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Abstract

Let S be a connected orientable surface with finitely many punctures, finitely
many boundary components, and genus at least 6. Then any C1 action of the
mapping class group of S on the circle is trivial.

The techniques used in the proof of this result permit us to show that products
of Kazhdan groups and certain lattices cannot have C1 faithful actions on the
circle. We also prove that for n ≥ 6, any C1 action of Aut(Fn) or Out(Fn) on
the circle factors through an action of Z/2Z.

1 Introduction

Theorem 1.1. Let S be a connected orientable surface with finitely many punctures,

finitely many boundary components, and genus at least 6. Then any C1 action of the

mapping class group of S on the circle is trivial.

Thurston has established that there are faithful (effective) C0 actions of the map-
ping class group of S on the circle when S is a surface of negative Euler characteristic
with nonempty boundary (see [15] or [9]). Dehornoy in [5], using different techniques,
had previously shown that braid groups (mapping class groups of the punctured sphere)
act faithfully on the circle. The fact that mapping class groups act on the circle had
been observed earlier by Nielsen in his clasical works. Theorem 1.1 above asserts that
nontrivial actions do not exist under the smoothness assumption when the genus is
sufficiently large.

In fact, any C0 action of a finitely generated group on the circle is (topologically)
conjugate to a Lipschitz action (see [6]). So the known actions may be considered to
be Lipschitz, and therefore, can be assumed to be differentiable almost everywhere.
The result above shows that when the genus is at least 6, the actions of mapping class
groups are not smoothable, that is, they are not conjugate to C1 actions.

Theorem 1.1 provides an infinite family of examples that answer the following ques-
tion posed by John Franks.
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Question 1.2 (Franks [8]). Does there exists a finitely generated group which acts
faithfully on the circle via homeomorphisms but for which there is no faithful C1

action?

Note that another example that answers this question has been constructed in [4].
Theorem 1.1 also generalizes the following result in [7].

Theorem 1.3 (Farb and Franks). Let S be compact surface of genus at least 3 and at

most one puncture. Then any C2 action of the mapping class group of S on the circle

must be trivial.

The main results of this paper are the following two theorems.

Theorem 1.4. Let H and G be two finitely generated groups such that H1(G, Z) =
H1(H, Z) = 0. Then for any C1 action of H×G on the circle, either H×1 acts trivially

or 1 × G acts trivially.

Theorem 1.5. Let H and G be two finitely generated groups such that H1(G0, R) =
H1(H0, R) = 0 for all finite index normal subgroups H0 and G0 of H and G respectively.

Then for any C1 action of H × G on the circle, the induced action of either H × 1 or

1 × G factors through an action of a finite group.

Theorem 1.1 follows directly from Theorem 1.4. Theorem 1.5 has implications for
C1 actions of finite index subgroups of mapping class groups. Even if the mapping class
groups don’t have property (T) (see [16]), it is still conceivable (and conjectured) that
all finite index subgroups have trivial first cohomology. If this is true, Theorem 1.5
would imply that the following conjecture is true when the genus of surface is at least
4.

Conjecture 1.6. Let G be a finite index subgroup of the mapping class group of S,

where S is a connected orientable surface with finitely many punctures, finitely many

boundary components, and genus at least 2. Then any C1 action of G on the circle

cannot be faithful.

Theorem 1.4 also implies that for n ≥ 6, any C1 action of Aut(Fn) or Out(Fn) on
the circle factors through an action of Z/2Z. Theorem 1.5 can be applied to show that
products of Kazhdan groups and certain lattices cannot have C1 faithful actions on the
circle. The proofs of the main results are given in Section 3 and the other corollaries
are discussed in greater detail in Section 4.

Conversations with Benson Farb and John Franks were valuable in the preparation
of this article. The author would also like to thank the referee for several useful
comments and suggestions.
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2 Tools

We now present several results that will be used in the proof of Theorem 1.1 and
Theorem 1.4.

2.1 Algebraic properties of Mod(S)

Throughout this paper, unless otherwise stated, by a surface we mean a connected ori-
entable surface with finitely many punctures and boundary components. The mapping
class group of S, denoted by Mod(S), is the group of isotopy classes of orientation
preserving diffeomorphisms of S; the diffeomorphisms and the isotopies fix all the
punctures and fix the boundary pointwise.

