The Household Impacts of Treating HIV/AIDS in Developing Countries

Markus Goldstein
Harsha Thirumurthy, University of North Carolina at Chapel Hill
Joshua Graff Zivin, University of California - San Diego
Annual World Bank Conference on Development Economics—Global 2009

People, Politics, and Globalization

Edited by Justin Yifu Lin and Boris Pleskovic
The Household Impacts of Treating HIV/AIDS in Developing Countries

MARKUS GOLDSTEIN, JOSHUA GRAFF ZIVIN,
AND HARSHA THIRUMURTHY

Recent data on the household impacts of providing antiretroviral therapy to HIV-infected adults permit a much fuller assessment of the economic footprint of treatment than was previously possible. Drawing on evidence from treatment programs in western Kenya and several countries of Sub-Saharan Africa, the authors discuss a range of benefits to the households of patients receiving treatment. These benefits begin with the labor market outcomes of treated patients, who are able to significantly increase their work hours within six months after they initiate treatment. In the same time period, substantial improvements take place in the nutritional status and school attendance of children in patients’ households, which in turn can improve the future well-being of these children. The results demonstrate that treatment can mitigate the negative socioeconomic consequences of HIV/AIDS. The authors argue that the findings provide an added rationale for the continued scaling up of treatment programs, which should be viewed as investments that offer large, long-term economic returns to society.

Since the advent of highly active antiretroviral therapy (ART) in 1996, morbidity and mortality from HIV/AIDS have declined substantially in industrial countries. Owing to the widespread availability of such treatment, HIV/AIDS is often dealt with as a chronic disease in these countries. In developing nations, access to antiretroviral therapy is growing but is still limited. In Sub-Saharan Africa, the region most affected by HIV/AIDS, the number of HIV-positive people receiving treatment rose from 100,000 in the late 1990s to nearly 2 million in 2003. Despite this
progress, only about 30 percent of the people in need of treatment currently have access to it. Since public provision of treatment remains the primary channel through which people in developing countries can access ART, expansion of donor support remains critical to achieve the international community’s goal of universal access to HIV treatment (as well as prevention, care, and support) by 2010 for all who need it (Group of 8 communiqué, July 2008). According to estimates by the Joint United Nations Programme on HIV/AIDS (UNAIDS), the annual cost of achieving universal access to treatment by 2010 will be approximately US$15 billion per year—an amount much larger than current expenditures on treatment (UNAIDS 2007).

Greater support for the scaling up of treatment programs has been lacking, for a number of reasons. These include skepticism as to whether ART will generate health and economic benefits that are sizable enough to offset its costs and a related debate about how best to allocate scarce resources in developing countries (see, for example, Canning 2006). Since treatment, once initiated, must be continued for the entire duration of a person’s life, there has also been concern about the wisdom and sustainability of current expenditures on ART. According to the Economist (2006), people who begin receiving ART today will become tomorrow’s “medical pensioners” whose treatment costs will become the responsibility of the countries in which they live and the organizations that support these countries. Because evidence on the impacts of providing ART has been slow to emerge, until recently it has been impossible to evaluate treatment programs properly and assess whether expenditures on such programs may be justified on economic, as opposed to humanitarian, grounds.

In this paper we draw on recent research to describe the short-term impact of treatment on the socioeconomic outcomes of patients and households in Sub-Saharan Africa. Since the scaling up of treatment programs is a recent phenomenon, the evidence on household impacts that we present here has been largely absent in discussions of the costs and benefits of treatment. These household impacts are an important component of the benefits that stem from treatment programs, and when they are taken into consideration, it is difficult not to view treatment expenditures as investments that offer longer-term economic returns to households.

To see why treatment could induce a variety of positive changes in the well-being of households in low-income settings, it is instructive to consider how these households generally respond to health setbacks. Households in low-income settings face a great deal of health and economic risk, and their ability to cope with such risk and ensure minimum levels of food consumption and well-being is often limited. Because access to formal or informal credit and insurance against large setbacks may be lacking, some households may have to resort to extreme measures, including partial or full withdrawal of children from school, increased employment of children’s labor in family farms or business enterprises, and reductions in food consumption for some or all household members. Coping with AIDS-related adult morbidity, rather than a temporary illness, is especially challenging. Individuals can expect to recover from temporary illnesses and so might be able to rely at least partially on informal credit and insurance from friends and relatives. For chronic illnesses, however, finding
individuals who are willing to provide support is more difficult. Furthermore, since AIDS invariably ends in death when no treatment is available, the disease may have even larger effects on the well-being of household members, particularly children who will be left without a parent.

Longitudinal household survey data that we have collected in collaboration with a treatment program in western Kenya, along with limited evidence from other countries in Sub-Saharan Africa, suggests that ART reverses and mitigates many of the effects of HIV on the socioeconomic well-being of infected adults and their households. The starting point for these household impacts lies in the employment outcomes of adult patients who receive ART. Evidence from rural Kenya shows that after ART is initiated there is a large and immediate increase in the amount of work performed by treated patients. These increases are in contrast to the well-documented decline in productivity for HIV-infected individuals who do not have access to treatment (Fox et al. 2004). Although it is encouraging that these labor supply increases are observed in the first 6 to 12 months after initiation of treatment, we emphasize that more evidence is needed about the long-term effects of ART on the labor supply and other outcomes.

Our analysis of data from Kenya suggests that as adult patients become healthier and more productive thanks to ART, the burden on children to provide substitute labor decreases substantially. Boys work significantly less in income-generating activities, and the amount of household chores that girls perform decreases considerably. These reductions in time allocated to labor are accompanied by increased school attendance, which is likely to result in higher wages and improved health for these children in the future. ART also leads to large improvements in the nutritional status of very young children in treated patients’ households—another indicator that the short-term impacts of treatment may have long-term effects on health and economic outcomes.

