Froebel's Legacy
Kathleen A Strub-Richards, University of Massachusetts - Amherst

Available at: https://works.bepress.com/kathleen_strub-richards/6/
Froebel’s Legacy

Kate Strub-Richards

May 15, 2001
When Froebel was growing up in the late eighteenth century, young children under the age of seven didn’t attend school. There was no general education curriculum geared toward young children and no socially recognized value in attempting to teach them (Brosterman, 1997). Friedrich Froebel, through his experience with young children, was the first to see that “constructive, directed” play was extremely beneficial for children under the age of seven. Froebel was greatly influenced by the Swiss educator, Pestalozzi, and Girard, whose ideas, including the training of teachers, methods of observation and hands before books learning, were very revolutionary for the time. Yet they both believed that the place for young children was the home not school. Froebel, who incorporated their ideas into his own methods, saw, through close observation, that infants benefited from communal life. He therefore built up a system based on their needs that allowed for their mental and spiritual growth. This lead him to found the first kindergarten (Woodham-Smith et al, 1969).

Froebel’s Childhood

Froebel was born on April 21, 1782 in Oberweissbach, a village in the Thuringia forest. He was the fifth son of the village pastor. His mother died when he was an infant and at age four his father remarried. His new step-mother was kind enough until her own biological child was born and then she devoted all her time to her new infant and basically neglected little Friedrich. Froebel’s yearning for motherly love was a significant factor in his creation of the kindergarten. Froebel's early years were not happy ones. His father taught him to read yet he did so poorly. He became very introspective and spent a lot of time alone in the forest. At age ten he went to live with his kind uncle and his outlook on life improved considerably. In 1797, when Froebel was fifteen he apprenticed as a forester. Here he was able to indulge his love of nature as he gained knowledge of plants. He remained introspective as he devoted his spare time to mathematics and languages. Two years later he concluded his apprenticeship and entered the University of Jena. He studied scientific subjects connected w/ forestry and mathematics (of which he had an aptitude) but, through no fault of his own he fell into debt, and spent nine weeks in the University prison. His father paid his debt but also
disowned him. In 1802 Froebel’s dad died and Froebel left home and was employed in forestry and land surveying (Brosterman, 1997; Woodham-Smith, 1969).

Froebel as a Teacher and a Learner

The turning point in Froebel’s life came about in 1805, his kind uncle died and left Froebel a small legacy. Frederich planned to use this money to further his education. He went to Frankfurt intending to study architecture but instead met Herr Gruner, a pupil of Pestalozzi and headmaster of Frankfurt Model School. Gruner persuaded Froebel to become a teacher in his school. Froebel taught arithmetic, drawing, geography and German and felt he had found his true vocation. He took walks with his students, originally for the intent of botanizing, but altered this to include geography and ended up conducting an environmental study. Froebel stayed for just a fortnight and left the school after he was offered a job as a full time tutor for three boys. He’d been impressed with the Model School but was also critical. He planned to return. As a tutor he concentrated on nature study and gardening with his three young pupils and in 1808 accompanied them to Yverdon, a school run by Pestalozzi (Brosterman, 1997).

Pestalozzi life Rousseau frequently compared the development of the mind to that of a tree, just like nature creates the largest tree incrementally from a single seed the teacher must endeavor to make gradual additions to a child’s knowledge with every step taken. Central tenets of Pestalozzi’s theories were:

1. **To be meaningful, all human activity must be self-generated; therefore the traditional educational methods of rote memorization and mechanical drill are psychologically unsound.**
2. **Perception developed by means of number, form and finally language, is the fundamental source of all learning.**
3. **Because children learn through active engagement, physical education progressing from simple to complex movements (hiking, dancing sports) must be included in the daily coursework.**
4. **Ethical and moral education develops from the trust and love that are first manifested between mother and child.**

Objects were used in the teaching of all classes and the primacy of books was completely reduced. In arithmetic, tools of perception (apples, stones and so forth) were
used to develop distinct ideas by grouping (addition and multiplication), separating (subtraction and division.) and comparing (ideas of more or less). Geography was taught on nature walks and the terrain was evaluated first hand. Samples of plants and minerals were collected and later described at school. Older children (8 to 10) made topographical relief maps out of clay of the surrounding area. Music and drawing also very important parts of the curriculum (Brosterman, 1997:p.21)

For two years Froebel was fully engaged in Institution life. He really admired many aspects of Pestalozzi’s school: music and singing as a means of human culture; outdoor games to strengthen the intelligence and soul, as well as the body; and the walks that were close to nature; yet he was also critical of Pestalozzi. He decided that Natural Science was indispensable to an educator so after he had returned his three pupils to their home he decided to return to college to study physics, chemistry, mineralogy and natural history. As he reentered University life at the University of Gottingen in 1811, his purpose was to find unity between his inward and outward life. He envisioned mankind as a whole, as one great unity. Eventually he included organic chemistry and geology to his natural science classes. He also wished to compare the laws of nature with the laws of Man so he added history, politics and political economy (Woodham et al, 1969).

