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The adaptive landscape for an industrially relevant phenotype is determined by the effects of
the genetic determinants on the fitness of the microbial system. Identifying the underlying
adaptive landscape for a particular phenotype of interest will greatly enhance our abilities to
engineer more robust microbial strains. Visualizing evolution in real-time (VERT) is a recently
developed method based on in vitro adaptive evolution that facilitates the identification of
fitter mutants throughout the course of evolution. Combined with high-throughput genomic
tools, VERT can greatly enhance the mapping of adaptive landscapes of industrially relevant
phenotypes in microbial systems, thereby expanding our knowledge on the parameters that
can be used for strain engineering.

Keywords: adaptive evolution, strain development, population dynamics, evolutionary engineering

INTRODUCTION
The majority of industrially relevant phenotypes in microbial sys-
tems involve multiple loci and mechanisms. The identities of these
genetic determinants are generally not known, making the rational
engineering of strains for these complex phenotypes challenging.
Classical strain engineering for these traits generally involve several
rounds of random mutagenesis followed by selection. However,
with successive rounds of induced mutagenesis, mutations that
are deleterious or have negative epistatic effects tend to accu-
mulate by hitchhiking with beneficial alleles. If the desired trait
can be coupled with growth, in vitro adaptive evolution can be
used to improve the desired phenotype. This process is accom-
plished by applying a selective pressure so that beneficial mutants
(mutants with increased fitness) can be obtained through the pro-
cess of natural selection. The identities of the mutations residing
in adaptive mutants obtained through natural selection or muta-
genesis and their subsequent effects on cellular processes must
be leveraged for further rational engineering. With advances in
genomic tools, the genes and mechanisms involved can now be
identified using combinations of whole-genome re-sequencing
(Comas et al., 2012; Toprak et al., 2012), transcriptomics (Fitzger-
ald and Musser, 2001; Paulsen et al., 2001), proteomics (Callister
et al., 2008; Boulais et al., 2010), and metabolomics (Ding et al.,
2010; Goodarzi et al., 2010) studies.

In vitro adaptive evolution has been used extensively for
the engineering of microbial system for both tolerances to
inhibitors (Minty et al., 2011) and for enhanced product for-
mation (Hu and Wood, 2010). The adaptive landscape, also
known as fitness landscape, is used to describe the collection
of relative fitness effects of each genotype under a specific con-
dition. Detailed molecular characterization of adaptive mutants
isolated from in vitro adaptive evolution experiments provides
insights into the adaptive landscape for the phenotype of interest.

Characterization of the adaptive landscape will significantly
enhance our knowledge on the important parameters under-
lying complex phenotypes needed for the rational engineering
of strains.

In adaptive evolution, clones are typically isolated from the
evolving population after an arbitrarily elapsed time or at the end
of the experiment. However, since the evolving population is het-
erogeneous, interclonal competition (clonal interference; Shaver
et al., 2002; Kao and Sherlock, 2008) may lead to the extinction
of beneficial mutants. Depending on the population structure
during the course of evolution, the random isolation of adap-
tive mutants may fail to identify some adaptive mutations that
arise during the course of the evolution. This review will (1) dis-
cuss factors that influence population structure and the impact
of complex population dynamics on evolutionary engineering
and (2) describe a novel evolutionary engineering method called
visualizing evolution in real-time (VERT), that was recently devel-
oped to help address some of these limitations in traditional
evolutionary engineering approach.

ADAPTIVE LANDSCAPE
The idea of an adaptive landscape was first introduced as “sur-
faces of selective value” by Wright in 1931 (Wright, 1931, 1982,
1988). The adaptive landscape is a multi-dimensional surface rep-
resentation of the biological fitness of an organism in a particular
environment. In an adaptive landscape map for a specific condi-
tion, each genotype is correlated with a fitness value (see Figure 1
for an illustration). The resulting landscape can be flat with a sin-
gle optimum where the evolving population is required to acquire
a specific set of mutations, or can be rugged where the accessible
optima will depend on the starting point within the landscape. It
has been demonstrated that bacteria encounter both types of land-
scapes in evolution experiments (Orr, 2005; Weinreich et al., 2006;
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FIGURE 1 | Simplified adaptive landscape for two alleles (for one

background genotype in one condition). The figure depicts fitness values
for beneficial (positive relative fitness values) and deleterious (negative
relative fitness values) combinations of alleles.

Gresham et al., 2008). Natural selection usually drives a population
to the closest local optimum, but not necessarily the global opti-
mum. Evolving populations tend to be trapped in suboptimal
solutions (Lenski et al., 1998) in asexual systems. Thus to reach
the global optimum, processes that allow for large “jumps” in
the adaptive landscape, such as recombination and horizontal
DNA transfer, are necessary to reach new regions of the adap-
tive landscape in a semi-rational manner. Recombination allows
the combination of beneficial mutations with positive synergy and
the removal of deleterious mutations acquired in the evolutionary
process while horizontal gene transfer allows the acquisition of
new functions.