Although the positive effects of ART that we document here are largely private benefits realized by patients and their households, we argue that under certain conditions this evidence can provide a rationale for public support for ART. Such conditions include the existence of borrowing constraints for households in low-income settings and the externalities that may result from improved schooling outcomes. The broader socioeconomic view of the impact of ART—particularly its intergenerational effects—also suggests that cost-effectiveness analyses of ART (which typically focus on the number of patient life-years saved) may substantially underestimate the benefits of treatment. Our findings also call into question the argument that resources should be allocated to HIV prevention at the expense of treatment (Canning 2006).

The next section reviews the evidence on the clinical and immunological impacts of ART and provides an overview of existing efforts to scale up treatment programs. The empirical strategy for estimating the impact of treatment when randomized controlled trials are not feasible is then discussed. There follows a survey of unique evidence from western Kenya on socioeconomic impacts on households of patients receiving ART—from employment outcomes for treated patients, to schooling and employment outcomes for children and the nutritional status of very young children. The issue of generalizability is then examined, with reference to evidence from other settings such as South Africa and Botswana, and areas where additional research is
needed are identified. The final section summarizes the policy implications that flow from these household impacts of treatment.

Effectiveness and Availability of Antiretroviral Therapy

As HIV weakens the immune system, it inevitably causes AIDS and, eventually, death, if treatment is not provided. According to a prominent study conducted in Uganda, progression to AIDS—the last stage of HIV infection—takes about nine years from the time of HIV seroconversion (Morgan et al. 2002). During much of this period, most HIV-infected individuals may be unaware of their status and can be physically capable of performing all normal activities. Progression to AIDS is usually associated with substantial weight loss (wasting) and with opportunistic infections such as P. carinii pneumonia, Kaposi’s sarcoma, and tuberculosis. In the absence of antiretroviral therapy, death usually occurs rapidly after progression to AIDS. The Ugandan study reports a median survival time of 9.2 months (Morgan et al. 2002), and an older study in Brazil documents a median survival time of 5.1 months (Chequer et al. 1992).

Highly active antiretroviral therapy (ART) has been proved to reduce the likelihood of opportunistic infections and prolong the life of HIV-infected individuals. In accordance with World Health Organization (WHO) guidelines, antiretroviral therapy is often initiated about the time that an HIV-infected individual develops AIDS (WHO 2006). After several months of treatment, patients generally become asymptomatic and have improved functional capacity. Numerous studies have shown that antiretroviral therapy dramatically reduces morbidity and mortality among HIV-infected individuals, both in industrial countries (Hammer et al. 1997; Hogg et al. 1998; Palella et al. 1998) and in developing countries (Laurent et al. 2002; Marins et al. 2003; Coetzee et al. 2004; Koenig, Leandre, and Farmer 2004; Wools-Kaloustian et al. 2006). In Haiti patients experienced weight gain and improved functional capacity within one year after the initiation of ART (Koenig, Leandre, and Farmer 2004). A study conducted in the township of Khayelitsha, South Africa, showed that among 287 adults who received ART, 86.3 percent were still alive 24 months after treatment began (Coetzee et al. 2004). Large and significant improvements were also observed in clinical outcomes. The median weight gain was 5.0 kilograms after six months of treatment, and 9.0 kilograms after a year. CD4 cell counts—an important indicator of disease progression, with lower counts indicating weaker immune systems—increased by a median of 134 and 288 cells per microliter after 6 and 24 months of treatment, respectively. In western Kenya, where we conducted our socioeconomic study, other researchers have reported results that are strikingly similar to those from South Africa. In particular, mean increases in CD4 cell counts of 109 and 297 cells per microliter were observed at 6 weeks and 36 months, respectively, after initiation of treatment. Mortality rates in the first two to three years of ART have been low for patients whose CD4 cell counts were not too low (i.e., not less than 50) at the time of treatment initiation. Without ART, these mortality rates would undoubtedly be extremely high.

The compelling evidence that ART is effective in developing countries has accumulated just since 2003, during which time access to treatment in Sub-Saharan Africa and
other HIV-affected regions of the world has grown substantially. The price of ART in developing countries is an important consideration in debates about treatment provision and in cost-benefit analyses, but that price has been falling. In 2000 first-line ART regimens cost more than US$10,000 per patient per year, and differential pricing was rarely employed by pharmaceutical companies. Beginning in 2001, widespread generic production of some antiretrovirals reduced these prices significantly, to as low as US$99 per patient-year for a commonly used first-line regimen (Medicins Sans Frontieres 2007). It should be noted, however, that the costs of improved first-line regimens (less toxic ones that have been recently recommended by the WHO), as well as second-line regimens, which are used when first-line regimens fail, are considerably more expensive. Expenditures on laboratory tests and HIV clinic operations can also be sizable. The level of such nondrug costs depends on the treatment setting and on a variety of factors that include the nature of the existing infrastructure in the area where an HIV clinic is being established and the cost of hiring additional staff.

Much like the price reductions, growth in donor support for the provision of ART has also been important in scaling up treatment to current levels. By the end of 2007, resources from the Global Fund to Fight AIDS, Tuberculosis, and Malaria; the U.S. Global AIDS Program (known as the President’s Emergency Plan for AIDS Relief); and nongovernmental organizations (NGOs), as well as in-country government support, had helped nearly 2 million individuals receive ART in Sub-Saharan Africa alone. Progress, however, has been uneven among and within countries, and existing funds fall short of what is required in order to serve the nearly 5 million people who need ART. The experience with scaling up treatment in South Africa illustrates many of these issues. (For a discussion, see Nattrass 2006.)