In 1812, Froebel moved to Berlin to teach and at the same time study crystallography (he noted that crystals grow like people grow and that patterns in crystals can be replicated on paper), mineralogy, and natural history. He enlisted in the war against Napoleon, which was rather uneventful; except it was here that he met his lifetime friends and colleagues, Largethal and Middendorf. At the end of the war he returned to Berlin and became the assistant at the Mineralogical Museum for two years and continued to marvel in the geometric complexities of crystals. While Froebel was in Berlin two of his brothers passed away so Friedrich decided to undertake the education of their children. He opened a school at Griesheim and asked his friends Middendorf and Largethal to join him. In 1818, two years later, the school was moved to Keilhau. He was also got married this year. At his school Froebel’s “new education” emphasized the training of character and the observation of nature, which included work on the land, as being more important than reading the classical languages. The school got off to a
slow start, since there wasn’t much money, but eventually more and more boys were sent to Keilhau to receive an education (Woodham et al, 1969).

Froebel wrote constantly on educational matters and in 1826 published *The Education of Man* (his most famous publication). In this book he emphasized the importance of character as opposed to book learning and permitting the human being to develop in accordance with nature. *Every human being, even as a child, must be recognized, acknowledged and fostered as a necessary and essential member of humanity...* (F. Froebel as quoted in Woodham-Smith et al, 1969: p. 21). He compared the growth of a child to the growth of a plant, to be tended and cared for as the gardener cares for his seedlings. He also emphasized the importance of play for the young child since it lead to purposeful activity in the classroom. Four years later, when his attempt to open a second school in Switzerland was denied, due to local opposition, Froebel opted to become head of an orphan asylum in Burgdorf. He found that the orphans were totally neglected as far as their minds and characters were concerned, until they reached school age. He began to concentrate on the importance of training children during their early years. He began a graduated course of exercise on the games the children were most interested in. He also realized the importance of training all those who dealt with young children, whether mothers, teachers or nurses (Brosterman, 1997).

The Froebel Kindergarten

In 1837 Froebel returned to Keilhau and opened the first kindergarten, or garden of children, in the neighboring village of Blankenburg. This kindergarten actually had a garden that was part of the school. He deliberated some time over the name because didn’t consider this early education a school but more a place for children to freely develop (Woodham-Smith et al, 1969).

The main educational principles, whose applications form Froebel’s system are: *self activity*, to produce development; all sided *connectedness* and unbroken *continuity*, to help the right acquisition of knowledge; *creativity*, or expressive activity, to
produce assimilation of knowledge, growth of power and acquisition of skill; well ordered physical activity, to develop the physical body and its powers; and happy and harmonious surroundings, to foster and help all these (Bowen, 1893: p. 180)

The one universal law in which Froebel based all of his educational principles was unity and inner connection. The inner connectedness of all things was the governing force in Froebel's philosophy and pedagogy, and the foundation of his educational concepts. Perfecting a feeling of unity between the child and God (romantic spiritualism not Christian God) so that humanity might recognize its spiritual potential was the key to education. Since God represented himself through nature as the principle of unity Froebel felt that Natural history and botany were essential. If unity was Froebel’s fundamental law then self-activity was the process. Self-activity was actively discouraged in the 19th century classroom; traditional teaching demanded only response and Froebel sought individual action; self-activity created coworkers between child and teacher. In kindergarten learning originated with the child and expression became self-expression not recitation. Teacher transformed from lecturer to guide as she now directed the child’s natural inclination toward play, with one another, and with the freely expansive but carefully defined “gifts”. Play was fundamental to the success of kindergarten; play was children’s “work”. This early acknowledgment of children as something other than small, stupid people engaged in useless activity set the stage for the acceptance of child psychology and the child study movement at the end of the 19th century (Brosterman, 1997).

