mixed community microbial

and Fe(III)-reducing bacterium phylogenetically related to *Clostridium butyricum*
isolated from a microbial fuel cell. Anaerobe 7:297-306.

32. Reguera, G., K. P. Nevin, J. S. Nicoll, S. F. Covalla, T. L. Woodard, and D. R. Lovley. 2006. Biofilm and nanowire production leads to increased current in

Acetobacterium woodii and identification as a Na+-translocating F1FO-type

as electron donors for microbial metabolism: which extracellular electron transfer
mechanisms are involved? Bioresource Technology 102:324–333.

35. Strycharz, S. M., S. M. Gannon, A. R. Boles, K. P. Nevin, A. E. Franks, and
D. R. Lovley. 2010. *Anaeromyxobacter dehalogenens* interacts with a poised
graphite electrode for reductive dechlorination of 2-chlorophenol. Environ.

Figure Legends

Figure 1. Electron consumption and product formation over time with *Sporomusa sphaeroides* (A) and *Sporomusa silvacetica* (B). Results shown are from a representative example of three replicate cultures.

Figure 2: *Clostridium ljungdahlii* electron consumption and product formation over time. Results shown are from a representative example of three replicate cultures.

Figure 3. Confocal scanning laser microscopy top down and side view images of cathode biofilm of *Clostridium ljungdahlii* stained with LIVE/DEAD BacLight viability stain after 14 days of growth on cathode (A) and scanning electron micrograph of cathode biofilm (B) after 14 days.

Figure 4. *Clostridium aceticum* electron consumption and product formation over time. Results shown are from a representative example of two replicate cultures.

Figure 5: *Moorella thermoacetica* electron consumption and product formation over time. Results shown are from a representative example of three replicate cultures.