Household Impacts of Treatment in Kenya

In collaboration with a treatment program that was among the first to scale up HIV care in Sub-Saharan Africa, we examined a cohort of patients receiving ART at a rural HIV clinic managed by the Academic Model for the Prevention and Treatment of HIV/AIDS (AMPATH). Founded in 2001 through collaboration between the Moi University School of Medicine, the Moi Teaching and Referral Hospital, and the Indiana University School of Medicine (Mamlin et al. 2004), AMPATH has been expanding HIV care and treatment at government health facilities in western Kenya. As of early 2008, more than 58,000 individuals at 21 health facilities were receiving HIV care from AMPATH, with approximately 23,000 persons clinically eligible for ART and receiving it free of charge. Details about our survey and the sample selection criteria are discussed at greater length in Thirumurthy, Graff Zivin, and Goldstein (2008). Here, we provide an overview of the survey and summarize the empirical strategy and results.

Survey Data

Our study was based at an AMPATH HIV clinic that operates within a government-run primary health care center in the town of Mosoriot. The clinic provides free HIV/AIDS medical care, including all relevant tests and ART, to infected individuals who enroll in care. The rural region that is served by the health center has a population
of 35,383 individuals living in 6,643 households (Kenya 1999). Crop farming and animal husbandry are the primary economic activities of households in the survey area.

We conducted three waves of household surveys between 2004 and 2006. The data from these surveys allow us to examine how a variety of measures of socioeconomic well-being change because of ART. There was an interval of roughly 6 months between the first two waves and an interval of 18 months between the second and third waves. The survey questionnaires collected a range of comprehensive socioeconomic information on households and resembled those used by the World Bank’s Living Standards Measurement Surveys. Questions covered demographic characteristics, health, agriculture, assets, income and employment, children’s school enrollment and attendance, and time allocation to household chores. Teams of male and female enumerators interviewed the household head and spouse, and anthropometric measurements were taken of children under age 5. For in-clinic interviews, all information was obtained from the AMPATH patient.

The survey sample consists of two groups of households. The first group comprises 503 households chosen randomly from a census of all households in the clinic catchment area that did not contain an AMPATH patient (census sample households). In this sample, the HIV status of respondents is usually unknown unless the respondent self-reports having gone for an HIV test and tested HIV-positive or HIV-negative. The second group consists of 260 households enrolled in the study at the HIV clinic because they contained at least one adult HIV-positive AMPATH patient (at various stages of HIV disease). Of these 260 households, we focus here on the 200 in which, prior to wave 2, the HIV-positive patient was at a sufficiently advanced stage of the disease to begin receiving ART. (We refer to these as ART households.) On completion of the first two waves of the survey, we used the AMPATH Medical Records System (AMRS), which contains electronic records of clinical and treatment-related information on all patients, to establish which patients in our sample were receiving ART and when they began receiving it. When examining the labor market outcomes of treated patients, we focus on the 191 adult ART recipients who appear in both of the first two waves of the survey. For other household-level outcomes, we focus on the children living in the patients’ households.

Empirical Strategy

Estimating the effect of any intervention ideally requires experimental information from groups that do and do not receive the treatment of interest. In the absence of such data, a variety of nonexperimental techniques can be used to assess the impact of the intervention and, at the very least, determine whether the estimated impacts are likely to underestimate or overestimate the actual impacts. Since the strong evidence on the clinical effectiveness of ART makes randomized controlled trials of ART unethical, we use our longitudinal data from the cohort of ART recipients and census sample individuals to establish the household impacts of treatment.

When observing changes over time in socioeconomic outcomes for the ART recipients, an overarching concern in attributing these changes to the medical treatment is that the changes may be driven by omitted (i.e., confounding) variables that would
bias estimates. Given the nature of the outcomes we study here, seasonal change associated with weather and the agricultural season is a key concern. For example, comparison of employment levels measured during the middle of the growing season with a later observation that may have occurred during harvest might suggest large labor increases as a result of treatment, whereas these effects would simply be an artifact of survey timing. For this reason, we make use of data from the census sample to control for secular trends in outcome variables within the survey region. Furthermore, to adjust for individual-specific characteristics that may be associated with average outcome levels for each individual, the regressions we estimate include individual fixed effects. This method can thus be described as a difference-in-difference strategy, in which the changes over time in the outcome variable for the ART sample (which represents the “treatment” group) are compared with changes over time for the census sample (which serves as the “comparison” group).6

Since clinical evidence on the impacts of ART suggest that the largest and most significant health improvements occur shortly after initiation of ART, we divide the ART sample into two groups of patients: those who were just beginning treatment at the time of the wave 1 interview (the treatment-naïve group), and those who had already been in treatment for more than 100 days as of wave 1 (treatment-nonnaïve group). In the results that follow, we document how temporal patterns in key outcomes differ for these two groups of ART recipients and their households.

Impact of ART on Treated Patients’ Employment Outcomes

In many ways, the impact of ART on the employment outcomes of patients is the starting point for household impacts, since the ability of an adult to work and contribute income to the household has both income and substitution effects that may drive many decisions regarding children’s employment and schooling, as well food consumption levels. Before beginning ART, adult patients at AMPATH’s HIV clinic are significantly less likely to engage in income-earning activities than other adults in the clinic’s catchment area. Their households are also poorer than households in the catchment area. Such comparisons are supported by the literature on the economic impacts of AIDS. Fox et al. (2004), in their study of workers at a Kenyan plantation, show that the onset of AIDS leads to significant reductions in productivity. As we discuss in this section, our findings suggest that treatment can substantially mitigate the employment effects of HIV/AIDS.