Once the school was established Froebel began to work on the series of toys or apparatuses, which became known as the Gifts and Occupations. The purpose of the gifts was to provide for the children’s play while also training them in dexterity of movement and teach them something about the laws of nature. The gifts consisted of balls, blocks for building, colored tablets for design, colored papers to cut and fold, clay and sand, pencils and paints, all arranged in a series. The occupations consisted of paper folding, perforated paper designs for pricking, drawings on squared paper, intertwining, weaving, folding, cutting, peawork, cardboard and clay modeling (Woodham-Smith et al, 1969). (More information on gifts at end of paper.)
Froebel believed that music also formed an important part of education, so in 1843 he published *Mutter and Kose-Leider*, a collection of action songs and singing games, based on folk music and the occupations and objects that the children saw around them. Each song was accompanied by music, a picture illustrating a simple concept or lesson and a motto or a short instructive commentary. These songs were intended for the mother and infant to perform so as to stimulate the infant’s intellect. (Blow, 1902). Music and Group singing, along with Nature study were essential to kindergarten. Froebel believed that to respect nature is to respect life. He saw it necessary to sensitize children to the underlying symmetries of the plant and mineral kingdoms. In this way they could see the perfection within themselves and the interdependence of all things (Brosterman, 1997).

Froebel insisted that above all the kindergarten should be *child centered*. When Froebel’s cousin was about to open a kindergarten at Gera he sent her a letter that stated: *My teachers are the children themselves with their purity and innocence, their unconsciousness, and their irresistible claims, and I follow them like a faithful, trustful scholar* (Woodham-Smith et al, 1969: p. 23).

A second kindergarten was opened in Rudolstadt in 1840, while both Froebel and Middendorf lectured on the scheme in Dresden, Frankfurt, Hamburg and elsewhere. Froebel also wrote about his plans in a weekly paper that circulated from 1837-1840. Unfortunately the original kindergarten was closed for financial reasons and because Froebel was so busy with propaganda tours. Yet the training of kindergarten teachers continued, first at Keilhau, and from 1848-1852 at Leibenstein and Marienthal. The students were mainly young girls, since Froebel believed that young woman, because of their strong maternal instincts, made the best teachers of young children. In 1839, his devoted wife, who had been ill for several years, died. Froebel remarried in 1851, since he realized that his establishment needed a female head. He married one of his pupils, Luise Levin, who became his faithful disciple and carried on his work after his death. Shortly before his death, his kindergartens, of which there were about 20, were prohibited in the Kingdom of Prussia because Froebel had been confused with his nephew who had engaged in socialist propaganda. Friedrich Froebel died on June 21,
1852 but his legacy has continued on through the work of his faithful followers (Woodham-Smith et al, 1969).

Froebel’s Gifts

Froebel called the materials of kindergarten, the gifts. He modeled the curriculum on the natural relationship of trust between a mother and child. The gifts were the toys, the teacher was the loving mother, and the schoolroom was an extension of the garden (actual gardens were included in the original Froebelian system). Froebel wanted each gift to foreshadow those succeeding it, the system progressed from solid, to plane, to line, to point and then reversed to arrive back in three dimensions with activities in “peawork” and modeling clay (Brosterman, 1997).

Symbolic education (an off shoot of Pestalozzi’s objective work) or the use of something tangible to enhance the understanding of something conceptual, was a major objective for the employment of the gifts. Object lessons with the gifts, accompanied by analogies and stories, might lead to an exploration of growth and unity in the lives of the students (Brosterman, 1997).

In short sessions of directed play, the gifts (which were never available for entirely free play, and all of which had to be included in a design), were used to present pictures or structures that fit loosely into three fundamental categories: forms of nature (or life), forms of knowledge (or science), and forms of beauty (or art). These processes were incorporated to help the child relate them to the larger world through an awareness of forms. In the first kindergarten classrooms a teacher would oversee as each child played with one gift on tabletops that were often in grid patterns. At first the child would use the gift to represent a concrete life form like a table, a building, an animal, or a tree (form of nature). Next a child would be encouraged by either the teacher or through conversation with his classmates, to explore the possibility of their gift and view it as a specific geometric form, or mathematical equation (form of knowledge). The teacher would then encourage the child to create a symmetrical pattern with the gift (form of beauty). Each gift would be presented first as a whole, then manipulated by the child and later returned as a whole to its box. Every piece of
the gift needed to be incorporated in the creation of every form. And, since symmetry is a regulatory feature in the plant and crystal world, the art forms were usually arranged in rotational or bilateral arrangements (Brosterman, 1997).

