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Abstract. Numerical models that predict channel evolution are an essential tool for investigating processes
that occur over timescales which render field observation intractable. The current generation of morphodynamic
models, however, either oversimplify the relevant physical processes or, in the case of more physically complete
codes based on computational fluid dynamics (CFD), have computational overheads that severely restrict the
space–time scope of their application. Here we present a new, open-source, hybrid approach that seeks to rec-
oncile these modelling philosophies. This framework combines steady-state, two-dimensional CFD hydraulics
with a rule-based sediment transport algorithm to predict particle mobility and transport paths which are used
to route sediment and evolve the bed topography. Data from two contrasting natural braided rivers (Rees, New
Zealand, and Feshie, United Kingdom) were used for model verification, incorporating reach-scale quantitative
morphological change budgets and volumetric assessment of different braiding mechanisms. The model was able
to simulate 8 of the 10 empirically observed braiding mechanisms from the parameterized bed erosion, sediment
transport, and deposition. Representation of bank erosion and bar edge trimming necessitated the inclusion of
a lateral channel migration algorithm. Comparisons between simulations based on steady effective discharge
versus event hydrographs discretized into a series of model runs were found to only marginally increase the pre-
dicted volumetric change, with greater deposition offsetting erosion. A decadal-scale simulation indicates that
accurate prediction of event-scale scour depth and subsequent deposition present a methodological challenge be-
cause the predicted pattern of deposition may never “catch up” to erosion if a simple path-length distribution is
employed, thus resulting in channel over-scouring. It may thus be necessary to augment path-length distributions
to preferentially deposit material in certain geomorphic units. We anticipate that the model presented here will
be used as a modular framework to explore the effect of different process representations, and as a learning tool
designed to reveal the relative importance of geomorphic transport processes in rivers at multiple timescales.
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1 Introduction

The dearth of morphodynamic models that resolve the bar-
scale morphology of braided, gravel-bed rivers remains a
first-order weakness in fluvial geomorphology. Indeed, since
prediction is generally perceived to be the pinnacle of sci-
entific enquiry, the limitations associated with existing mod-
elling frameworks that can be used to inform management
and natural hazard assessment of braided rivers restrict the
contribution that our science can make to addressing so-
cietal needs (Wilcock and Iverson, 2003). Focusing model
development on braided rivers is paramount since, in prin-
ciple, if a numerical framework can predict the evolution
of multiple channels and bars during high-flow events in
these multi-thread rivers, then the same framework should
be transferable to single-thread rivers. Major progress has
been made in applying contemporary measurement technolo-
gies to quantify the morphodynamics of braided rivers at
the timescale of individual to sequences of high-flow events
(10−2–100 years; Lane et al., 2003; Wheaton et al., 2013;
Williams et al., 2011, 2015; Lallias-Tacon et al., 2014).
Prediction is, however, needed at the mesoscale (broadly
100–102 km and 101–103 years; Brasington and Richards,
2007), which exceeds the scale of feasible field-based mon-
itoring campaigns. There have been considerable advances
in modelling realistic bar-scale morphology of fine-grained
braided rivers at the mesoscale (Nicholas, 2013a; Schuurman
et al., 2013; Schuurman, 2015) but models that resolve bar-
scale morphology of gravel-bed rivers at timescales greater
than single high-flow events (Williams et al., 2016b) remain
challenging. Furthermore, while “physics-based” (Nicholas,
2013b) approaches to simulation have been successful for
fine-grained rivers, such approaches have high computational
overheads necessitating the use of high performance comput-
ing resources and restricting their use for exploratory appli-
cations (e.g. Nicholas, 2013a). The additional computational
demand of simulating sediment mixtures, combined with the
extant problems of spatial parameterization of sediment char-
acter, limits the scope of comparable “physics-based” ap-
proaches to gravel-bed river simulations. There is, therefore,
a need to develop an alternative computationally efficient
morphological modelling framework capable of reproduc-
ing realistic bar-scale morphodynamics of braided gravel-
bed rivers over geomorphologically meaningful timescales
(101–103 years).