Our survey recorded information on two outcomes that measure an individual’s employment status: (a) an indicator of participation in any economic activities during the week preceding each interview, and (b) the total number of hours worked in that week. The survey recorded this information in each wave for all household members older than age 8 and for three types of activities: wage and salaried jobs, farming on the household’s owned or rented land, and nonfarm self-employed work. Our measure of market labor supply is defined as the total hours devoted to all these activities.7

The first indications that both the health and the employment status of patients are influenced by ART are provided in figure 1, showing the relationship between the duration of time on ART and patients’ CD4 cell counts, and figure 2, showing time
FIGURE 1.
CD4 Count before and after Initiation of Antiretroviral Therapy (ART)

Source: AMPATH Medical Records System.

Note: The figure is generated using CD4 count data for all patients receiving ART at the Mosoriot HIV Clinic. The dashed lines indicate the 95 percent confidence intervals obtained by estimating a linear regression of individuals’ CD4 counts on dummy variables for each interval, with the omitted interval being the 10 weeks prior to treatment initiation.

FIGURE 2.
Weekly Hours Worked before and after Initiation of Antiretroviral Therapy (ART)

Source: Authors’ survey data.

Note: The dashed lines indicate the 95 percent confidence intervals obtained from estimating a linear regression of individuals’ hours worked on dummy variables for each interval, with the omitted interval being the eight weeks prior to treatment initiation. The sample consists of the 191 ART recipients who appear in both waves of the household survey data.
on ART and hours worked in the week preceding the interview. The response of CD4 cell count is highly nonlinear: at 10–20 weeks, the median count has risen to levels at which patients are generally asymptomatic (CD4 > 200). Subsequent changes are smaller and less consistent. A similar nonlinear relationship is found for patients’ body mass index (not shown). The resemblance between the curves for CD4 and hours worked in the figures is striking, suggesting that the two outcomes are closely related.

When we examine the link between ART and labor market outcomes in regressions that better adjust for omitted variables, we find that ART does indeed lead to a large and significant increase in employment outcomes (table 1). These changes can be observed in just the six months between waves 1 and 2 of the survey. Controlling for various seasonal factors that are evident in both the ART sample and the census sample, adults receiving treatment are 8.5 percentage points more likely to participate in the labor force in wave 2 than in wave 1 (column 1). The number of hours worked in the preceding week also increases significantly in the six months between survey waves, by 4.6 hours (column 2). In relation to the levels in wave 1, this implies a large increase in labor supply for the entire sample of ART patients: labor force participation rates rise by almost 11 percent, and weekly hours worked rise by 19 percent.

Treatment duration. As noted above, ART recipients can be divided into treatment-naïve and treatment-nonnaïve groups according to how long they have been on

TABLE 1. Impact of Antiretroviral Therapy (ART) on Labor Supply, Individual Fixed Effects

(dependent variables: labor force participation; hours worked)

<table>
<thead>
<tr>
<th></th>
<th>LFP</th>
<th>Hours</th>
<th>LFP</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Patient on ART * wave 2</td>
<td>0.085</td>
<td>4.575</td>
<td>0.170</td>
<td>7.860</td>
</tr>
<tr>
<td></td>
<td>(2.42)***</td>
<td>(1.88)*</td>
<td>(3.07)***</td>
<td>(2.44)**</td>
</tr>
<tr>
<td>Treatment-naïve patient on ART * wave 2</td>
<td>0.015</td>
<td>1.920</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment nonnaïve patient on ART * wave 2</td>
<td></td>
<td></td>
<td>0.879</td>
<td>35.976</td>
</tr>
<tr>
<td></td>
<td>(38.68)***</td>
<td>(16.96)***</td>
<td>(39.28)***</td>
<td>(16.98)***</td>
</tr>
<tr>
<td>Constant</td>
<td>2,954</td>
<td>2,954</td>
<td>2,954</td>
<td>2,954</td>
</tr>
<tr>
<td></td>
<td>0.69</td>
<td>0.75</td>
<td>0.69</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations.

Note: LFP, labor force participation. Errors are clustered at the household level for each wave. Numbers in parentheses are robust t-statistics. The dependent variable LFP indicates whether the individual was engaged in any labor market activity in the week preceding the interview. The dependent variable Hours is total number of hours devoted to labor market activities in the week preceding the interview. All regressions include individual fixed effects, a wave 2 indicator, and 10 month-of-interview indicators, with one month from each wave omitted to avoid collinearity with the wave 2 indicator.

*Significant at the 10 percent level.

**Significant at the 5 percent level.

***Significant at the 1 percent level.
treatment at the time of wave 1. Columns 3 and 4 of table 1 show a stronger and even more striking result. The individuals with by far the largest increase in employment outcomes between the two waves are the treatment-naïve patients who began receiving ART less than 100 days prior to the wave 1 interview. The size of these increases is substantial: over the course of six months, patients who have just initiated ART show a 17 percentage point increase in labor force participation rates and work 7.9 hours more per week. Given wave 1 employment levels of a 65.1 percent participation rate and 20.3 hours worked for this group, the estimates imply a 26 percent increase in participation rates and a 39 percent increase in number of hours worked. In contrast, the other ART recipients in our sample show no statistically significant change in outcomes between waves, suggesting that earlier employment gains are maintained through continued treatment. Thus, the story that emerges from these data is that in the first six months of ART there are large increases in labor supply, and in the second six months of ART there are no additional changes in labor supply. This temporal pattern in the labor supply response among treated patients closely resembles the health responses, as measured by body mass index (BMI) and CD4 count, reported in the next section. As is discussed there, additional follow-up is necessary in order to establish the longer-term effects of ART. The third wave of data we have collected represents one opportunity to estimate such effects (analysis is ongoing), but additional long-term studies of patients receiving ART are also necessary.