THEORIES GOVERNING POPULATION STRUCTURE DURING
ASEXUAL EVOLUTION
Numerous theories have been proposed for the population struc-
ture in in vitro adaptive evolution experiments. Several factors,
including the selective pressure, size of the population, rate of
mutations, frequency of beneficial mutations, and relative fitness
of beneficial mutants, are involved in determining the population
structure during evolution. In the simplest case, a well-adapted
mutant rises in the population, and due to its increased fitness
compared to background, the genotype will expand and eventu-
ally replace the parental population. This population structure
is applicable to situations where the evolution is mutation-
limited, the population size is small, and the time between the
establishments of successive mutations is much larger than the
time it takes for a beneficial mutant to fix in the population
(strong positive selection). This theory, called clonal replacement
(also called succession-fixation regime or strong-selection weak-
mutation regime), implies that only one mutation can become
fixed at a time, leading to successive complete selective sweeps
(depicted in Figure 2A). The resulting population can be assumed
to be homogeneous except during the periods when the bene-
ficial mutant is sweeping through (Desai et al., 2007). However,
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FIGURE 2 |Theories governing population structure during asexual

evolution. The graphs represent the population structure as a function of
time during asexual evolution. The capital letters represent different
beneficial mutations in the population. The gridded boxes represent a
snapshot of the frequency of different genotypes in the population at that
one point in time. (A) Clonal replacement model, where successive
sweeps and fixation of different beneficial mutations take place in a small
population; snapshots of the genotypes at different elapsed times show
that the population is homogeneous except when the beneficial mutant is
sweeping through the population. (B) Clonal interference model, where
different adaptive mutants compete until one with the largest fitness
advantage sweeps through and becomes the founding genotype for
subsequent evolution (e.g., mutations A, B, and C compete until C
completely takes over the population). (C) Multiple mutations model,
where multiple mutations occur in the same lineage before fixation. In the
latter two population structures, some adaptive mutations are lost from the
population, and depending on when adaptive mutants are isolated, some
mutants (and thus the underlying molecular mechanisms for adaptation)
may not be identified.
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when the mutations are established at a faster rate than the rate
of fixation, multiple mutant lineages can coexist and compete for
resources until one with the largest fitness advantage outcompetes
all the other genotypes and become the next founding genotype
for subsequent evolution. This theory, known as clonal interfer-
ence (or one-by-one clonal interference), assumes that a single
mutation can be fixed at a time, producing heterogeneous popu-
lations except immediately after the sweeping of the fittest mutant
(depicted in Figure 2B); this theory focuses on the competition
between different mutations with positive relative fitness (Gerrish
and Lenski, 1998; Orr, 2000; Gerrish, 2001; Kim and Stephan,
2003; Campos and de Oliveira, 2004; Wilke, 2004). The two
theories described above assume that only one beneficial muta-
tion can be fixed at a time. However, if the population size is
large enough or the rate of mutation is high enough, multiple
mutations can occur in the same lineage before fixation, lead-
ing to the multiple-mutation model (Desai et al., 2007; depicted
in Figure 2C). The importance of this third theory on popula-
tion structure has been demonstrated in several theoretical and
experimental studies (Yedid and Bell, 2001; Shaver et al., 2002;
Bachtrog and Gordo, 2004). In general, the population size in lab-
oratory conditions is large enough that either one-by-one clonal
interference or multiple mutations models shape the population
structure.

FACTORS INFLUENCING POPULATION DYNAMICS
As mentioned above, factors such as mutation rate, relative fit-
ness advantage, population size, and rate of beneficial mutations
are important in shaping the population dynamics during evo-
lution. We will briefly discuss each of these factors and how they
impact adaptive evolution in different experimental systems. Since
the evolution dynamics is dependent on the mutation rate, one
would assume higher mutation rate to be advantageous for speed-
ing up evolution by generating mutational diversity. However, an
increase in mutation rates does not necessarily accelerate the pace
of adaptation (Arjan et al., 1999). While a low mutation rate would
result in a slow discovery of beneficial mutations, prolonged expo-
sure to high mutation rate (such as the use of a mutator strain)
increases the occurrence and accumulation of deleterious muta-
tions as well as the hitchhiking of apparent “silent” mutations
during the course of evolution, increasing the genetic load (Elena
and Lenski, 2003; Gresham et al., 2008; Barrick et al., 2009). This
is evidenced by the rarity of mutator strains in Lenski’s long-term
adaptive evolution experiment with Escherichia coli; where muta-
tors were found only after thousands of generations of evolution
(Elena and Lenski, 1997; Sniegowski et al., 1997; Arjan et al., 1999;
Vulic et al., 1999; Lenski et al., 2003) and the fitness advantage con-
ferred by the mutator strains is most likely a result of overcoming
a mutation-limited bottleneck during the evolution. Mutagens are
often used to increase genetic diversity in evolution experiments.
However, since it is not convenient to periodically mutagenize the
evolving population, a controllable mutator system can be used,
where the expression of mutator alleles can be induced only when
needed (Selifonova et al., 2001).

