1991

Reduction, Elimination, and the Mental

Justin Schwartz
Introduction

Jerry Fodor claims that reducibility to physics is a constituent of the accessibility of sciences and mental terms. In his view, the reducibility of mental to physics is an essential and unassailable fact. Fodor argues that mental and physical terms are reducible to physical ones. This reduction is not merely a matter of identifying the mental with the physical, but rather involves the derivation of mental properties from physical ones. Fodor's view is that mental properties can be derived from physical properties through the process of reduction.

The reducibility of mental to physical is supported by the following considerations: mental properties, such as beliefs, desires, and intentions, are reducible to physical properties, such as neural activity and brain states. This reducibility is not just a matter of naming or labeling, but involves a deep-level correspondence between mental and physical properties. Fodor argues that this correspondence is a necessary condition for the accessibility of mental terms.

In conclusion, Fodor's view of reducibility and accessibility is a central theme in the philosophy of mind. It is a controversial position, however, and has been the subject of much debate and criticism. The relevance of reducibility to accessibility is still a matter of ongoing discussion in the field of philosophy of mind.
Reduction, Elimination, and the Mental

Justin Schwartz

209

Reduction, Elimination, and the Mental

Justin Schwartz

209
5.3. Why You Can’t Put Your Hand Through the Table. What does it mean when we say that the table does not collapse when you push on it? Does it support your hand and resist your pushing your hand through it? If you try to break a table by applying force, you will find that it resists your efforts. The strength of the table is due to the bonds that hold the molecules together. These bonds are strong enough to prevent the table from collapsing.

5.4. Keeping What We Care About. If we understand the functional notation, we have a reduction of solidity with its physical microstructure, or showing how it is constituted. Such a story may require some revisions in our notion of solidity, as it is based on the notion of the table being solid and not just a collection of atoms. If the story may require some revisions in our notion of solidity, it does not mean that the idea of a table being solid is entirely wrong. It just means that the notion of solidity must be redefined to accommodate new information.

Wood and other materials are not infallible. Like all materials, they are subject to wear and tear. But even if a material becomes damaged, the functional notation can still be used to describe the properties of the material. This is because the functional notation is a description of the material, not a description of how the material is used. The functional notation can be used to describe the material in a way that is independent of how it is used.

Wood is a good example of a material that is used in many different ways. In some cases, wood is used as a structural element, such as in the construction of buildings. In other cases, wood is used as a decorative element, such as in the construction of furniture. In still other cases, wood is used as a material that is used to create art, such as in the creation of sculptures. The functional notation can be used to describe all of these uses of wood.

Wood is a good example of a material that is used in many different ways. In some cases, wood is used as a structural element, such as in the construction of buildings. In other cases, wood is used as a decorative element, such as in the construction of furniture. In still other cases, wood is used as a material that is used to create art, such as in the creation of sculptures. The functional notation can be used to describe all of these uses of wood.