Froebel formulated four conditions, which each gift must satisfy:
1. They should, each in its time, fully represent the child’s outer world, his macrocosm.
2. They should, each in its time, enable the child to give satisfactory expression in play to his inner world, his microcosm.
3. Each gift should, therefore, in itself represent a complete orderly whole or unit.
4. Each gift should contain all the preceding, and foreshadow all the succeeding gifts.

In the first six gifts Froebel added a few words in brackets, [], designating in order the chief external (1) and internal (2) characteristic of the gift, and the essential lesson (3) which the gift, could it speak, is meant to teach the child (Froebel; 1887: p. 285-287).

Gift I. [Color (1); - Individuality (2); “We are here!” (3)] Froebel’s first gift was a soft knitted ball on a string that was ideal for a baby. There were six different colored balls on the string so that the child could experience different color forms and become familiar with a sphere. The next five gifts were geometric wooden blocks. Before Froebel few children were reared on building blocks. The toys available to early nineteenth century children were really complex. Mostly miniatures or elaborate precision-made construction toys, they discouraged creativity. Froebel called for simple playthings that allowed children to feel and experience, to act and represent, and to think and recognize. (Brosterman, 1997). The blocks were arranged in order from simple to quite complex, yet each (excluding gift 2) was contained with a whole square box. Since a child’s instinct is to take things apart a child would delight in being able to divide their cube into many different geometric shapes.

Gift II. [Shape (1); - Personality (2); “We live!” (3)] Gift 2 was a sphere, a cylinder and 2 cubes. Each shape had various holes drilled into it so that it could be hung from a string and examined from any direction. A child would be able to view the sphere as a solid version of gift 1. They could see the square as being the opposite of the sphere (Froebel also believed that children learn more about an object through focusing on its opposite) then they would note that the cylinder had aspects of both the sphere and the cube. The uncut cube was used as a form of comparison.
Gift III. [Number (divisibility) (1); - Self-Activity (2) - “Come play with us.” (3)]

Gift 3 was a two inch cube that could be divided through its center by three perpendicular plains, creating eight volumetric one inch cubes. The child could remember their solid cube from Gift 3 as they separated and explored their new gift.

Gift IV. [Extent (1); Obedience (2); - “Study us!” (3)]

Gift 4 was also a two-inch cube that contained eight elongated blocks. They fit into the same box as their predecessor but were flattened and elongated like dominoes, they are thus alike yet unlike the whole. They were directional as to volumetric. Froebel referred to these tiles specifically as “building blocks.” These “bricks” allowed for more realistic and vertical life forms, more complex knowledge play, and more elaborate beauty designs.

Gift V. [Symmetry (1); - Unity (2) - “How beautiful!” (3)]

Gift 5 was a three inch cube divided equally twice in each direction, providing 27 one inch cubes. Three of these were divided into two halves and three others into quarters, by two diagonal lines crossing each other, making in all 39 pieces. This gift was intended as a larger addition of the third gift with the addition of prismatic forms. It was designed to further the sequence of nature, knowledge and beauty forms previously explored with more complexity and greater variety. The introduction of diagonals provided a new set of connecting devices, leading the child to consider fractured geometry’s, lifelike architectural constructions, and crystalline artistic forms.

Gift VI. [Proportion (1); - Free obedience (2); - “Be our master!” (3)]

Gift 6 was a three inch cube divided by various cuts into 36 pieces, 18 of which are bricks like those of gift 4, twelve of which are half cubes made from bricks cut horizontally and the remaining six are columns made from bricks cut vertically. This gift was intended as an extension of the fourth gift. The expanded modules allowed for lessons in cube roots and the erection of larger building models with austere columns (Froebel, 1887: p. 285-286, Brosterman, 1997).

Gift 7 is parquetry [Surfaces of squares and equilateral triangles]; gift 8 is sticks [Straight lines]; gift 9 is ring laying [circular lines]; and gift 10 is drawing (this gift enables the child to reconstruct the surface and solid synthetically from the point).

Though Froebel never differentiated between his gifts and occupations many of his followers referred to the next ten gifts as occupations. I will, for the sake of this
paper, refer to the latter ten also as gifts. Gift 11 is pricking; gift 12 is sewing; gift 13 is cutting; gift 14 is weaving; gift 15 is slats; gift 16 is jointed slats; gift 17 is interlacing paper strips; gift 18 is folding; gift 19 is peas work; and gift 20 is modeling clay (Brosterman, 1997; Froebel, 1887; and Wiggin and Smith, 1896).