A variety of spatially distributed morphodynamic mod-
elling frameworks have been developed to address this prob-
lem and are reviewed in depth by Williams et al. (2016a).
Current approaches have been broadly assigned into one of
two philosophical categories. The first involves simplifying
and abstracting physical processes using a set of rules or sim-
plified algorithms, giving rise to so-called “reduced complex-
ity” (RC) models, often in the form of cellular automata (CA)
models (RC/CA; Murray and Paola, 1994; Coulthard et al.,
2002; Thomas and Nicholas, 2002). These rule-based mod-

els offer high computational efficiency, allowing calculations
over wide spatial and long temporal scales (e.g. Nicholas and
Quine, 2007; Thomas et al., 2007; Ziliani et al., 2013), but
often at the expense of morphological fidelity to any par-
ticular system, instead producing self-organization and gen-
eralized behaviours of a given channel type (e.g. Murray
and Paola, 1994; Murray, 2003). RC/CA models are partic-
ularly well suited for investigating the generalized morpho-
dynamic response of channels under shifting boundary con-
ditions (Thomas et al., 2007). The alternative second sub-
set of models is widely referred to as physics-based, and
are driven by computational fluid dynamics schemes (CFD;
Bates et al., 2005) typically involving two-dimensional ap-
proximations of solutions to the Navier–Stokes equations.
Bed shear stress is used as a measure of the friction force
imposed by flow to scale bedload transport. The direction
and distance of bedload transport are calculated based upon
the flow field and parameterizations are employed to repre-
sent gravity-driven sediment transport, particle settling and
remobilization effects. The Exner equation (Paola and Voller,
2005) is then used to calculate bed elevation change from lo-
cal sediment flux divergence. This physics-based approach
to calculating morphodynamic evolution comes at the cost
of significantly increased computational overheads, particu-
larly for graded sediment. Nonetheless, physics-based mod-
els have been widely applied to simulate fluvial systems
(Mosselman et al., 2000; Rinaldi et al., 2008; Kleinhans,
2010) and event-based, graded sediment simulations repro-
ducing reach-scale morphodynamics of natural rivers are be-
ginning to emerge (Williams et al., 2016b). Moreover, such
models have been used to shed light on how the morpho-
dynamics of braided rivers are influenced by sediment het-
erogeneity (Sun et al., 2015; Singh et al., 2017) and vegeta-
tion (Crosato and Saleh, 2011; Li and Millar, 2011; Nicholas
et al., 2013a; Iwasaki et al., 2017). Despite this progress,
mesoscale physics-based simulations require considerable
computational resources and can diverge from predicting fea-
sible morphology (Schuurman et al., 2015). Beyond this clas-
sic dichotomy, a third approach to morphodynamic simula-
tion draws on particle-based methods from granular physics
(Frey and Church, 2012). This approach is, however, compu-
tationally intensive and the absence of appropriate upscaling
methods limits its application to patch-scale investigations of
sediment entrainment, transport, and deposition (e.g. Escau-
riaza and Sotiropoulos, 2011; Nabi et al., 2013).

The lack of morphodynamic modelling approaches that
are effectively optimized for use at the mesoscale presents
the opportunity for an alternative framework. An attractive
approach is to couple flow-routing predictions based upon
the well-understood and robust shallow water wave equa-
tions (Nicholas et al., 2012; Williams et al., 2013) with a
simplified, empirically derived rule set for sediment trans-
port, which in turn is used to update the bed topography. This
schema has the advantage of decoupling the fastest compo-
nents of the system (the hydrodynamics) from the slowest
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(evolution of the bed). Furthermore, an approach to sedi-
ment transport modelling based on particle path lengths, the
characteristic distance travelled by sediment particles dur-
ing a flood (Davy and Lague, 2009; Furbish et al., 2016),
has potential to simplify simulation of bedload transport rep-
resenting the fundamental process that leads to bar forma-
tion and morphodynamics. Recent work indicates that mor-
phology, bed structure, and texture play a key role in par-
ticle dispersion (Hassan and Bradley, 2017). Particle path-
length distributions have been found to take several forms
in braided gravel-bed rivers, including exponential decay, or
heavy-tailed distributions, marked by a large number of mo-
bilized particles short distances downstream, resulting from
floods that do not generate sufficient shear stress for transport
across the braidplain width (Pyrce and Ashmore, 2003b).
During floods which are capable of transporting sediment
(i.e., competent) across large areas of the braidplain, typical
path-length distributions exhibit peaks which correspond to
the location of likely depositional sites downstream. Kasprak
et al. (2015) and Pyrce and Ashmore (2003a, b) both noted
that these depositional sites were most frequently the loca-
tions of bar heads (e.g. flow diffluences); and as such, par-
ticle path-length distributions could be readily constructed
using morphometric indices that reflect the characteristic
confluence–diffluence spacing.

