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� Background and Aims In wetland plant communities, species-specific responses to pulses of white light and to
red : far-red light ratios can vary widely and influence plant emergence from the seed bank. Carex species are the
characteristic plants of sedge meadows of natural prairie wetlands in mid-continental USA but are not returning to
restored wetlands. Little is known about how light affects seed germination in these species—information which is
necessary to predict seed bank emergence and to develop optimal revegetation practices. The effects of light on
germination in eight Carex species from prairie wetlands were investigated.
� Methods Non-dormant seeds of eight Carex species were used to determine the influence of light on germination
by examining: (a) the ability of Carex seeds to germinate in the dark; (b) the effect of different lengths of exposures
to white light on germination; (c) whether the effect of white light can be replaced by red light; and (d) whether the
germination response of Carex seeds to white or red light is photoreversible by far-red light.
� Key Results Seeds of C. brevior and C. stipata germinated >25% in continuous darkness. Germination
responses after exposure to different lengths of white light varied widely across the eight species. Carex brevior
required <15min of white light for >50% germination, while C. hystericina, C. comosa, C. granularis and
C. vulpinoidea required >8 h. The effect of white light was replaced by red light in all species. The
induction of germination after exposure to white or red light was reversed by far-red light in all species, except
C. stipata.
� Conclusions The species-specific responses to simulated field light conditions suggest that (a) the light require-
ments for germination contribute to the formation of persistent seed banks in these species and (b) in revegetation
efforts, timing seed sowing to plant community development and avoiding cover crops will improve Carex seed
germination.

Key words: Carex, far-red light, seed germination ecology, photomorphogenesis, phytochrome, prairie wetland, red light,
sedge, white light.

INTRODUCTION

Carex is a globally important genus with >2000 species
worldwide (Bernard, 1990), and in many wetlands of the
northern hemisphere, Carex species are the dominant
vegetation. In the prairie pothole region of mid-continental
North America, >60 species of Carex are found in wetland
habitats (Barkley, 1986), especially sedge meadows, the
seasonally flooded zone of prairie wetlands. Seed bank
dynamics of prairie wetlands have been the focus of a
number of studies (e.g. van der Valk and Davis, 1978;
Welling et al., 1988; Seabloom et al., 1998). The specific
factors that drive emergence from the seed bank and
vegetation dynamics in sedge meadows, however, are not
well understood in comparison to what is known about the
dynamics of the emergent plant community (van der Valk
and Davis, 1978; Kantrud et al., 1989; Murkin et al., 2000).
In wetland plant communities, species-specific dormancy
break and germination requirements influence emergence
from the seed bank (van der Valk and Davis, 1978; Leck,
1989; Baskin and Baskin, 1998). Both the amount of light
[length of exposure and photosynthetic photon flux density
(PPFD)] and quality of light [especially the red : far-red
light ratio (R : FR)] are environmental cues that signal
conditions potentially suitable for seedling establishment
and survival (Pons, 2000).

Many wetland species require light for germination
compared with upland species (Grime, 1981). In wetland
plant communities, emergence of light-requiring species
from the seed bank is triggered by a disturbance when
soil turnover, decline in water depth, or gaps in litter or
the plant canopy (Leck, 1989) expose seeds to light or
higher R : FR. Small-scale disturbances in sedge meadows
include burrowing, trampling and grazing by mammals
and waterfowl (Fritzell, 1989; Murkin, 1989; Swanson
and Duebbert, 1989). What is the predicted response of
Carex seeds to these disturbances in sedge meadows? For
many Carex species from prairie wetlands it is not known
whether seeds germinate readily in the dark or if their
emergence from the seed bank is restricted to disturbances
that expose seeds to adequate light. Schütz and Rave
(1999), however, evaluated germination in light and dark
of seeds of 18 Carex species from open, wetland habitats
in Germany, the Czech Republic and Sweden. They found
that seeds of two species required light for germination
and 16 species germinated to higher percentages in light
than in darkness when stratified and then incubated at
22/10 �C. Similar findings were reported by Baskin and
Baskin (1998) who summarize published and unpublished
studies on germination requirements of Carex species
from aquatic environments. Seeds of four species
required light for germination (C. canescens, C. crinita,
C. pseudocyperus and C. vulpinoidea) and those of six
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species germinated to higher percentages in the light
than dark (C. comosa, C. elongata, C. nigra, C. paniculata,
C. remota and C. stricta). Further study is required
to determine if similar patterns exist in seeds of Carex
from prairie wetlands. Understanding species-specific
germination requirements is the first step in predicting
how plant communities may respond to disturbance (e.g.
Stockey and Hunt, 1994) and would provide insight into
plant community development in prairie wetlands.