When S is a surface of genus at least 6, there exists a simple closed separating curve
that splits S into two subsurfaces M1 and M2 such that the genus of each of these
subsurfaces is at least 3. So Mod(S) contains the subgroup Mod(M1) × Mod(M2).
We will show that either Mod(M1) acts trivially or Mod(M2) acts trivially in order to
establish Theorem 1.1.

It is known that if M is a surface of genus 2, H1(Mod(M), Z) = Z10, and if M
has genus greater that 2, then H1(Mod(M), Z) = 0. We will also use the fact that if
the genus of M is at least 2, then Mod(M) is generated by Dehn twists about finitely
many non-separating simple closed curves. The survey article [12] is a good reference
for these results.

2.2 Thurston’s Stability Lemma

Theorem 2.1 (Thurston [17]). Let G be a finitely generated group acting on Rn with

a global fixed point x. If the action is C1 and Dg(x) is the identity for all g ∈ G, then

either there is a nontrivial homomorphism of G into R or G acts trivially.

We will need the following result which is a direct consequence of Thurston’s Sta-
bility Lemma (Theorem 2.1).

Lemma 2.2. Let G be a finitely generated group with an orientation preserving action

on the circle. If G acts with a global fixed point and H1(G, R) = 0, then G acts trivially.

Proof. Let x be the global fixed point. It suffices to show that g′(x) = 1 for all g ∈ G.
So consider the homomorphism L : G → R defined by L(g) = log(g′(x)). Since
H1(G, R) = 0, this must be the trivial homomorphism, which implies that g′(x) = 1
for all g ∈ G.

2.3 Rotation numbers

The subject mater of this subsection is well known. The interested reader may refer to
[9] or even [7] for more details.
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Definition 2.3. Let G be a finitely generated subgroup of the orientation preserving
homeomorphisms of the circle and let µ be a G-invariant probability measure. The
mean rotation number homomorphism is the map ρ : G → R/Z defined by

g →

∫
S1

(g̃ − Id) dµ̃ (mod 1),

where g̃ and µ̃ are lifts of g and µ to the real line and the integral is over a single
fundamental domain.

The fact that this map is a homomorphism follows easily from the assumption that
G preserves µ. Note that the mean rotation number of a homeomorphism is the same
as the translation number of a circle homeomorphism, which was originally defined by
Poincaré.

Proposition 2.4. Let G be a finitely generated group with an orientation preserving

action on the circle and let µ be a G-invariant probability measure. The element g ∈ G
acts with a fixed point if ρ(g) = 0.

Corollary 2.5. Let G be a finitely generated group with an orientation preserving

action on the circle and let µ be a G-invariant probability measure. If H1(G, Z) = 0,
then G acts with a global fixed point.

Proof. Since G is perfect and the target of ρ, the rotation number homomorphism, is
an abelian group, ρ must be trivial. The above proposition implies that every element
acts with a fixed point. The support of µ is contained in the fixed point set of each
element in G, and therefore, G must have a global fixed point.

Corollary 2.6. Let G be a finitely generated group with an orientation preserving

action on the circle and let µ be a G-invariant probability measure. If H1(G, R) = 0,
then G has a periodic orbit. In particular, a finite index normal subgroup of G acts

with a global fixed point.

Proof. The assumption H1(G, R) = 0 implies that the image of the mean rotation
number homomorphism is a finite group, and therefore, the kernel K is a finite index
normal subgroup. The proposition above implies that every element in K acts with a
fixed point. Recall that the support of the invariant measure is contained in the fixed
point sets of every element in K. So K, a finite index normal subgroup of G, acts with
a global fixed point.

2.4 Hyperbolic fixed points

The proof of Theorem 1.4 relies heavily on the following result, which guarantees the
existence of an element with a finite fixed point set in the absence of an invariant
probability measure.
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Theorem 2.7 (Deroin, Kleptsyn, and Navas [6]). Let G be a countable group with an

orientation preserving C1 action on the circle. If there is no G-invariant probability

measure for the action, then there exists an element g ∈ G that only has hyperbolic

fixed points. In particular, g has a nonempty finite set of fixed points.

3 C1 actions on the circle

Theorem 1.4. Let H and G be two finitely generated groups such that H1(G, Z) =
H1(H, Z) = 0. Then for any C1 action of H × G on the circle, either H × 1 acts

trivially or 1 × G acts trivially.

