Skip to main content
Article
Dosage compensation of the X chromosomes in bovine germline, early embryos, and somatic tissues
Genome Biology and Evolution
  • Jingyue Duan, University of Connecticut
  • Wei Shi, University of Connecticut
  • Nathaniel K. Jue, California State University, Monterey Bay
  • Zongliang Jiang, Louisiana State University
  • Lynn Kuo, University of Connecticut
  • Rachel O’Neill, University of Connecticut
  • Eckhard Wolf, Ludwig-Maximilians-Universit€at Muünchen
  • Hong Dong, Xinjiang Academy of Animal Science
  • Xinbao Zheng, Xinjiang Academy of Animal Science
  • Jingbo Chen, Xinjiang Academy of Animal Science
  • Xiuchun Tian, University of Connecticut
Document Type
Article
Publication Date
1-1-2019
Abstract

© The Author(s) 2018. Dosage compensation of the mammalian X chromosome (X) was proposed by Susumu Ohno as a mechanism wherein the inactivation of one X in females would lead to doubling the expression of the other. This would resolve the dosage imbalance between eutherian females (XX) versus male (XY) and between a single active X versus autosome pairs (A). Expression ratio of X- and A-linked genes has been relatively well studied in humans and mice, despite controversial results over the existence of upregulation of X-linked genes. Here we report the first comprehensive test of Ohno’s hypothesis in bovine preattachment embryos, germline, and somatic tissues. Overall an incomplete dosage compensation (0.5 < X:A < 1) of expressed genes and an excess X dosage compensation (X:A > 1) of ubiquitously expressed “dosage-sensitive” genes were seen. No significant differences in X:A ratios were observed between bovine female and male somatic tissues, further supporting Ohno’s hypothesis. Interestingly, preimplantation embryos manifested a unique pattern of X dosage compensation dynamics. Specifically, X dosage decreased after fertilization, indicating that the sperm brings in an inactive X to the matured oocyte. Subsequently, the activation of the bovine embryonic genome enhanced expression of X-linked genes and increased the X dosage. As a result, an excess compensation was exhibited from the 8-cell stage to the compact morula stage. The X dosage peaked at the 16-cell stage and stabilized after the blastocyst stage. Together, our findings confirm Ohno’s hypothesis of X dosage compensation in the bovine and extend it by showing incomplete and over-compensation for expressed and “dosage-sensitive” genes, respectively.

Citation Information
Jingyue Duan, Wei Shi, Nathaniel K. Jue, Zongliang Jiang, et al.. "Dosage compensation of the X chromosomes in bovine germline, early embryos, and somatic tissues" Genome Biology and Evolution Vol. 11 Iss. 1 (2019) p. 242 - 252
Available at: http://works.bepress.com/jue-nathaniel/18/