Design and modelling of a 330 MWe Flexi-Burn® CFB for oxygen-fired and air-fired combustion

Kari Myöhänen, Lappeenranta University of Technology
Timo Eriksson
Reijo Kuivalainen
Timo Hyppänen, Lappeenranta University of Technology

Available at: https://works.bepress.com/kari_myohanen/13/
Design and Modelling of a 330 MWe Flexi-Burn® CFB for Oxygen-Fired and Air-Fired Combustion

Presented by: Kari Myöhänena
Co-authors: T. Erikssonb, R. Kuivalainenb, T. Hyppänena

aLappeenranta University of Technology
bFoster Wheeler Energia Oy

Acknowledgement:
The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 239188.
Introduction

- A Flexi-Burn® CFB is a concept, in which a circulating fluidized bed (CFB) boiler can be operated both in air-fired and oxygen-fired modes.

- A commercial CCS demonstration plant applying the Flexi-Burn concept is under development at Compostilla, Spain (OXYCFB300-project).

- The design is supported by one-dimensional and three-dimensional modelling.
Development path from small to large scale

- **Bench scale**
- **Pilot scale**
- **Demonstration/Commercial scale**

EXPERIMENTAL SCALES
- Models and design tools
- Models for phenomena
- 1-D process models
- 3-D process models

Lappeenranta University of Technology
Simplified schematic of a Flexi-Burn CFB power plant
Main process data of studied cases

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Air-fired</th>
<th>Oxygen-fired</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler load</td>
<td>%</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Boiler capacity</td>
<td>MWe</td>
<td>300</td>
<td>330</td>
</tr>
<tr>
<td>Fuel flow rate</td>
<td>kg/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracite</td>
<td></td>
<td>18.1 (70%)</td>
<td>22.0 (70%)</td>
</tr>
<tr>
<td>Petcoke</td>
<td></td>
<td>7.8 (30%)</td>
<td>9.4 (30%)</td>
</tr>
<tr>
<td>Limestone flow rate</td>
<td>kg/s</td>
<td>5.4</td>
<td>6.6</td>
</tr>
<tr>
<td>Inlet gas flow to furnace</td>
<td>kg/s</td>
<td>272.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Ambient air</td>
<td></td>
<td>0.0</td>
<td>63.8</td>
</tr>
<tr>
<td>Oxygen (95% O_2)</td>
<td></td>
<td>0.0</td>
<td>261.9</td>
</tr>
<tr>
<td>Recirculated gas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_2 content of inlet gas</td>
<td>%-vol</td>
<td>20.7</td>
<td>23.6</td>
</tr>
<tr>
<td>Primary gas ratio</td>
<td>%</td>
<td>62</td>
<td>60</td>
</tr>
<tr>
<td>Fly ash recirc. share</td>
<td>%</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Proximate analysis (as rec.)

<table>
<thead>
<tr>
<th></th>
<th>Anthracite</th>
<th>Pet-coke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>8.3</td>
<td>6.6</td>
</tr>
<tr>
<td>Ash</td>
<td>30.7</td>
<td>1.3</td>
</tr>
<tr>
<td>Volatiles</td>
<td>6.4</td>
<td>11.8</td>
</tr>
</tbody>
</table>

Ultimate analysis (daf)

<table>
<thead>
<tr>
<th></th>
<th>Anthracite</th>
<th>Pet-coke</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>89.5</td>
<td>87.2</td>
</tr>
<tr>
<td>H</td>
<td>2.9</td>
<td>3.7</td>
</tr>
<tr>
<td>N</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>S</td>
<td>1.7</td>
<td>6.1</td>
</tr>
<tr>
<td>O</td>
<td>4.5</td>
<td>1.2</td>
</tr>
</tbody>
</table>
One-dimensional design model

- Foster Wheeler’s stationary 1D design model is a semi-empirical tool consisting of several sub-models, which describe the furnace processes.
- Very large validation base of air-fired combustion.
- Validation of oxygen-fired combustion based on bench-scale and pilot-scale tests.
One-dimensional model results

Heat rel. (kW/m3), Temp. (°C)

Air-fired:
- Heat rel. (kW/m3)
- Temp. (°C)
- Oxygen (mol-%)

Oxygen-fired:
- Heat rel. (kW/m3)
- Temp. (°C)
- Oxygen (mol-%)

Lappeenranta University of Technology
Three-dimensional model

- A steady-state, semi-empirical model, which describes the CFB furnace process.
- 3D-modelling of furnace based on control volume method.
- Validation based on field tests at pilot scale and full scale units.

- Calculation mesh of Compostilla CFB:
Oxygen profiles

Air-fired

Oxygen-fired

Lappeenranta University of Technology
Carbon monoxide profiles

Air-fired

Oxygen-fired

Lappeenranta University of Technology
Temperature profiles

Air-fired

Oxygen-fired

Carbonation (oxygen-fired)

Temperature [°C]
- 960
- 910
- 860
- 810
- 760

Carbonation [mol/m3s]
- 2
- 1.5
- 1
- 0.5
- 0
Sulphation and sulphur dioxide profiles

Air-fired

Oxygen-fired

SO₂ [mol-%]
0.3
0.25
0.2
0.15
0.1
0.05
0

Sulfation [mol/m³s]
0.05
0.04
0.03
0.02
0.01
0

Lappeenranta University of Technology
Molar balance of sulphur dioxide

Air-fired (sources)

Air-fired (sinks)

Oxygen-fired (sources)

Oxygen-fired (sinks)

Molar flow of SO$_2$ (mol/s)

0 10 20 30

Gas feed
Char combustion
H2S combustion
Desulphation
Sulphation
Direct sulphation
Recirc. gas
Flue gas

Lappeenranta University of Technology
Validation by CIUDEN TDP test data

Work in progress...

Lappeenranta University of Technology
Summary

- A Flexi-Burn CFB is a concept, in which a circulating fluidized bed boiler can be operated both in air-fired and oxygen-fired modes.

- 1D and 3D process models have been used to support the design of the OXYCFB300 Compostilla demonstration plant.

- Model analyses reveal phenomena, which need to be considered in the design.

- For future improvement, the different empirical correlations describing the furnace phenomena need to be further validated based on measurement data from CIUDEN TDP test facility.