This paper presents a new hybrid morphodynamic mod-
elling approach that employs two-dimensional CFD hy-
draulics resolved at the event scale and a rule set for sediment
transport that leverages hydraulic predictions to determine
particle path lengths along which to erode and route sediment
and subsequently evolve topography. Previous research on
particle path-length distributions has largely been conducted
in braided gravel-bed rivers; and as such, the model described
here, termed MoRPHED (Model of Riverine Physical Habi-
tat and Ecogeomorphic Dynamics), has been developed for
such environments. Characteristic particle travel distances
have, however, also been documented for single-thread chan-
nels (Pyrce and Ashmore, 2003b), so it may therefore be pos-
sible to apply the underlying theory to a wide variety of chan-
nel forms. That said, the approach is only appropriate where
the extremes of the path-length distribution are less than the
length of the system to be modelled (i.e. for gravel- rather
than sand-bed rivers).

Combining both dynamical (force-based hydraulics) and
kinematic (motion-based prediction of particle transport)
frameworks provides an effective compromise that incorpo-
rates the necessary physics to simulate the key driving forces
and vectors of motion, but simultaneously offers a reduced
complexity structure suitable for wide-area, long-term mor-
phodynamic modelling. This paper explores the degree to
which MoRPHED can (a) capture the emergent properties
of natural fluvial environments; (b) maintain, but not neces-
sarily form or produce, braided topography; and (c) exhibit
sensitivity to contrasting process representations.

For transparency and ease of future development, the
model presented here has been packaged into an open-source
code published at https://github.com/morphed/MoRPHED
(last access: 22 February 2019) and includes a user inter-
face (https://github.com/morphed/MoRPHED-Viewer, last
access: 22 February 2019). The novel contributions set out
in this paper are (i) a new numerical morphodynamic mod-
elling framework that combines a dynamics-based CFD ap-
proach to predicting flow routing and a kinematics-based par-
ticle travel length rule set for sediment transport and mor-
phological change; (ii) testing the modelling framework us-
ing data from two contrasting natural rivers, with sensitiv-
ity analyses to assess hydrograph discretization strategies
and path-length statistical distributions; and (iii) multi-scalar
model verification using a plurality of rigorous validation
approaches including reach-scale quantitative morphological
change budgets and the pattern of contribution of different
braiding mechanisms.

2 The model

As with many previously developed morphodynamic mod-
els, the model used here (MoRPHED v.1.1) simulates hy-
draulics and uses these calculations to predict bedload trans-
port and morphological change. This section details the
methods used in each of these components, along with ancil-
lary routines such as the parameterization of model bound-
aries, sediment grain size, and bank erosion. Figure 1 shows
a flow chart of model operation along with required and op-
tional inputs and outputs; these components are discussed
throughout this section.

2.1 Hydraulics

The model’s hydraulic component is driven using the freely
available open-source Delft3D software (version 4.00.01).
We employed the model in depth-averaged form (i.e. two-
dimensional) as this provided an ideal compromise between
computational efficiency and the ability to resolve hydraulics
at the cellular scale of our digital elevation models (DEMs;
Lane et al., 1999). Although Delft3D three-dimensional flow
simulations have been applied in river environments (e.g.
Parsapour-Moghaddam and Rennie, 2017), the parameteriza-
tion, validation, and computational overhead associated with
three-dimensional modelling precludes their use for the de-
velopment and assessment of MoRPHED (Lane et al., 1999;
Brasington and Richards, 2007). Delft3D solves the shallow-
water form of the Reynolds-averaged Navier–Stokes equa-
tions, which relate changes in momentum (left-hand terms)
in time and space to the cumulative surface and body forces
acting on the fluid (right-hand terms):
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Figure 1. MoRPHED model operation flow chart.
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where x and y, respectively, denote the streamwise and cross-
stream directions of velocity (u, v). In Eqs. (1)–(2), P de-
notes pressure forces on a body of fluid, ρ is fluid density,
and µ denotes dynamic viscosity. For all modelling, we em-
ployed fixed Cartesian orthogonal grids which were gener-
ated using the RGFGRID module of the Delft3D software
suite. Elevation models used as Delft3D inputs were rotated
such that flow was from left (upstream) to right (downstream)
for use with a Cartesian coordinate system. The model time
step was then adjusted to satisfy the Courant–Friedrichs–
Levy condition to ensure computational stability of the so-
lution.

