Skip to main content
Article
Convergence, Constraint and the Role of Gene Expression During Adaptive Radiation: Floral Anthocyanins in Aquilegia
Biology
  • Justen B. Whittall, Santa Clara University
  • Claudia Voelckel
  • Daniel J. Kliebenstein
  • Scott A. Hodges
Document Type
Article
Publication Date
12-1-2006
Publisher
Molecular Ecology, Wiley-Blackwell
Abstract

Convergent phenotypes are testament to the role of natural selection in evolution. However, little is known about whether convergence in phenotype extends to convergence at the molecular level. We use the independent losses of floral anthocyanins in columbines (Aquilegia) to determine the degree of molecular convergence in gene expression across the anthocyanin biosynthetic pathway (ABP). Using a phylogeny of the North American Aquilegia clade, we inferred six independent losses of floral anthocyanins. Via semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we monitored developmental and tissue-specific variation in expression of the six major structural ABP loci in three Aquilegia species, two that produce anthocyanins (A+) and one that does not (A-). We then compared ABP expression in petals of old-bud and pre-anthesis flowers of 13 Aquilegia species, eight wild species and two horticultural lines representing seven independent A- lineages as well as three wild A+ species. We only found evidence of down-regulation of ABP loci in A- lineages and losses of expression were significantly more prevalent for genes late in the pathway. Independent contrast analysis indicates that changes in expression of dihydroflavonol reductase (DFR) and anthocyanidin synthase (ANS) are strongly phylogenetically correlated consistent with the multilocus targets of trans-regulatory elements in the ABP of other systems. Our findings strongly suggest that pleiotropy constrains the evolution of loss of floral anthocyanins to mutations affecting genes late in the ABP mostly through convergent changes in regulatory genes. These patterns support the hypothesis that rapid evolutionary change occurs largely through regulatory rather than structural mutations.

Comments

© The Authors 2011. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Molecular Ecology, Volume 15, Issue 4 (December 2006), pp. 4645-4657 doi: 10.1111/j.1365-294X.2006.03114.x

Citation Information
Convergence, constraint and the role of gene expression during adaptive radiation: floral anthocyanins in Aquilegia. Whittall, Justen B.; Voelckel, Claudia; Kliebenstein, Daniel J.; et al. Molecular Ecology. December 2006, 15:14 pp. 4645-4657