Proof. Suppose that there exists a C1 action of H×G on the circle. Since H and G are
both perfect, this action must be orientation preserving. We now consider the induced
action of G on the circle. By the result of Deroin, Kleptsyn, and Navas, either there
exists a probability measure µ that is G-invariant or there is an element g ∈ G that
has a finite number of fixed points. We treat these two cases separately.

CASE 1: There exists a probability measure µ that is G-invariant.
Now consider the mean rotation number homomorphism. This has to be trivial, and

so, every element acts with a fixed point. The support of the measure µ is contained in
the intersection of the fixed point sets of all the elements. So G has a global fixed point.
Now apply the corollary to Thurston’s Stability Lemma (Lemma 2.2) to conclude that
G acts trivially.

CASE 2: There is an element g in G that has a finite number of fixed points.
In this case, there is a finite set—the set of hyperbolic fixed points—left invariant

by the induced action of the group H. This implies that the action of the group H
has an invariant measure, and now we may argue as above, with G replaced by H , to
conclude that H acts trivially.

The proof of Theorem 1.5 is almost identical to the one given above. The assump-
tion of trivial cohomologies rather than trivial homologies guarantees the existence of
periodic points and not necessarily fixed points. These periodic points are fixed points
for some finite index normal subgroup, which must act trivially for the same reasons
presented above. The proof can be easily obtained by making minor adjustments to
the arguments in the proof of Theorem 1.4 above.

Theorem 1.5. Let H and G be two finitely generated groups such that H1(G0, R) =
H1(H0, R) = 0 for all finite index normal subgroups H0 and G0 of H and G respectively.

Then for any C1 action of H × G on the circle, the induced action of either H × 1 or

1 × G factors through an action of a finite group.

Proof. Suppose that there exists a C1 action of H ×G on the circle. Let H0 and G0 be
the index 2 subgroups of H and G respectively that have induced orientation preserving
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actions. We now focus on the action of the group G0. By the result of Deroin, Kleptsyn,
and Navas, either there exists a probability measure µ that is G0-invariant or there is
an element g ∈ G0 that has a finite number of fixed points. We treat these two cases
separately.

CASE 1: There exists a probability measure µ that is G0-invariant.
Apply Corollary 2.6 to obtain a finite index normal subgroup G1 that acts with a

global fixed point. Now Thurston’s Stability Lemma (Lemma 2.2) implies that G1 acts
trivially, and so, the induced action of G factors through an action of a finite group.

CASE 2: There is an element g in G0 that has a finite number of fixed points.
In this case, there is a finite set—the set of hyperbolic fixed points—left invariant

by the induced action of the group H0. This implies that the action of the group H0

has an invariant measure, and now we may argue as above, with G0 replaced by H0, to
conclude that the induced action of H factors through an action of a finite group.

We are now ready to prove Theorem 1.1, which follows immediately from Theo-
rem 1.4 above.

Theorem 1.1. Let S be a connected orientable surface with finitely many punctures,

finitely many boundary components, and genus at least 6. Then any C1 action of the

mapping class group of S on the circle is trivial.

Proof. We may split the surface S up into two subsurfaces M1 and M2 as in Section 2.1
to obtain the action of Mod(M1) × Mod(M2) on the circle. Note that Mod(M1) and
Mod(M2) are both finitely generated and perfect (see [12]). Theorem 1.4 implies that
either Mod(M1) acts trivially or Mod(M2) acts trivially. In both cases, a Dehn twist
about a non-separating simple closed curve acts trivially. Since all such Dehn twists
are conjugate to each other (see [11] for instance), all of them must act trivially. Now
recall the Mod(S) is generated by these Dehn twists.

Remark 3.1. Suppose that every finite index normal subgroup of Mod(S) has trivial
first cohomology when S is a surface of genus at least 2. Now consider a C1 action of
a finite index subgroup K of Mod(S), where S has genus at least 4. As in the proof
of the theorem above, we may split S into two subsurfaces M1 and M2, each with
genus at least 2. The action of K induces an action of H × G, where H and G are
finite index subgroups of Mod(M1) and Mod(M2) respectively. Under our assumptions,
Theorem 1.5 implies that the action of K cannot be faithful. This elaborates on the
comments just beore Conjecture 1.6.