Understanding the light requirements for seed germina-
tion is also important for Carex species revegetation
efforts in freshwater wetland restorations. Even though
Carex are the dominant vegetation of sedge meadows
of natural prairie wetlands, they are absent or slow to
return to hydrologically restored wetlands (Galatowitsch
and van der Valk, 1996; Mulhouse and Galatowitsch,
2003) due to seed availability limitation (Kettenring,
2006). The introduction of propagules is necessary for
Carex revegetation success. Knowledge of species-specific
light requirements for germination could indicate whether
restoration practitioners should time seed sowing efforts
to plant canopy development or whether excess sedi-
mentation common in new restorations in agricultural
landscapes reduces Carex seed germination (Jurik et al.,
1994; Gleason and Euliss, 1998). In addition, it is not
known whether current practices such as mulching
(van der Valk et al., 1999) or planting cover crops
(Perry and Galatowitsch, 2003) may inhibit Carex
emergence.

The light requirements for seed germination of eight
North American wetland Carex species were determined
to compare broad patterns of the light requirements for
seed germination with what is known about Carex in
wetlands from other parts of the world. Using non-dormant
seeds (i.e. cold stratified), the following were evaluated:
(a) the ability of Carex seeds to germinate in the dark;
(b) whether germination patterns differ with different
exposures to white light; (c) whether the effect of white
light can be replaced by red light, and (d ) whether Carex
seed germination after exposure to white or red light is
photoreversible by far-red light.

MATERIALS AND METHODS

Seed collection and preparation

Seeds of eight Carex species were collected at maturity
from wetlands in central and southern Minnesota during the
2004 growing season (Table 1). Seeds were air dried at
room temperature for 2 weeks and then tested for viability
using standard tetrazolium procedures with 200 seeds per
species (Table 1) (Grabe, 1970). At the same time, seeds
were counted into batches of 50 seeds, wrapped in filter
paper, and placed in a growth chamber (model GCW-15;
Environmental Growth Chambers, Chagrin Falls, OH,
USA) set at 5/1 �C (10 : 10 h of high and low temperature
with a 2 h linear transition between temperature changes)
for stratification. Seeds were buried in well-drained,
sterilized wetland soil in pots and watered weekly to
saturation. Seeds were stratified for a minimum of 4 months
to fully break dormancy (Kettenring, 2006). In this study,
the definition of seed dormancy, according to Baskin and
Baskin (1998), as an inhibiting characteristic of the seed
that prevents germination rather than unsuitable environ-
mental conditions for germination, is used. Prior to the start
of each experiment, seeds were excavated from the pots in
the dark under dim green light; it is not believed that this
exposure to dim green light triggered germination given
the low germination percentages for seeds in the dark
treatment (Fig. 1). Seeds were placed in Petri dishes
on saturated silica sand for the germination trials. The
perigynium for each seed was left intact. Sample size was
at least 2 · 50 seeds per dish for each treatment (sometimes
more for white light experiments when extra seeds were
available).