The Development of Building Blocks

When Froebel died in 1852 he was disheartened by the fact that all of his kindergartens had been forced to close. Yet his loyal followers advocated for his kindergartens throughout the world. Today, nearly 150 years after Froebel died, kindergarten is part of every elementary school. Of course it has been altered quite a bit since Froebel’s time but nonetheless kindergarten is as much a part of elementary school as are grades one and two. At least one Froebelian kindergarten is thriving today. The Froebelian Education Center in Ontario, Canada makes full use of Froebel’s teachings to help each child lay an educational foundation during their early years and develop the whole child: physically, mentally, emotionally, socially and spiritually (Bultman, 1997).

Froebel’s gifts, particularly his building blocks, are an essential part of almost every preschool and kindergarten. They now come in various sizes, shapes and colors, yet their basic shape remains the same. When Froebel began his kindergartens building blocks were not incorporated into the early childhood classroom, indeed kindergarten did not exist before Froebel. Yet as word of Froebel’s gifts spread throughout Europe and North America, the demand for blocks began to spread. By the beginning of second half of the nineteenth century blocks had become one of the most popular toys available in both Europe and America. Various toy companies began to create and manufacture block toys. In the United States one family in particular dominated the block industry during the second half of the nineteenth century –the Crandalls. Benjamin Crandall, was born about 1800, and after establishing a profitable toy shop in Westerly, RI moved to NYC in 1841. Crandalls developed some of the most interesting and original block systems. Shortly after the Civil War, Benjamin’s son Charles designed a set of interlocking blocks with a comb like interlocking mechanism.
at each end of the block. Another son, Jesse, developed a set of nesting blocks that were patented in 1881. These blocks consisted of a series of successfully smaller hollow blocks that fit one inside the other (Provenzo and Brett, 1983).

The Crandalls dominated the block industry in the late nineteenth century yet they were not without competitors in the United States and Europe. Individuals such as S.L. Hill and H.H. Hill developed important block designs in Massachusetts during the 1860s and 1870s. They produced various types of alphabet and construction blocks. In Europe, the most popular building blocks were the Richter building bricks. Manufactured by F.D. Richter & Company of Rudolstadt, Germany, the bricks consisted of various rectangular, triangular and round shapes cast from cement. These colored bricks were accompanied by detailed construction plans so that complicated buildings, bridges and other structures could be made with them. A printed grid was included with most sets to help children set down the blocks evenly for the foundation of a building (Provenzo and Brett, 1983).

The Introduction of Blocks in the Curriculum

The use of building blocks in the teaching of young children became increasingly common during the early decades of the 20th century. Rapid growth of child study and psychology undoubtedly contributed to this. Various educational theorists began to include blocks and block play as their important part of their curricula. One the most important of these early theorists was Maria Montessori (1870-1952). Trained as a physician and working with children in the Italian slums she invented a series of didactic toys whose purpose was to encourage the child’s sensory, motor and intellectually development. She objected to manufactured toys; they were too complicated and had little to do with the real world they lived in. Montessori felt that toys should help develop the child’s inner self. Her purpose was to help the child learn to observe things; to make comparisons between objects; to form judgments and opinions; to reason; and make decisions.

Montessori developed carefully structured block exercises as an important part of her curriculum for nursery-age children. The first of her block-building exercises
consisted of ten wooden cubes colored pink, ranging in size from one centimeter to ten centimeters. The child was expected to stack one on top of the other in descending order.

Closely related to these stacking blocks were ten oblong blocks twenty centimeters long with a square face on either end. These square faces diminished from ten centimeters on a side to one centimeter on a side, placed either in ascending or descending order to form a stair. Initially Montessori received positive recognition in the US but her methods came under increasing criticism for their supposed failure to encourage open and spontaneous activities in the child (Provenzo and Brett, 1983).

It was not until the early 1920's that free block play was first advocated as an important learning experience for children. The single person most responsible for block building as an activity for children into the curriculum of the schools was the American educator Caroline Pratt. Pratt, born in 1867 in upstate New York, was disillusioned with educational practices for young children. She wanted new materials in which children could create a world of their own. Pratt had observed Patty Smith Hill's kindergarten classes at Teachers College, Columbia University. Hill had developed a set of floor blocks to provide her students with materials that they could use as part of their free play activities. These floor blocks were large blocks with grooves so that the blocks could be held together. Inspired by Hill, Pratt began her own school in NYC, shortly before break out of 1st WW. Pratt envisioned a school that had no fixed limits and no barriers. Instead her curriculum would grow and develop, as did the perspectives and horizons of the children that attended it. Block building was quickly incorporated into the school as an important part of the curricula. Children used the blocks incessantly. They recreated entire neighborhoods with their blocks. The importance of blocks in the classroom lead Caroline to develop a set of unit blocks based on a proportion of 1:2:4. Pratt’s Unit System has become the standard block system used in most day care centers/preschools/kindergartens today (Provenzo and Brett, 1983).