The time it takes a beneficial mutation to become the majority
in the population is called the fixation time and is an important
factor in determining the population dynamics during evolution.

This fixation time depends mainly on two factors, genetic drift
and the fitness advantage of the beneficial mutation in compar-
ison with the background, and is inversely proportional to the
relative fitness advantage of the beneficial mutant (Lenski et al.,
1991). A beneficial mutation with a 10% relative fitness advantage
will become the majority of the population after approximately
250 generation in serial batch transfer experiments (Elena and
Lenski, 2003) and 100 generations in continuous culture exper-
iments (Gresham et al., 2008). Genetic drift is defined as the
probability that a beneficial mutation survives extinction (Joanna,
2011). In in vitro adaptive evolution experiments, the main source
of drift is genetic bottleneck due to random sampling. This phe-
nomenon takes place when a significant amount of the population
suddenly vanishes, as occurs when a fresh batch culture is inoc-
ulated from an overnight culture. The survival probability of an
allele carrying a beneficial mutation that arose in the culture will
depend on its proportion in the culture at the time of transfer
and the amount of inoculum transferred; therefore there is a
chance that it could be completely lost due to the stochasticity
of sampling. In evolution experiments using serial batch trans-
fers, genetic bottlenecks between transfers affect heterogeneity
by transferring a small fraction of the population. A reduction
of the effect of genetic bottleneck could be achieved by using
continuous culture systems such as chemostats or turbidostats
(Conrad et al., 2011), where a much smaller genetic bottleneck
is present.

VISUALIZING EVOLUTION IN REAL-TIME
As stated above, the population sizes in most in vitro evolution
experiments are large enough to result in heterogeneous pop-
ulations due to the effects of clonal interference and multiple
mutations. Thus, adaptive evolution experiments can significantly
benefit from a more systematic isolation of adaptive mutants
and ramping-up schedules for selective pressures. The VERT
system was developed (Kao and Sherlock, 2008; Huang et al.,
2011) to address these limitations in traditional adaptive evolu-
tion experiments. The basis for VERT is the use of isogenic, but
differentially labeled (typically with fluorescent proteins) strains
to seed the initial evolving population. As a beneficial mutant
arises and expands in the population, the colored subpopulation
that it belongs is expected to increase in proportion. Using flu-
orescent activated cell sorting (FACS), the relative proportions
of each of the colored subpopulations at each point in time
can be measured. Each sustained expansion in the proportion
of a colored subpopulation is called an “adaptive event.” Thus,
the tracking of the different colored subpopulations can serve
as a tool for determining when a fitter mutant arises in the
population.

The relative subpopulation frequency data collected through-
out the course of adaptive evolution represent the history of the
population. The observed increase in the relative proportion of a
colored subpopulation from consecutive data points is assumed
to be the result of the expansion of an adaptive mutant. There-
fore, adaptive mutants can be isolated from samples based on
the observed expansions and contractions, by sorting out the
colored subpopulation that is expected to contain the adaptive
mutant of interest. Since experimental data can suffer from noise,

www.frontiersin.org May 2012 | Volume 3 | Article 198 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Microbiotechnology,_Ecotoxicology_and_Bioremediation/archive


“fmicb-03-00198” — 2012/5/26 — 19:52 — page 4 — #4

Reyes et al. Visualizing evolution in real-time

the identification of adaptive events may be challenging. Visual
inspection of the data to identify adaptive events is a crude, but
relatively effective method (Kao and Sherlock, 2008; Huang et al.,
2011). However, since small changes in relative frequencies may
be difficult to distinguish from noise, computational methods
will provide less biased annotation of adaptive events; our group
recently developed a supervised learning method for analysis of
VERT data (Winkler and Kao, 2012).

The basic feature of the VERT system, the number of labeled
subpopulations, is the aspect that can most readily be manipulated
directly by the experimentalist, but is somewhat restricted by the
available equipment and properties of the labels themselves. The
number of fluorescent markers used represents distinct subpop-
ulations that can be visualized during the course of an evolution
experiment. VERT labels must have distinguishable emission spec-
tra and preferably have no significant fitness effect in the condition
of interest. Widely used fluorescent proteins such as GFP, YFP, and
RFP can be detected on most FACS machines and usually have
little effect on the physiology of their host strains. At a minimum,
two labeled subpopulations are trivially required to observe popu-
lation dynamics. Three subpopulations, employing RFP, GFP, and
YFP labeled strains, have been used successfully (Kao and Sherlock,
2008; Huang et al., 2011) in fungal systems. Additional subpopula-
tions can be included if suitable equipment is available. Simulated
evolution may prove a useful tool for unraveling the connec-
tion between adaptive event discovery and initial population
diversity.