White-light experiment

To determine the effect of white light on Carex
germination, stratified seeds of eight species (Table 1)
were exposed to a single pulse of 0�25, 1, 2, 4, 8 or 14 h of
white light, 3 14-h days of white light, or 3 weeks of
14 h d�1 of white light. A dark control was also
maintained. The white light was provided by cool white

TABLE 1. The eight Carex species used in this study

Species Seed viability (%) Seed collection location Collection date (2004)

C. brevior (Dewey) Mackenzie. 82 Minnesota Valley State Park in Scott County,
MN (44�400N, 93�370W)

19 July

C. comosa F. Boott. 95 Minnesota Landscape Arboretum in Carver County,
MN (44�510N, 93�360W)

9 September

C. cristatella Britton. 93 Minnesota Landscape Arboretum 18 August
C. granularis Muhl. 56 Minnesota Valley State Park 16–19 July
C. hystericina Muhl. 89 Minnesota Landscape Arboretum 14–21 July
C. scoparia Schk. 90 Cedar Creek Natural History Area in Anoka County,

MN (45�240N, 93�120W)
11 August

C. stipata Muhl. 71 Minnesota Landscape Arboretum 28–30 June
C. vulpinoidea Michx. 82 Minnesota Landscape Arboretum 18 August

Seed viability was based on initial tetrazolium tests and performance in germination trials.
Seeds were collected from wetlands in central and southern Minnesota.
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fluorescent bulbs, photosynthetically active radiation (PAR;
total irradiance between 400–700 nm) = 200mmol m�2 s�1,
measured with the LI-189 quantum sensor (LICOR,
Lincoln, NB, USA) and a R : FR of 10�3 : 1�0 measured
with the SKR 110 660/730-nm sensor (Skye Instruments,
Llandrindod Wells, UK) at seed level. Each Petri dish was
covered with two layers of aluminium foil for the dark
control or following the light exposure and stored at 27/
15 �C for germination (10 : 10 h of high and low temper-
ature with a 2 h linear transition between temperature
changes). This temperature regime is suitable for seed
germination for these Carex species (Kettenring, 2006).
After 3 weeks, seeds were inspected in the light for
germination. A seed was considered germinated if the
cotyledon or radicle was visible without magnification.

Phytochrome experiment

To determine if phytochrome is involved in the
photocontrol of Carex seed germination, stratified seeds
were exposed to R or white light (light controls) or R
followed by 1 h FR or white light followed by 1 h FR. A
dark control was also maintained. The length of the R or
white light exposure was chosen based on the results of the
white light experiment (Fig. 1) by selecting a light
exposure that resulted in a large increase in germination
over the dark control. The white light was identical to that
provided in the white-light experiment. The R source
consisted of two R fluorescent lamps (Sylvania F48T12/
2364/HO) filtered through an Encapsulite red tube guard
(Lighting Plastics of Minnesota, Inc., St Louis Park, MN,
USA) and a single layer of Roscolux cool blue filter
(#66, Rosco Laboratories, Stamford, CT, USA). The FR
light was provided by two FR fluorescent lamps (Sylvania

F48T12/232/HO) filtered through an Encapsulite FR tube
guard and a single layer of Lee deeper blue filter (#85, Lee
Filters, Andover, Hampshire, UK). The red light (660 nm)
was 2�97 mmol m�2 s�1 and the far-red light (730 nm) was
1�94mmol m�2 s�1 as measured with the SKR 110 660/730
nm sensor. The spectra of these light sources are shown in
fig. 1 of Howe et al. (1996); the R source has very little
irradiance above 700 nm and the FR source has very little
irradiance below 700 nm. Following the light exposure,
seeds were covered with two layers of aluminum foil and
stored at 27/15 �C for germination. All Carex species were
evaluated in this experiment except C. granularis, which
was omitted due to limited seed availability.