The following corollary is a direct consequence of Theorem 1.4.

Corollary 3.2. For 1 ≤ i ≤ n, let Gi be a finitely generated group with H1(Gi, Z) = 0.
Then for any C1 action of G1 × G2 × · · · × Gn on the circle, there exists at most one

Gi with a nontrivial induced action on the circle.

An analogous statement follows from Theorem 1.5.
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4 Other corollaries

We first apply Theorem 1.4 to Aut(Fn) and Out(Fn) and then apply Theorem 1.5 to
show that products of Kazhdan groups cannot act smoothly on the circle.

4.1 Aut(Fn) and Out(Fn)

We now discuss the actions of Aut(Fn), the automorphism group of Fn, and Out(Fn),
the outer automorphism group of Fn, where Fn is the free group of rank n. The proof
that the C1 actions of Aut(Fn) and Out(Fn) on the circle are trivial is similar to the
proof of Theorem 1.1.

The lemma below follows directly from the proof of Lemma 4.1 in [7].

Lemma 4.1. For n ≥ 3, Aut(Fn) contains a finitely generated subgroup T of index 2
which has a set of generators {Aij, Bij} with i 6= j, 1 ≤ i ≤ n and 1 ≤ j ≤ n. The

subgroup T has a following properties.

• H1(T, Z) = 0.

• Aij is conjugate to Akl and Bij is conjugate to Bkl, for all positive integers i, j, k, l
between 1 and n.

Theorem 4.2. For n ≥ 6, any C1 action of Aut(Fn) or Out(Fn) on the circle factors

through an action of Z/2Z.

Proof. Suppose Aut(Fn), where n ≥ 6, has a C1 action on the circle. We may consider
the induced action of Aut(F3) × Aut(Fn−3), which is a subgroup of Aut(Fn), on the
circle. Apply the lemma above to obtain an action of H × G on the circle, where H
and G are the index 2 subgroups of Aut(F3) and Aut(Fn−3) respectively that play the
role of the subgroup T in the lemma above.

Since H and G are finitely generated and perfect, Theorem 1.4 implies that either
H acts trivially or G acts trivially. In either case, some Aij and some Bkl must act
trivially. Now recall that Aut(Fn) has an index two subgroup that is generated by
elements conjugate to Aij and Bkl. So an index two subgroup of Aut(Fn) acts trivially.

Since there exists a natural homomorphism from Aut(Fn) onto Out(Fn), the same
result holds for Out(Fn) also.

Note that the result of Bridson and Vogtmann in [3] about C0 actions implies this
theorem. However, their proof strongly relies on the existence of finite order elements.
We give our proof here because it is short, easy, and it has implications for torsion free
finite index subgroups of Aut(Fn) and Out(Fn). It should also be noted that Farb and
Franks prove the same result for C2 actions in [7].
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4.2 Kazhdan groups

It is well known that discrete Kazhdan groups are finitely generated and any finite
index normal subgroup of a discrete Kazhdan group has trivial first cohomology. So
Theorem 1.5 implies that products of discrete Kazhdan cannot have faithful C1 actions
on the circle.

Corollary 4.3. Let H and G be two discrete Kazhdan groups. Then for any C1 action

of H ×G on the circle, the induced action of either H × 1 or 1×G factors through an

action of a finite group.

This is related to a result of Navas about actions of groups with property (T) on
the circle; in [13] he proves that for α > 1/2, any C1+α action of a discrete Kazhdan
group on the circle factors through an action of a finite group.

Certain lattices like SL(n, Z) for n > 2 are known to have Kazhdan’s property
(T). Also when n > 5, SL(n, Z) contains two commuting sub-lattices isomorphic to
SL(3, Z). These facts yield the following corollary.

Corollary 4.4. Any C1 action of a finite index subgroup of SL(n, Z), for n > 5, on

the circle factors through an action of a finite group.

This result is well known. It follows from the work of Morris (Witte) in [18] (also
see [10] and [2]). The corollary above holds for a large family of lattices that contain
two commuting sub-lattices that satisfy the hypothesis of Theorem 1.5.

The interested reader should also see [1] and [14] for results about actions of prod-
ucts of lattices and Kazhdan groups on the circle.
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