A student and co-worker of Caroline Pratt, Harriet Johnson, expanded on Pratt’s block play after she began working with Pratt in her nursery school in NYC in 1914. (This school eventually became the Bank Street School for Children.) Constructive play
with the blocks was viewed as a central and coordinating feature of the school’s curriculum. Harriet Johnson published a book in 1933 called *The Art of Block Building* in which she tried to present the use of blocks as a medium of expression, as an art form, and to give a glimpse of the ideas and feelings expressed by children ages 2 to 6. Her analysis was listed as a series of progressive steps that show a child’s cognitive and motor development that evolves through block play. Johnson noted that a child’s first use of block involves just carrying the block from space to space or stacking or massing the blocks in irregular conglomerate piles the child thus becomes familiar with this building tool by manipulation and by using various forms and various spaces. Secondly, the child arranges the blocks in towers and rows, or walls and flooring. He/she continually repeats the process and through this repetition of piling, stacking and laying blocks he/she begins to develop patterns. Eventually these constructions become elaborate. The child has some difficulty with bridging but through repetition can eventually construct a bridge. The child then constructs enclosures in which he/she puts four blocks together so that the space is completely enclosed. This is not an easy task. These enclosures eventually lead to houses and thus blocks become viewed as actual building materials. The child then begins to build in balanced and decorative patterns. He/she begins to name his structures in advance as they use them for representational play. The blocks become real to the child as he/she begins to speak to and about the blocks (Hirsch, 1984).

21st Century Block Use in the Curriculum

Block play is still a major contributor to the early childhood curriculum. Johnson’s 1933 book, *The Art of Block Building*, is still applicable to today’s classroom. Children still start off by carrying blocks, then stacking blocks, and making structures, then building bridges, making enclosures and eventually use the blocks in representational play.

Potential contributions of blocks in the curriculum are seemingly endless. Scientific thinking is stimulated through block play as children discover and invent new forms, compare and classify different sizes and shapes, test out ideas of “What will
happen if?” Properties of matter are introduced as the child notes the various sizes and shapes and weight of the blocks. Math concepts are introduced as the child notes the geometric forms, of blocks. Measurement, volume, area, symmetry, classification are all incorporated in block play. The language arts are utilized as the child names the buildings and creates stories about their structures and exchange ideas about their structures. Art concepts such as patterns, and symmetry and balance are inherent to block play. Social-Emotional development can be assessed as the child engages in cooperative play. The children develop respect for one another, a feeling of competence, initiative and autonomy. Social studies are incorporated into block play as the child does mapping, and makes grids and patterns. Through symbolic representation the child can recognize the uniqueness of people and their work and the interdependence of people and objects. The child develops motor skills through eye hand coordination, visual perception, and hand manipulation (Hirsch, 1984).

Playing with blocks provides children with a fun experience that if appropriately supported by physical and social environment, can enhance motor, cognitive, social, and emergent literacy skills. Block play also provides a natural setting in which adults can evaluate children’s developmental progress by observing the complexity of their block constructions and their use of block constructions in symbolic representational play (Phelps and Hanline (1999).

Conclusion

Exact replicas of Froebel’s gifts are still available today through companies such as Uncle Goose Toys in Grand Rapids Michigan. Many of Froebel’s books are still available at the UMass Library and hundreds of deviations of Froebel’s gifts, especially his building blocks, are available in nearly every toy store. Various types of building blocks are utilized in every preschool, kindergarten, and early elementary grades. Pattern blocks are very similar to parquetry, pick up sticks are a later version of sticks and the latter 10 gifts are commonly employed in various kindergartens and elementary schools.
To think that we wouldn’t have the Guggenheim if Frank Lloyd Wright’s mother hadn’t invested in Froebel’s gifts at the 1876 Centennial Exposition in Fairmont Park, Philadelphia. Our art museums would seem incomplete without the Froebelian influenced works of Mondrian and Kandinsky. Would Maria Montessori’s method have prospered without Froebel’s influence? What would early childhood institutions be like without Froebel’s gifts, especially his blocks? It’s rather amazing that what Froebel advocated for in the mid 1800’s is the grounds for most of the progressive early childhood philosophies today.