Analysis

For the white light experiment, mean percentage
germination was graphically compared for each species at
the different white light exposures (SigmaPlot 9�0; Systat
Software Inc., 2004). In addition, time to 50% germination
(t50) values were determined to compare the responses
across species. Each germination curve was fitted with a
logistic curve, y = a/(1 + be�cx) (CurveExpert 1�3; Hyams,
2005), and t50 was determined as the point on the logistic
curve that intersected the line for 50% germination (Fig. 1).

For the phytochrome experiment, mean percentage
germination was compared between dark-incubated seeds
and seeds exposed to white or red light, and seeds exposed
to white light versus white followed by FR or R versus
R followed by FR using 2 · 2 contingency tables and
chi-square tests (Statistix; Analytical Software, 2003).
Germination percentages for each species presented in
Fig. 1 and Table 2 were based on the number of viable seed
taken as 100% (Table 1). Seed viability was based on the
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F I G . 1. The effects of different lengths of exposure to white light on Carex seed germination. PAR was 200 mmol m�2 s�1. Three days of 14 h d�1 white
light = 42 h. Values aremeans6 s.e.Carex granulariswas the only species that did not germinate >90%with 42 h of white light so germination after 3 weeks
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results of the tetrazolium tests, unless seeds germinated to
higher percentages during the 3-week incubation under
white light. In this case, the value of the mean germination
percentage was used as 100% seed viability.

RESULTS

White-light experiment

Viable seeds of all species germinated to 100% during 3
weeks incubation at a 14-h daily exposure to white light;
however, seeds of each species responded differently to
white-light exposures shorter than 3 weeks of 14 h d�1

(Fig. 1). In decreasing order of amount of light required
for germination to 50%, the species were C. granularis
(t50 = 14�64 h) > C. comosa (t50 = 13�35) > C. vulpinoidea
(t50 = 11�19) > C. hystericina (t50 = 8�37) > C. cristatella
(t50 = 6�00) > C. scoparia (t50 = 3�15) > C. brevior (t50 =
0�23 h). Carex stipata was the only species with significant
germination (>50%) in the dark but its germination was
increased with 4 h of white light.

Phytochrome experiment

Exposure to both white and R light significantly
increased germination over the dark control for all species
(Table 2); two species germinated to >25% in the dark.
The white light effect was greatest for seeds of C. comosa,
C. cristatella and C. vulpinoidea that germinated to <5% in
the dark but >90% in the light. Carex vulpinoidea was
the only species whose seeds germinated to >90% under
R. Red light fully replaced the effects of white light on
seed germination for three species (C. brevior, C. stipata
and C. vulpinoidea). FR significantly reduced germina-
tion after exposure to white light for seeds of all species
and for all species except C. stipata after exposure to R. The
photoreversibility effect was greatest for C. comosa that
germinated to 100% under white light versus 0% when
exposed to white followed by FR light and to 77% under R
versus 0% when exposed to R followed by FR.

DISCUSSION

White light triggered germination in all Carex species, and
only two species germinated to >25% in the dark. In the
literature, Carex seed germination has been shown to be
greater in the light than dark. It appears, however, that a
greater proportion of the species from the present study
were unable to germinate in the dark than what previous
studies found. Schütz and Rave (1999), who studied 32
Carex species from different habitats, found that the
probability of germination of stratified seeds increased after
exposure to white light. However, contrary to the results of
the present study, they found that 10 of 18 species from
wet, open habitats germinated to >25% in the dark at
22/10 �C after stratification. In another study, freshly
matured seeds of six species germinated in the light but
failed to germinate in the dark; all species, however, gained
the ability to germinate to >25% in the dark following
stratification (Schütz, 1997b). Jensen (2004) found that ger-
mination of stratified seeds was significantly greater in the
light versus the dark for two species at 25/15 �C and 15/5 �C
but was not significantly different for two other species.
Still, all three species germinated to >25% in the dark. A
previous study of C. comosa from a Kentucky population
found that this species did not germinate in the dark
(Baskin et al., 1996) as found in the present study. Stratified
C. stricta seeds, however, did germinate to >50% in the
dark (Baskin et al., 1996). Finally, chilling had little effect
on the ability of C. nebrascensis and C. utriculata from
Utah sedge to germinate in the dark compared with germ-
ination in the light (Jones et al., 2004). A number of factors
may have contributed to these different responses within
and among Carex species from different parts of the world.
Purely interspecific differences in seed ecology among spe-
cies is likely to have the largest influence. It is also possible
that the influence of environmental conditions during seed
maturation on seed dormancy played a role (Gutterman,
2000). Finally, different experimental conditions among
studies such as PAR levels and temperature regimes (Carex
germination in the present study was evaluated only at
27/15 �C) could have affected experimental results.

