Skip to main content
The Sensitivity of Sediment Path-Lengths to Channel Morphology: Results from Physical Models of Braided Rivers
American Geophysical Union, Fall Meeting 2013 (2013)
  • Joseph M. Wheaton, Utah State University

The travel distances of coarse sediment in gravel-bed rivers during floods, or their path-lengths, exhibit strong dependencies on the arrangement of geomorphic units they are sourced from, routed through or around, and finally deposited on. Despite previous research on both braiding and single-thread meandering streams, a coherent rule set which relates particle path lengths to morphology remains elusive; such a rule set has the potential to vastly simplify models which seek to predict sediment transport or morphodynamics in these channels. Here we seek to understand the sensitivity of particle path-length distributions to morphology via a physical model of a braided stream, by using fluorescent tracer particles to track sediment path-lengths. These flume experiments provide a rich dataset composed of before-and-after bed photogrammetry, along with high-resolution photography and high-speed video documentation of particle deposition and mobility. Initial analyses indicate a strong coupling between particle path-length and the spatial arrangement of in-channel geomorphic units, with bar heads and point bars frequently acting as sink locations for tracer particles. This is interesting as it suggests that morphodynamics are in part contingent on morphology with strong positive feedbacks on hydraulics, deposition and negative feedbacks on path-length. Several mechanisms of braiding were captured in the simulations as erosional source processes for the tracers, including chute cutoff of point bars, bank erosion, channel incision, and bar edge trimming. These results may help inform the development of morphodynamic models for braided rivers which rely on particle path-lengths to simplify sediment transport algorithms, and such relations between channel morphology and path-length hold the potential to benefit numerous other modeling efforts, as well as provide a heuristic framework with which to understand fluvial morphodynamics.

Publication Date
December, 2013
Abstract Only
Citation Information
Joseph M. Wheaton. "The Sensitivity of Sediment Path-Lengths to Channel Morphology: Results from Physical Models of Braided Rivers" American Geophysical Union, Fall Meeting 2013 (2013)
Available at: