Skip to main content
Article
Methodology To Design Eco-friendly Fiber-reinforced Concrete For 3D Printing
Cement and Concrete Composites
  • Haodao Li
  • Alfred Addai-Nimoh
  • Eric Kreiger
  • Kamal H. Khayat, Missouri University of Science and Technology
Abstract

Greater use of locally available supplementary cementitious materials (SCM) to reduce cement content and addition of fiber reinforcement can enhance the performance of 3D printing (3DP) technology in construction. In this study, three classes of eco-friendly 3D printable fiber-reinforced mixtures were targeted, namely ultra-high-performance concrete (UHPC), high-performance concrete (HPC), and conventional concrete (CC). A step-by-step methodology was proposed to maximize the substitution rate of cement with SCM and limestone filler and optimize fiber volume for the successful development of 3D printable fiber-reinforced materials. Binder combinations were initially investigated on the paste level to determine the packing density and robustness. Selected binder systems were narrowed down on the mortar level by evaluating the superplasticizer (SP) demand, plastic viscosity, forced bleeding, final setting time, and 3-day compressive strength. The 6-mm steel and 8-mm polyvinyl alcohol (PVA) fibers were incorporated for further evaluation of key properties of fiber-reinforced concrete. The printability of the fiber-reinforced mixtures was validated using an extrusion-based 3D printer. Developing such print materials with adequate strength and toughness can improve the cost-effectiveness of 3DP construction, and extend 3DP technology to remote areas.

Department(s)
Civil, Architectural and Environmental Engineering
Comments

Engineer Research and Development Center, Grant W9132T22C0009

Keywords and Phrases
  • 3D printing technology,
  • Fiber reinforcement,
  • Mixture design methodology,
  • Printability,
  • Supplementary cementitious materials
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2024 Elsevier, All rights reserved.
Publication Date
3-1-2024
Publication Date
01 Mar 2024
Citation Information
Haodao Li, Alfred Addai-Nimoh, Eric Kreiger and Kamal H. Khayat. "Methodology To Design Eco-friendly Fiber-reinforced Concrete For 3D Printing" Cement and Concrete Composites Vol. 147 (2024) ISSN: 0958-9465
Available at: http://works.bepress.com/kamal-khayat/213/