For all simulations, discharge was specified at the up-
stream boundary and a corresponding water surface eleva-
tion was set to the downstream boundary, and was calculated
using a normal depth approximation based on reach-average
slope and roughness. Horizontal eddy viscosity (υ) was set
to 0.1 s m−2 (Williams et al., 2013). A spatially constant bed

roughness was used, based on the Colebrook–White equa-
tion, to determine the 2-D Chezy coefficient:

C2-D = 18log10
12H
ks

, (3)

where H is water depth and ks is the Nikuradse roughness
length, which can be described in terms of a factor (αx) of
the characteristic grain diameter as

ks = αxD84. (4)

Here, we used D84 as the characteristic grain size as it pro-
vides an estimate of coarse grain influence on the flow field.
Using grain size distributions available for both of the mod-
elling sites in this paper (Hodge et al., 2009; Williams et al.,
2013), we computed ks using an αx value of 2.9, taken as the
average value from a range of gravel-bed rivers studied in
Garcia (2006). This resulted in values of ks = 0.1 and 0.29 m
for the Rees River and River Feshie, respectively.

Models were run with a steady upstream discharge, cor-
responding to the peak of a flood, and hydraulic predic-
tions were extracted for further sediment transport calcula-
tions only once the reach had achieved a steady state (no ob-
served change in depth, velocity, or inundation). From each
hydraulic simulation, we exported (a) water depth, (b) flow
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velocity resolved into streamwise and lateral components,
and (c) bed shear stress. Put simply, flow hydraulics were
computed for the maximum discharge of a given flood, and
these hydraulics were used to drive subsequent sediment mo-
bilization and morphodynamic evolution. This approach was
adopted because (a) the calculation of morphodynamics once
per event allows for a greatly reduced computational over-
head associated with the model, and (b) modelling at finer
timescales – while allowing for the ability to capture rapid
transient events such as prograding bedload sheets and bank
retreat during the course of a single flood – is inherently dif-
ficult given that the most common observational data avail-
able to geomorphologists describe channel form before and
after a single event (Bertoldi et al., 2010; Williams et al.,
2011; Mueller et al., 2014), and sediment transport distances,
or path lengths, resulting from that event (Pyrce and Ash-
more, 2003a, b; Snyder et al., 2009; Kasprak et al., 2015).
We acknowledge that a single-flood time step may neces-
sarily oversimplify morphodynamic evolution resulting from
floods that are of sufficient duration to produce multiple en-
trainment episodes for particles, or those floods that funda-
mentally alter the bar spacing, and thus the path-length dis-
tribution, for a reach of interest. While our motivation was
to assess the validity of a purely event-based model time
step, regardless of flood duration, we provide a nested exper-
iment in which the hydrograph of a single flood event was
schematized as a set of three steady discharges correspond-
ing to the rising limb, peak, and falling limb of the event
(Sect. 4.2). This schematization was used in an attempt to
evaluate (a) the model’s suitability for simulating floods of
extended duration and (b) the need for quasi-dynamic flow
predictions to capture distinct stage-specific morphodynamic
processes, such as the dissection of bar-top chutes at falling
stages (e.g. Wheaton et al., 2013).

2.2 Bed sediment erosion

The model employs a critical non-dimensional value of the
bed shear stress (Shields stress) to determine whether sed-
iment can be entrained at a particular location. The theory
and threshold values of Shields stress for entrainment have
been well studied in gravel-bed river settings. Incipient mo-
tion for gravel occurs when the Shields stress (τ∗) exceeds
0.03–0.07 (Buffington and Montgomery, 1997; Snyder et al.,
2009):

τ∗ =
τB

(ρs− ρ)gD
, (5)

where ρs is a characteristic sediment density (2650 kg m−3),
g is acceleration due to gravity, and D is the median par-
ticle size. The spatial distribution of local bed shear stress
(τB) at steady flow was computed using Delft3D and the
critical Shields stress for sediment mobility was set to 0.05.
The modelled bed shear varies significantly over small spa-
tial regions (Wilcock et al., 2009) and could therefore lead to

large cell-to-cell variability in elevation change and unstable
coupling of the bed topography and modelled hydraulics. To
avoid such effects, the local τB was computed by averaging
the 10 cells longitudinally upstream and downstream of the
cell in question along streamlines derived from the Delft3D
velocity vectors. Although lateral averaging of shear stress
could additionally reinforce model stability, this was not ex-
plored here. The result is a single average value of bed shear
stress that is used for computation of scour depth at each cell.