TABLE 2. The photoreversibility of Carex seed germination

Length of red/
white light exposure

Quality of light exposure

Species Dark White light White + 1 h far-red Red light Red + 1 h far-red

C. brevior 1 h 25 6 16 73 6 4*** 14 6 5*** 71 6 8*** 16 6 5***
C. comosa 14 h 1 6 1 100 6 0*** 0 6 0*** 77 6 21*** 0 6 0***
C. cristatella 8 h 2 6 2 92 6 0*** 14 6 3*** 68 6 7*** 14 6 1***
C. hystericina 8 h 7 6 0 35 6 3*** 8 6 3*** 18 6 9* 6 6 1**
C. scoparia 4 h 1 6 1 76 6 10*** 7 6 2*** 54 6 11*** 8 6 1***
C. stipata 4 h 29 6 3 78 6 4*** 50 6 6*** 85 6 15*** 76 6 6 NS
C. vulpinoidea 14 h 0 6 0 100 6 7*** 36 6 0*** 100 6 1*** 53 6 4***

Values are mean percent germination (6 s.e.).
Seedswereexposed toeitherwhite,white followedby far-red, redor red followedbyfar-red light, orkept in thedark.The lengthof the redorwhite lightpulse

was chosen based on the white light exposure length that resulted in a distinct increase in germination over the dark control (near the estimated t50; Fig. 1).
Differences in germinationwere comparedwith chi-square analyses for: (1) dark control vs. seeds exposed towhite light; (2) white light vs. white followed

by far-red light; (3) dark control vs. red light; or (4) red light vs. red followed by far-red light. For each comparison, significant differences were denoted: NS,
Not significant; *P < 0�05; **P < 0.01; ***P < 0�001.
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Widely differing responses were found among the
eight study species to varying lengths of exposure to
white light. The variability of the response is interesting
given that these species are from the same genus, were
collected from a similar climatic region, and co-occur in
the same type of habitat—sedge meadows; five of these
species were collected from the same site. It is important to
note, however, that these results are based on a single
seed batch for these species. There was no obvious
relationship between the light requirements for seed
germination and either seed size or seed maturation time
for the eight Carex species, results similar to Kettenring
(2006). The largest-seeded species (C. comosa,
C. hystericina and C. stipata) spanned the range for length
of white light exposures required for 50% germination.
Similarly, some of the earliest-maturing species required
the most and the least amount of white light for
germination.

Seeds of most Carex species required much longer
exposure to white light (in the order of many hours to days)
to trigger high germination percentages than the pulses of
a few seconds to minutes that have been found to trigger
germination in other species (e.g. Sauer and Struik, 1964;
Scopel et al., 1994; Milberg et al., 1996; Schütz, 2000;
but see Steadman et al., 2004). For instance, Milberg
et al. (1996), in a study of the effects of short duration light
exposure (5 s of PAR = 210 mmol m�2 s�1) on seed
germination found that germination was stimulated in 24 of
44 species. Interestingly, this response was found in both
summer and winter annuals and perennials and in small-
and large-seeded species. However, Carex species appear
to require longer white light exposures than many species
that germinate after short duration light exposures (Schütz,
2000). Amen and Bonde (1964) found that at least 15 d of
continuous white light was required for C. ebenea
germination. In another study, a single exposure of 1 h of
white light did not trigger germination in C. canescens
(Schütz and Milberg, 1997). This requirement for longer
exposures to white light for germination in many Carex
species (e.g. in this study C. hystericina, C. vulpinoidea,
C. comosa and C. granularis) implies that an adaptation
exists for regeneration in long-lived gaps that exist for
multiple days or weeks (i.e. a ‘low-risk’ germination
strategy sensu Leck and Schütz, 2005). On the other hand,
some species, like C. stipata and C. brevior, that require
short exposures to white light, may be adapted to
regeneration in fleeting gaps of sunlight that may
exist for a few minutes or hours. Further evaluation of
the adaptive significance of these germination light
requirements for Carex regeneration and coexistence is
important.