Gender differences in labor supply impacts. The survey data from each wave of the survey show that men are more likely to be engaged in market labor market activities than women. (Summary statistics are available in Thirumurthy, Graff Zivin, and Goldstein 2008.) We also find gender differences for some components of market labor supply: women are much less likely to work for a wage but are equally likely to work in a nonfarm business. This raises the question of whether the labor market impacts of ART differ according to the gender of the patient being treated. To test for such differences, we estimate the impacts separately for men and women.

Importantly, we find that for male patients in the early stages of treatment (treatment naïve in wave 1), there is no significant increase in labor force participation rates, but there is a large and significant increase of 12.7 hours in weekly labor supply between rounds (a 43 percent increase relative to average weekly hours worked in wave 1). Among male patients, therefore, those already working prior to initiation of ART are the ones who increase their labor supply after treatment. For women in the early stages of treatment, there is a large and significant increase of 21.8 percentage points in the labor force participation rate between rounds (a 35 percent increase relative to their average participation rate in round 1), but no significant increase in weekly hours worked. This is consistent with our intuition, since men have high levels of labor market participation to begin with, and most of their response to improved health takes the form of additional hours worked. For women, initial labor market participation is low, so labor supply is the natural margin for change.

It should be emphasized again that none of the results outlined above are based on a comparison of a treatment group consisting of ART recipients with a control
group consisting of HIV-positive patients who require ART but do not get it. The medical literature clearly indicates that the latter group will experience continued declines in health and possibly death within 6 to 12 months. Our estimated employment impacts are likely to be underestimates of the full impact of treatment. This makes the size of the employment impacts described above even more striking.

Household Impacts

Households in which an adult member falls ill and becomes less able to work may be forced to rely on children to cope with the loss of income and the need for caregiving. Our research addresses whether ART, when given to adults after they develop AIDS, improves children’s welfare in a manner consistent with the dramatic improvements in adult patient health. Focusing on several important aspects of children's lives, the household survey data from Kenya provide a unique opportunity to answer this question. Many of our results are discussed in greater detail in Graff Zivin, Thirumurthy, and Goldstein (2006), but we provide an overview of them here. In particular, we examine the impact of ART on the amount of time children spend working, on the amount of time they spend in school, and on measures of current nutritional status of very young children.

Information on the amount of time children spent on various activities was generally obtained from the adult respondent in each household. In order to make a comparison across activities and obtain accurate information, a recall period of seven days was chosen.

Impacts on school attendance. Turning first to the school attendance of children between ages 8 and 18, we find that between the first two waves of the study, there were large and significant increases in hours of school attended in the preceding week. The first three columns of table 2 examine the impact of ART for all children, for boys, and for girls. Children in the census sample serve as a control for other factors that may be influencing labor and schooling outcomes.

The largest increases in hours of school attended occur for children of ART recipients who were treatment naïve in wave 1. As column 1 shows, the increase in weekly hours of school attendance in the six months between waves 1 and 2 is 6.4 hours for these children, representing a 21 percent increase relative to their average attendance level in wave 1.9 For children in households including an adult who was not treatment naïve, there is no significant change in weekly hours attended. This suggests that significant increases in attendance occur in the first six months after ART is initiated for an adult household member and remain at higher levels after six months. In columns 2 and 3, our findings indicate that there are significant increases in hours of attendance for both boys and girls in households of ART recipients who were treatment naïve in wave 1. The increase in school attendance of 8.7 hours for boys is especially large, representing a 29 percent increase relative to their average attendance level in wave 1.10 Girls also experience a large and significant increase of 6.5 hours of school attended in the preceding week. In both cases, the increase in
TABLE 2. Impact of Antiretroviral Therapy (ART) on Children’s School Attendance and Market Labor Supply, Individual Fixed Effects
(dependent variables; hours of school attended; hours worked in preceding week)

<table>
<thead>
<tr>
<th></th>
<th>Hours of school attended</th>
<th>Hours worked in preceding week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All children</td>
<td>Boys</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>ART household (treatment naïve)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* wave 2</td>
<td>6.393</td>
<td>8.673</td>
</tr>
<tr>
<td></td>
<td>(2.792)**</td>
<td>(3.854)**</td>
</tr>
<tr>
<td>ART household (treatment non naïve)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* wave 2</td>
<td>1.893</td>
<td>4.902</td>
</tr>
<tr>
<td></td>
<td>(2.548)</td>
<td>(2.770)*</td>
</tr>
<tr>
<td></td>
<td>(3.097)**</td>
<td>(3.885)**</td>
</tr>
<tr>
<td>Observations</td>
<td>960</td>
<td>518</td>
</tr>
<tr>
<td></td>
<td>0.83</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations.

Note: Errors are clustered at the household level for each wave. Numbers in parentheses are robust t-statistics. The dependent variables are total number of hours of school attended in the week preceding the interview and total number of hours devoted to income-generating activities in that week. Observations for which school attendance was reported to be below normal because of school holidays during the week preceding the interview are excluded from the sample. The number of observations in columns 4–6 is smaller than in columns 1–3 because labor supply information is missing for 44 children. All regressions include individual fixed effects, a wave 2 indicator, and 10 month-of-interview indicators, with one month from each wave omitted to avoid collinearity with the wave 2 indicator.

*Significant at the 10 percent level.

**Significant at the 5 percent level.

***Significant at the 1 percent level.
hours of attendance occurs within roughly six months after ART initiation. There is also some evidence of prolonged increases in boys’ school attendance, as those in households of ART recipients who were not treatment naïve in wave 1 experience a significant additional increase between waves 1 and 2. This more persistent effect may be attributable to the fact that boys’ reductions in labor activities show a more drawn-out response to treatment, as is discussed below.

