Does open source software have a place in school jurisdictions’ IT portfolios? Researching open source software applicable for use in Australian schools

Kathryn Moyle
Does open source software have a place in school jurisdictions’ IT portfolios?

Researching open source software applicable for use in Australian schools

Kathryn Moyle
Department of Education and Children’s Services
moyle.kathryn@saugov.sa.gov.au

Abstract
The question of whether open source software has a place in school jurisdictions’ IT portfolios, is an urgent one nationally. Schools and school jurisdictions are concerned about the recurrent costs of proprietary software licences. Using data drawn from a national research project conducted by the South Australian Department of Education in 2004 about the potential use of open source software in schools, this paper outlines some of the research undertaken that specifically addressed two of the research questions:

- What are the models and their underlying assumptions for identifying total cost of ownership for using open source software operating systems and applications within Australian and New Zealand schools?
- What are the components for determining total cost of ownership of open source software that could be used within school sectors and systems compared to existing products?

Against the backdrop of European experiences, this paper outlines the findings concerning these two questions.

Introduction

Between February and June 2004 the Department of Education and Children’s Services in South Australia conducted a national research project funded through the National Fund for Educational Research. The purpose of the study was to investigate the use of open source software operating systems and applications within school sector environments with a view to informing local, state and national policy decisions about its potential as an alternative to existing software by:

- trialing open source software in South Australian school environments;
- collaborating with others interested in this research; and
- rapidly making the findings from this research available to other schooling sector jurisdictions.

The overarching question for the research was: ‘does open source software have in school jurisdictions’ IT portfolios?’ The following research questions were used to address this overarching question:

1. What is the potential for using open source operating systems and software applications for wide scale deployment, as an alternative to proprietary software within school sector environments?
2. What open source software operating systems, applications and technical documentation, currently exist, that have applicability to Australian school sector?
3. What are the models and their underlying assumptions for identifying total cost of ownership for using open source software operating systems and applications within Australian schools?
4. What are the components for determining total cost of ownership of open source software to be used within school sectors and systems compared to existing products?
5. What sorts of skills and expertise are required in order to use and maintain the use of open source software?

Data has been collected through researching, testing and trialing possible open source software solutions; and by comparing open source software with proprietary software.

The following six research methods were used concurrently:

1. Total cost of ownership framework(s) development and analysis
2. Collection of case studies
3. Review of open source software and technical documentation
4. Testing of open source software in a controlled environment
5. Trialing of open source software in a school
6. Skills audit

The major focus of the research was on the development of total cost of ownership framework(s) and analysis of other total cost of ownership work. This paper outlines some of the work undertaken concerning the research about the total cost of ownership of IT in schools.¹

What is total cost of ownership?
‘Total cost of ownership’ is a phrase developed by the Gartner Group² to refer to all the costs associated with the use of computer hardware and software including the administrative costs, licence costs, deployment and configuration, hardware and software updates, training and development, maintenance, technical support and any other costs associated with deploying, operating, maintaining and upgrading computer systems in schools and sectors.

Total Cost of Ownership analyses are undertaken for a variety of purposes including the following:
- To identify the components of an information technology (IT) deployment;
- To enable calculations of what the total assets are worth;
- To allow for the weighing up of options;
- To help in the management of risk; and
- To enable analysis from a system perspective.

Examining total cost of ownership components and frameworks is important because:
- The role of technology within classrooms and schools should be outlined;
- Purchases of hardware, software, licences, professional development and other associated costs should match the roles required of the technology in classrooms and schools and deliver a return on investment;
- Decisions about what purchases can best be handled at the school, regional and central levels can be made based on documented total cost of ownership analyses;
- Schools, regions and central agencies have to budget over time according to the architecture and standards;
- Completed total cost of ownership frameworks provide a basis upon which to monitor costs over time.

The following considerations should be kept in mind when undertaking a total cost of ownership analysis:
- There is ‘no’ right number;
- A low total cost may mean that the technology is not being used to its full advantage;
- First data is likely to be incomplete or based around rough estimates;
- First data helps us to focus on what we don’t know;
- Total cost of ownership work should be repeated at regular intervals;
- A total cost of ownership analysis should lead to more formal record-keeping;
- Data collection over time should become easier and more accurate;
- Regular total cost of ownership analyses are valuable for monitoring and tracking changes over time;
- Individual organisations should use their own data within an agreed total cost of ownership framework to enable comparisons of final figures over time and with other agencies using the same framework.

Experiences from Europe

Considerably more work investigating the potential for using open source software in the public sector and in education has been undertaken in Europe than has occurred in Australia. Research by the Interchange of Data between Administrations (IDA) in 2001 provides insights into the use of open source software in public administrations within the European Union. The diagram below summarises the reasons why six selected public sectors within the European Union are using open source software.

¹ That is, this paper is addressing the questions 3 and 4 on the previous page.
² See http://www3.gartnergroup.com
Diagram one: Reasons for using open source software in the six European countries’ public sectors (Interchange of Data between Administrations, 2001, p15)

Total cost of ownership models

To determine the total cost of IT deployment in schools and to consider whether open source software represents a cost-effective option, several models for analysis are available to use. Here I briefly outline three ways of considering the financial costs associated with using open or proprietary software.

The Gartner Group approach to undertaking Total Cost of Ownership analyses is to divide the costs for ICT into groups that enable consistent and reliable comparisons to be made. The Gartner Total Cost of Ownership model uses two major categories to organise costs: direct or budgeted costs and indirect or unbudgeted costs.