For some species, red light did not fully replace the
effect of white light. One possibility for why this occurred
is that the white light may have had an additional beneficial
effect on germination beyond the phytochrome effect
of R. Secondly, the fluence rate of the R treatment was
65 times lower than the white light. This may have resulted
in lower seed germination in some species, although
germination is known to be a low fluence response (Pons,
2000) and usually irradiance levels of 3mmol m�2 s�1

(R treatment) are sufficient to trigger seed germination in
most species.

Phytochrome is involved in the germination of six of
the seven Carex species evaluated—far-red light reversed
the effects of red light for all species except C. stipata.
Additional testing at other FR exposures would indicate
whether a different length exposure is necessary to reverse
C. stipata germination and whether the 1-h FR treatment
produced the maximum reversal of seed germination in all
species. Nonetheless, the findings on the FR effect imply
that germination of these six Carex species will be
inhibited under plant canopies that have low R : FR. These
findings are consistent with the results of a field study
where seeds of five Carex species evaluated in the present
study (C. hystericina, C. comosa, C. stipata, C. vulpinoidea
and C. cristatella) germinated very poorly in natural
wetlands with a well-established plant canopy and thick
litter but germinated readily in the restored wetland sites
that had little vegetation and litter (Kettenring, 2006). In
that study, low R : FR was the most likely factor to prevent
Carex seed germination in natural wetlands (e.g. soil
moisture levels were more favourable in natural wetlands).
In another study, Schütz (1997a) found that germination
of six Carex species from open or forest wetlands was
inhibited under a dense leaf canopy with a low R : FR.
Also, for seeds incubated in the laboratory under a low
R : FR (0�01), germination was 0% for three of the
species and <30% for the other two species evaluated.
Further investigation of the effects of different R : FR
ratios on Carex germination is necessary to predict the
response of Carex seeds to different light environments in
the field.

Based on the white light germination requirements of
the study species, the findings indicate that many of these
species should be able to form a large persistent seed bank.
Only C. brevior and C. stipata germinated >25% in the
dark. Seeds of any of the other study species (and most
seeds of C. brevior and C. stipata) that are covered by a
plant canopy, litter or soil are expected to remain in the
soil until disturbed and exposed to adequate light. Further
field tests of this phenomenon are necessary, as well as
determining the absolute level of irradiance required for
germination (e.g. can germination occur under the low light
conditions just below the soil surface?). In addition, it
is also necessary to determine the interaction between
light/dark and temperature requirements for seed germina-
tion. The timing of natural seed dispersal or seed sowing
for revegetation will influence seed germination because
irradiance levels (along with other environmental factors)
vary as plant canopies and litter accumulation change over
the growing season. The germination of seven species was
photoreversible with far-red light. Thus, germination of any
seed falling under a plant canopy (e.g. cover crop) should
be inhibited by low R : FR, which would also contribute to
the formation of persistent seed banks in these species.
Numerous studies from different habitats and regions of the
world found that many, if not all, Carex species form
persistent seed banks (for reviews, see Schütz, 2000; Leck
and Schütz, 2005). The challenge now for ecologists is
to understand how this persistence varies under different
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environmental conditions, including light quantity and
quality.
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