Skip to main content
Article
Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks
Science Direct
  • Bo An
  • Min D. Tang-Schomer
  • Wenwen Huang
  • Jiuyang He
  • Justin A. Jones, Utah State University
  • Randolph V. Lewis, Utah State University
  • David L. Kaplan
Document Type
Article
Publisher
ACS Publications
Publication Date
3-19-2015
Disciplines
Abstract

Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels. The results indicate that MaSp1 films present useful surface charge and substrate stiffness to support the growth of primary rat cortical neurons. Moreover, a putative neuron-specific surface binding sequence GRGGL within MaSp1 may contribute to the biological regulation of neuron growth. These findings indicate that MaSp1 could regulate neuron growth through its physical and biological features. This dual regulation mode of MaSp1 could provide an alternative strategy for generating functional silk materials for neural tissue engineering.

Citation Information
Bo An, Min D. Tang-Schomer, Wenwen Huang, Jiuyang He, Justin A. Jones, Randolph V. Lewis, David L. Kaplan, Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks. Biomaterials, 48: 137-146.