Visualizing evolution in real-time-based in vitro adaptive evo-
lution experiments can be used in either serial batch transfer or
continuous culture systems. Provided that the different fluores-
cently marked strains show no significant fitness bias, then equal
proportions of each strain maybe used to seed the population
for evolution. Samples are then withdrawn and quantified using
FACS every few generations to track the population dynamics. It
is typically assumed that the adaptive mutant will expand until
a fitter mutant arises in another subpopulation and expands suf-
ficiently to impede its’ expansion. It is further assumed that the
generation at which the expanding subpopulation has reached a
maximum proportion will contain the largest fraction of the adap-
tive mutant responsible for the expansion, simplifying the isolation
of the mutant considerably.

In traditional adaptive evolution experiments, selective pres-
sure is generally ramped-up at arbitrarily chosen time intervals. An
alternative to this approach, based on using a feedback controller
to maintain selective pressure so that the overall population growth
rate approaches a user-defined set point, was recently introduced
by Toprak et al. (2012). Since the use of VERT allows the users to
readily identify when adaptive events occur, it can be used to design
a more systematic ramp-up schedule. For example, an increase in
selective pressure could be applied when a minimum of 2 adaptive
events are observed. The optimal frequency of ramp-up as a func-
tion of observed number of adaptive events may differ depending
on the adaptive landscape for the phenotype of interest and needs
to be investigated.

The isolated adaptive mutants can be further character-
ized to elucidate the molecular mechanisms of resistance in
the selective pressure of interest. Whole-genome re-sequencing,

transcriptomics, proteomics, and metabolomics analyses can be
used to elucidate the evolutionary trajectories during the process
of adaptive evolution. The availability and cost of whole-genome
re-sequencing has improved significantly, but in most cases is
still more expensive than transcriptome analysis using DNA
microarrays. VERT tracks the individual subpopulations, mak-
ing it easier to distinguish whether genome-wide perturbations
observed in the transcriptional regulation found in different iso-
lates arose independently or transitively without whole-genome
re-sequencing data (if the isolates come from different col-
ored subpopulations). Since not all the observed perturbations
are involved in the complex phenotype of interest, common
perturbations observed in independent lineages provide a level
of confidence for their involvement. The potential adaptive
mechanisms identified can serve as targets for further strain
engineering.

The original development of VERT used the yeast Saccha-
romyces cerevisiae evolving under glucose-limited conditions; a
three-colored VERT system was used to seed eight parallel popu-
lations (Kao and Sherlock, 2008). The VERT data from one of the
populations is shown in Figure 3; generations and subpopulations
from which adaptive mutants were isolated from are indicated.
Detailed genotypic and transcriptomics analyses of the isolated
adaptive mutants showed convergence in the perturbation of the
protein kinase A regulatory network in independent lineages (Kao
and Sherlock, 2008). Subsequent development and application
of a two-colored VERT system in E. coli for n-butanol tolerance
revealed previously undiscovered resistance mechanisms (Reyes
et al., 2012).
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FIGURE 3 | Example population dynamics from a three-colored VERT

system (adapted from Kao and Sherlock, 2008). The colored bars
represent the relative proportions of each colored subpopulation. An
increase in the relative proportion of a colored subpopulation is indicative of
the occurrence and expansion of an adaptive mutation in that
subpopulation, and is defined as an adaptive event. Under the assumption
that the adaptive mutant responsible for the specific adaptive event is at its’
highest proportion at the end of the sustained expansion, the adaptive
mutants are isolated from the expanding subpopulation from the generation
at the end of each expansion. The generation and colored subpopulation
from which adaptive mutants were isolated are numbered 1–5.
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CONCLUSION
Understanding the adaptive landscape for the phenotypes of inter-
est is important for the rational engineering of strains. The
use of evolutionary engineering has been used extensively to
improve strains for complex phenotypes where there is lim-
ited knowledge on the associated genetic determinants. Advances
in molecular biology tools in recent years have significantly
improved our ability to obtain insights into the molecular mech-
anisms involved in the desire phenotypes in isolated adaptive
mutants from in vitro evolution experiments. VERT was a recently
developed tool for evolutionary engineering that can helps to

provide a rough population structure for the evolving popula-
tion, allowing the systematic isolation of adaptive mutants and
ramp-up of selective pressure. Combined with advanced genomic
tools, use of VERT in evolutionary engineering can help to gain
additional insight regarding the adaptive landscape for complex
phenotypes.
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