Ideally, the schooling trends of children in ART households would be compared with those of children in households where ART is needed but is not available (a counterfactual group). As we discussed for the case of patients’ employment outcomes, such a comparison would reveal the “full” impact of ART on children’s schooling. In the absence of such a comparison group, we rely on the literature to reveal what might happen to children’s school outcomes in the absence of ART (i.e., if adult morbidity and mortality were to occur). Using longitudinal data from KwaZulu-Natal, South Africa, Case and Ardington (2006) show that children who lose a mother are significantly less likely to remain in school and complete significantly fewer years of schooling than similar-age children whose mothers are alive. The impact of paternal death on children’s schooling is considerably weaker. Beegle, De Weerdt, and Dercon (2006) examine the long-term consequences drawing on longitudinal data (spanning 13 years) from the Kagera region of Tanzania. They find that maternal death results in a significant reduction in the number of years of schooling completed, as well as in lower height. There is also evidence from Kenya that children’s outcomes begin to worsen even in the years prior to a parent’s death, when the parent may be sick with AIDS (Evans and Miguel 2007). In light of these results, it seems likely that the impact of ART on the schooling outcomes of treated adults’ children would be larger if we compared the children with a counterfactual group rather than the census sample.

These effects on school attendance imply that expenditures on ART today can yield benefits to families for years to come. Given the substantial returns to education in developing countries, these findings highlight the “investment” aspect of expenditures on ART and underscore the importance of paying attention not just to the clinical outcomes and productivity of adult patients who receive ART but also to a broader set of outcomes pertaining to the children of treated patients. They suggest that the future economic prospects of societies can be brighter if adults who are sick today are treated.

Impacts on child labor. A natural explanation for the higher school attendance levels in ART households is that these households have a lower demand for children’s labor after adult patients become healthier and more productive. It therefore stands to reason that we should observe reductions in the number of hours worked by children once ART is provided. Indeed, there is strong evidence in favor of such a response within the ART households in our study.

In columns 4, 5, and 6 of table 2, we examine the responses in hours worked in labor market activities (farm, business, or wage labor). There is a large and significant reduction of 4.5 hours in the weekly hours worked for all children in households
of ART recipients who were treatment naïve as of wave 1. For boys in such households, the average decrease in market labor supply (7.5 hours) in the six months between waves 1 and 2 is remarkably similar to the estimated increase in weekly hours of school attendance (8.7 hours). The continued decline between waves 1 and 2 in the labor supply of boys in households of patients who were not treatment naïve in wave 1 is also accompanied by a corresponding increase in hours of school attendance. Thus, labor reductions for boys associated with improvements in adult patient health closely track increases in their school attendance over the corresponding time period.

The lack of any treatment effect on the market labor supply of girls should be interpreted with caution. Girls in the survey area spend significantly more time in nonmarket labor activities such as household chores and caregiving than in market activities. If girls experience decreases in their nonmarket labor supply when an adult household member becomes healthier thanks to ART, this will not be captured in the market labor supply measures reported in table 2. Indeed, in a recent paper that examines richer time allocation data from waves 1 and 3 of the survey, we find evidence of significant declines in the number of hours girls spend performing household chores such as water and firewood collection (d’Adda et al. 2009). This result points to the importance of gathering information on multiple activities to which time is allocated, not just market labor activities.

Impacts on early childhood nutrition. As the productivity and income of treated adults increase, their households may be able to consume more food. Such a development is especially likely to affect the welfare of very young children, whose nutritional status is highly sensitive to changes in food consumption. Our research indicates that these children experience large and significant improvements in their nutritional status, as measured by the z-score of their weight-for-height. This is a measure of nutritional status that is sensitive to short-term growth disturbances caused by factors such as inadequate food intake (WHO 1995). Prior to the initiation of ART for adult patients, their children are more malnourished than other children in the clinic’s catchment area. Yet this difference is completely erased within six months after ART begins, with the weight-for-height measures of children increasing by more than 0.5 standard deviations (Graff Zivin, Thirumurthy, and Goldstein 2006). The children in ART households who benefit the most are in fact those who display wasting (z-score < −2) prior to ART initiation. Such nutritional improvements at early ages have significant implications for these children’s cognitive development, future school performance, and employment outcomes (Thomas and Strauss 1997; Glewwe and King 2001). These may well represent the most long-lasting gains to society from providing treatment to HIV-infected adults today.

Impacts on the elderly. The impacts of ART on the labor supply of adult patients could also have implications for the time allocation patterns of the elderly. During the periods when HIV-infected adults become sick, it is possible that elderly household members adjust their own labor supply or other activities such as caregiving. For example, in Cambodia and Thailand, Knodel (2008) has found
that parents of adults who die from AIDS are more likely to provide shelter and give care to children orphaned by the adult death. An important omission from the labor supply questionnaires used in Kenya is that no information was recorded on the market labor supply of the elderly. Data were collected on the nonmarket labor supply of the elderly, and analysis of these data is ongoing. One hypothesis that remains to be tested is whether ART results in reduced labor demand for the elderly who reside in the households of treated adults. On this note, we turn to a wide range of other questions regarding the impact of ART that have yet to be addressed.

Evidence from Elsewhere and Directions for Future Research

Much of the evidence presented so far has been from a single clinic in western Kenya. Moreover, the data focus on what happens to ART recipients and their households during the short-term horizon of the first 6 to 12 months of ART. Nevertheless, additional research from other ART programs suggests that the Kenyan findings of large socioeconomic benefits from ART provision are generalizable. Two studies from southern Africa indicate that the employment effects of ART on treated patients are substantial. Studying a cohort of patients in the township of Khayelitsha, Coetzee and Nattrass (2004) find evidence of significant improvements in the labor force participation rates of ART recipients. Habyarimana, Mbakile, and Pop-Eleches (2007) examine human resource data from two mines in Botswana operated by the Debswana Diamond Company, which provides free, firm-based ART to its employees. Using data on workers’ absenteeism rates, the authors find large increases in absenteeism of HIV-infected workers in the year before beginning ART. Subsequently, absenteeism rates decline rapidly. In the period from two to four years after ART initiation, treated workers have low absenteeism rates that are similar to those of other mining workers at the company. Similar evidence has been obtained from South Africa, albeit over a short time horizon of 6 to 12 months after ART initiation. Judging from the evidence from Botswana, then, it appears that the short-term impacts of ART are sustained in the medium term, as well, at least for the case of treated patients’ employment. Studies that collect richer household-level information from ART recipients are greatly needed in order to learn more about the long-run impacts of ART and the generalizability of those results, particularly regarding children’s health and education.

Thus far, we have viewed most of the impacts of ART through the lens of the patient’s labor supply. At the same time, ART for people with AIDS (and the prospect of obtaining ART for those in the early stages of HIV infection), through its tremendous capacity to extend life, may also change people’s planning horizons and lead them to undertake larger investments in the future. Indeed, such a change in perspective may be partly responsible for the human capital investments we documented earlier. Additional work on planning responses could highlight some of the other benefits of ART. For example, those who live longer may invest more in physical capital, exercise greater environmental stewardship, and engage in additional preventive health behaviors.
Many of the impacts of ART that we have documented are welfare improving, but changes in sexual behavior in response to treatment availability have the potential to erode some of these benefits. The concern is that for those individuals not in treatment (especially currently uninfected individuals), the availability of ART could result in a lower perceived cost of engaging in risky sexual behavior. If this were the case, scaling up ART could pose a challenge to HIV prevention efforts. Empirical research on this topic is crucial, as the magnitude of these effects will help assess the need for companion interventions when ART is scaled up. It is reassuring that the evidence to date on the sexual behavior of ART recipients themselves indicates that ART results in reduced risky behavior and HIV transmission (Bunnell et al. 2006). In the absence of more direct evidence on community behavior, the increased provision of information and counseling to HIV-negative individuals and those of unknown status seems prudent.

In the long run, for ART to be effective and household impacts to persist, a high rate of adherence to medications is essential. Given that many treatment programs have only been functioning for a limited number of years, evidence on long-term adherence levels and household impacts is, by definition, lacking. Early evidence indicates that patients are highly adherent to ART (Orrell et al. 2003), but research on barriers to adherence is necessary (Mills et al. 2006). Similar, longitudinal studies of patients on ART are needed in order to understand the long-term household impacts of treatment.

Proper estimation of the costs of ART is another area where further work would be of value. The US$99 annual cost of first-line treatment regimens cited earlier is only one part of the overall costs; other expenditures, such as facility construction, staffing, and laboratory tests, are associated with treatment programs. These costs are likely to vary according to the locations and the socioeconomic settings in which treatment programs operate. Moreover, the sustainability of the foreign donor support that enables the establishment of some treatment programs is an important issue in light of the fact that an interruption in drug supplies for patients receiving ART could result in treatment failure and the development of drug resistance.

The Economic Rationale for Scaling Up ART

Antiretroviral therapy provides large and significant socioeconomic benefits to treated patients and their households. Although the gains from the labor productivity impacts alone outweigh the current costs of treatment (Thirumurthy, Graff Zivin, and Goldstein 2008), a more comprehensive assessment of the costs and benefits of ART is needed to underpin a thorough economic evaluation of the intervention. Additional evidence from large treatment programs and over the long term is also necessary before stronger policy conclusions can be drawn. However, the improvement in patients’ employment outcomes over the short term is clearly a first step in quantifying the benefits of ART, and one that is particularly large in light of the “no ART” counterfactual scenario in which rapid death would occur. The increase in patients’ employment frees up children’s time, and the children are then able to attend school more. In addition, some of the income derived from patients’ employment pays for food that leads to improvements in child nutrition. Thus, a second step in the
assessment of benefits from ART should account for the long-run investment effects of improvements in education and nutrition at this critical juncture in children’s lives.

It is illuminating to consider the long-run effects, for example, of improvements in child nutrition within ART households. Without the provision of ART, children are more likely to remain malnourished, entailing costs that are highlighted by Behrman, Alderman, and Hoddinott (2004). First, malnourished children are less likely to survive into adulthood. Second, malnourished children are more likely to be susceptible to disease, which implies societal costs, given that primary health care is generally subsidized. Third, malnutrition is associated with lower educational attainment for a range of reasons, including an inability to concentrate in class. It is striking that in the absence of ART, children may be doubly cursed, as malnutrition and labor burdens will reduce both the quality and the quantity of their schooling experience. Finally, poor early childhood nutrition affects labor productivity in adulthood. Thomas and Strauss (1997), for example, show that in Brazil the height of adults, which can proxy for early childhood nutrition, is associated with higher wages. Since the provision of ART to adults improves children’s nutritional status and thereby avoids these future consequences of malnutrition, the long-term benefits of ART go well beyond the increase in treated patients’ incomes.

Additionally, emerging work on early childhood development drawing on neuroscience and economics may show that ART affects several outcomes for children beyond those of nutrition and schooling. In a review of early childhood development programs, Knudsen and colleagues extrapolate from animal studies to argue that “these findings, that both differences in, and disruptions of, close affinitive bonds early in life can have lifelong effects on the development of social behaviors, raise important concerns regarding the extent to which analogous early life experiences influence human development” (Knudsen et al. 2006, 10157). A growing body of neurobiological studies of children shows that severe stress, including parental death, particularly when not offset by professional assistance, can lead to long-term physical and mental health problems. (For a review, see Center on the Developing Child 2007.) Such effects are suggestive of other benefits from the provision of ART, and they deserve further investigation.