Gartner refers to direct costs as budgeted costs (albeit that some costs may be hidden) such as the capital, software and labour costs spent by an organisation such as a school or department of education on the delivery of information technology products and services. These costs include capital expenses, IT management, IT support, maintenance and upgrade costs, communication fees, outsourcing fees, procurement costs, training and professional development costs, travel and procurement costs. The purpose of identifying the direct costs is to determine the overall costs for the provision of an IT infrastructure.

Gartner refers to indirect costs as those unbudgeted items that are not seen as having a direct, causal relationship to the provision of IT infrastructure but nonetheless do have an impact. Indirect costs include self and peer support, and items that generate inefficiencies. These costs tend to be difficult to identify and quantify.

The Consortium for School Networking (CoSN) is a United States national non-profit organization. CoSN is sponsored by a range of organisations including major IT vendors including Gartner and the Federal Department of Education. They have developed a total cost of ownership framework for use in schools. The CoSN Total Cost of Ownership checklist components are:

- Professional development
- Support
- Connectivity
- Software
- Replacement costs
- Retrofitting

A report prepared concerning open source software use in the Danish public sector identified the following components for assessing cost-effectiveness of open source software compared with proprietary software products:

- Procurement prices and or licence costs
- User friendliness: ie the effect of the software’s user-friendliness on indirect costs in the user’s environment;
- Requirements for end-user training;
- Requirements for training in the internal IT maintenance function or for new service contracts;
- Software compatibility with surrounding software (ie degree of interoperability);
- Surrounding hardware and technical assumptions especially capacity requirements;
- Software for maintenance and support;
- Expertise for maintenance and support; and
- Software operating stability.

The IDA Report (2001) *Study into the use of open source software in the public sector* recommends that more consideration should be given to open source software Total Cost of Ownership models, so that budget transfers (eg from free or low-cost licenses to services and training) can be accommodated. This IDA report argues that better value for public money should be taken into consideration through the financial analysis model used which would see compensation for the lower cost of licences with higher services and training.

IT deployment options

It is apparent from the literature as well as this research, that costs of IT are influenced by the deployment model used. The following table summaries a continuum of characteristics of IT deployment. Schools and different agencies will be able to identify themselves somewhere on the continuum. A total cost of ownership analysis should facilitate identification of where schools and corporate offices currently are on this continuum and to determine to where they would like to move.
<table>
<thead>
<tr>
<th>Components of TCO</th>
<th>Continuum of characteristics of deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software (including upgrades)</td>
<td>IT deployment theory (target) (Central office)</td>
</tr>
<tr>
<td></td>
<td>Centralised, standardised purchasing is cheaper than local purchasing</td>
</tr>
<tr>
<td></td>
<td>The greater diversity of software the more support is required</td>
</tr>
<tr>
<td></td>
<td>Upgrading of software is necessary</td>
</tr>
<tr>
<td></td>
<td>Only centrally approved software is installed on computers</td>
</tr>
<tr>
<td>Hardware (including repairs & replacement costs)</td>
<td>Keep the age of computers in a narrow range [based on asset depreciation and rollover]</td>
</tr>
<tr>
<td></td>
<td>It is cheaper to manage the purchase and deployment of hardware centrally [economies of scale]</td>
</tr>
<tr>
<td></td>
<td>Asset register is maintained and updated centrally according to standards</td>
</tr>
<tr>
<td>Networks</td>
<td>Fully integrated, connected, interoperable</td>
</tr>
<tr>
<td>Compliance and avoiding lock-in</td>
<td>Compliance costs are managed centrally</td>
</tr>
<tr>
<td></td>
<td>One inventory system is in place and regularly updated</td>
</tr>
<tr>
<td></td>
<td>Legal requirements are managed and monitored</td>
</tr>
<tr>
<td></td>
<td>Lock-in to one proprietor for given products and services is avoided</td>
</tr>
<tr>
<td>Maintenance and support</td>
<td>Support is allocated at a ratio of one support person to every 50 computers</td>
</tr>
<tr>
<td></td>
<td>Support relies on goodwill, local knowledge and a mixture of teachers, students and others</td>
</tr>
<tr>
<td></td>
<td>Required modifications to buildings occur when funding is available</td>
</tr>
<tr>
<td>Associated physical infrastructure</td>
<td>Required modifications to buildings to accommodate the technology (eg electrical, heating, cooling, desks) are budgeted and met</td>
</tr>
<tr>
<td>Professional development</td>
<td>15-30% of total annual budget is devoted to staff professional development</td>
</tr>
<tr>
<td></td>
<td>Is included in the price of the licensing agreement</td>
</tr>
</tbody>
</table>

4 Based on work by COSN: see http://www.cosn.org
5 Gartner assumption. See http://www3.gartnergroup.com
6 Proposed amount of professional development required in the US
Where to from here?
As a result of this research project several reports have been developed and will be published on EdNA. The reports will also be circulated to all education department Chief Information Officers, for their consideration. As the acquisition, deployment and maintenance of school systems IT infrastructure is a sector or state/territory responsibility, it will be up to each jurisdiction to determine what actions they wish to take as a result of the research undertaken and reports prepared.

In South Australia, the Department of Education and Children’s Services continues to investigate open source software options and in particular Moodle as a potential online learning environment for use in schools.

References