It is important to note that the impacts discussed thus far are predominantly private benefits realized by treated individuals and their immediate family members. Although our analysis suggests that treatment is a worthwhile investment for individuals and their families (uncertainty regarding the long term notwithstanding), the case for public subsidies and thus for international involvement in treatment is less obvious and is a matter for further theoretical and empirical investigation. There are four main issues that would provide justification for public support. First, borrowing constraints, which are a significant concern in low-income settings, may pose a hindrance to privatizing the market for ART, since the flows of costs and benefits occur on different time scales. (Costs are incurred during a period of sickness, and benefits are realized at least 6 to 12 months later.) Second, the provision of treatment may generate social externalities that will not factor into the decisions of private actors in the health care marketplace. For example, ART is known to reduce the transmission of HIV, and it thus imparts important benefits to the sexual partners of
those receiving treatment, but by lowering the perceived costs of infection, treatment may lead to more sexually promiscuous behavior. Third, incomplete adherence to ART can lead to virologic failure and drug resistance. If a poorly adherent patient is more likely to spread a resistant strain of the disease, the social costs of such behavior are higher. Finally, in an extension of the human capital discussion above, the social returns to education may exceed private returns, and hence any intervention that improves children’s education (directly, through the education effect of ART, or indirectly, through improved nutrition leading to improved educational outcomes) could provide some justification for a subsidy. This paper does not delineate the magnitude of all these factors; rather, it suggests issues for further research.

The potentially large macroeconomic impacts associated with the effects of ART that we have documented here are worth considering, particularly in countries with high HIV prevalence. The model developed by Bell, Devarajan, and Gersbach (2006) predicts drastic economic declines (e.g., a halving of household incomes in three generations’ time) in the absence of interventions to address the problem of HIV/AIDS. The key to this model is the hollowing out of the human capital core that would have sustained growth. Indeed, the important assumptions of the model are supported indirectly by our evidence on the household impacts of ART. The provision of ART can thus be one of the critical tools for avoiding the potentially large intergenerational economic effects of HIV/AIDS. This consideration is a powerful argument for public support for ART, in combination with other interventions, with the aim of ensuring economic growth and efficiency (Devarajan and Goldstein 2007).

We have shown, on the basis of studies in Kenya and elsewhere, that in the first two to three years after beginning ART, patients receiving the treatment realize large socioeconomic benefits. But ART alone is not enough to stop the scourge of HIV/AIDS. The development of interventions that can effectively stem the spread of HIV/AIDS is certainly necessary, and these interventions should be scaled up when they become available. Nonetheless, short of a cure, many countries will still be faced with millions of infected individuals, many of them adults. The experience of several treatment programs in Africa indicates that ART can not only prevent the loss of this current generation of workers but can also restore their economic productivity and help prevent negative effects on the health and education of the next generation.

Notes

1. In this paper we use the terms “ART” and “treatment” to refer to highly active antiretroviral therapy (HAART), which was introduced in 1996. HAART always consists of three antiretroviral medications. Treatment for most patients begins with a first-line regimen that is usually modified over time. Generic medications that combine three medications in one pill (such as Triomune) have recently become available.

2. Conversion to HIV-positive serology normally occurs 4 to 10 weeks after transmission. The duration of the clinical latent period has been found to vary considerably, depending on the mode of transmission and age at transmission (Collaborative Group 2000). In developing countries, limited access to health care and a greater burden of other infectious diseases may expedite the progression of HIV.
3. Patients who came to the clinic from outside the clinic’s catchment area were interviewed at the clinic rather than at home.

4. Our analysis of the third wave of data is ongoing, and so this paper primarily emphasizes results based on the first two waves.

5. The analysis here excludes the 60 households containing HIV-positive AMPATH patients who were in the early stages of HIV disease and were not yet sick enough to require ART, according to WHO treatment guidelines. These households are excluded because the untreated HIV-positive patients would not have experienced significant health changes during the survey period. The small sample size of these HIV households also limits our ability to use them as a control group in the data analysis. All analysis in the paper is thus restricted to the 200 households containing ART recipients and to households from the census sample. Included in the sample are two adults (and their household members) who were originally part of the census sample but enrolled in the AMPATH clinic and began receiving ART between waves. As is discussed in the text, several other patients in the ART sample initiated ART between waves.

6. A key assumption of the difference-in-difference approach is that there are no time-varying characteristics that differ between the ART sample and the census sample and that are also correlated with trends in the outcome variables of interest.

7. Information on labor supply of household members was typically provided by the household head, except in the case of clinic interviews at which the patient provided all information about the household.

8. The coefficient of the variable “Patient on ART * wave 2” indicates how much the outcome variable changed between wave 1 and wave 2 for patients on ART, after controlling for time trends with data from the census sample.

9. Average hours attended are 30.47 for children in households with adult ART recipients who were treatment naïve in wave 1 or who began treatment shortly after wave 1.

10. Average hours attended are 30.15 for boys in households with adult ART recipients who were treatment naïve in wave 1 or who began treatment shortly after wave 1.

11. This is considerably less of a concern for those on ART, since the drugs significantly reduce infectivity.

12. It should be noted that calculating the impact of ART on household income using the estimated impacts on labor supply is difficult because it is not obvious which is the appropriate wage rate to use. Those with HIV may not be able to obtain average local wage rates if they are less productive (if their health has not been fully restored, or even after their health has been restored) or if they encounter HIV-related stigma and discrimination.

References