Most morphodynamic models compute bed elevation
change using some form of the Exner equation for sediment
continuity (Paola and Voller, 2005). In this equation, bed ele-
vation (z) through time (t) is a function of the sediment sup-
plied from upstream (Vs), the divergence of the sediment flux
through the reach boundaries (∇Qs) and the porosity of the
deposited sediment (γp).

∂z

∂t
=

1
1− γp

(
∂Vs

∂t
+∇ ·Qs

)
(6)

To ensure computational stability, morphodynamics are typi-
cally computed by solving Eq. (6) at fine time steps (seconds
to minutes) using solutions from the equations of motion.
However, MoRPHED is specifically designed to operate at
the mesoscale; at model time steps equal to flood events (e.g.
hours to days), the use of Eq. (6) would lead to the forma-
tion of large depressions or mounds in the channel topogra-
phy, and would drive subsequent computational instability.
In short, an event-based model requires an analogous event-
based approach for the estimation of bed elevation change.
To drive the erosional component of bed elevation change
(sediment transport and deposition are discussed in subse-
quent sections), we used an alternative approach to the lo-
cal sediment continuity equation, based on Montgomery et
al. (1996) who derived a theoretical relationship to predict
event-scale sediment scour depth (Ds):

Ds =
Qb

ubρs(1− γ )
, (7)

where Qb is the mass-based bedload transport rate per unit
channel width during the event, ub is the bedload velocity,
and γ is the bed sediment porosity. We note that Qb was
computed here for the peak discharge of any modelled flood;
a potential alternative, not explored here, would be to com-
pute Qb for the average event discharge over the duration of
a competent flow. While estimates of Qb present a continu-
ing challenge, here we use a simple exponential function that
relates bedload transport to excess bed shear stress, the latter
being readily obtained from the Delft3D simulations.

Qb = (τB− τBC)1.5 (8)

In Eq. (8), the critical shear stress τBC is computed from
Eq. (5), and ub, the bedload velocity, can be estimated as

ub = a (u∗− u∗c) , (9)
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where u∗, the shear velocity, is computed as

u∗ =

√
τB

ρ
. (10)

The coefficient a in Eq. (9) has been studied by many re-
searchers (Garcia, 2006), but is generally accepted to take a
value close to 9. Although the accuracy of using Eq. (7) to
predict event-scale scour depth has not been explored empir-
ically, it represents one of the few methods for predicting the
depth of scour over extended durations and is intended to be
used here in a fundamentally exploratory manner. As alter-
natives to Eq. (7) become available to geomorphologists in
the future, they can be readily substituted into the model.

To summarize, in lieu of a traditional continuity-based ap-
proach for estimating bed elevation change (Eq. 6), MoR-
PHED estimates bed sediment scour depth using an event-
based approach (Eq. 7). This scour depth, in combination
with the model grid (i.e. cell) size provides a volume of
scoured sediment at any location within the model domain.
This volume of entrained sediment is transported down-
stream along hydraulic flow lines and deposited according to
a path-length distribution, each component of which is dis-
cussed in the subsections that follow. This routine was per-
formed once per flood, regardless of flood duration; as our
intent was to develop a purely event-scale morphodynamic
model, we did not attempt to scale or correct estimates of
bed sediment erosion as a function of flood duration in this
study.

2.3 Bank sediment erosion

Readily erodible banks are a hallmark of braided rivers
(Wheaton et al., 2013) yet continue to represent one of the
most difficult geomorphic processes to numerically repre-
sent (Darby and Thorne, 1996; Simon et al., 2000; Rinaldi
and Darby, 2007; Stecca et al., 2017). Most existing models
rely on fine time steps and detailed predictions of the near-
bank force balance to predict bank stability. As MoRPHED
is a simplified event-scale model, here we estimate the lat-
eral retreat distance by empirically scaling the distance of
lateral retreat during a model run to near-bank shear stress
and bank slope.

To begin, the model calculates the slope of all cells in the
model domain; all simulations presented herein used a cell
resolution of 2 m (Rees River; Sect. 3.1) or 1 m (River Feshie;
Sect. 3.2). The relatively coarser cell resolution on the Rees
was chosen for computational efficiency, particularly with re-
gard to the hydraulic modelling component of MoRPHED, as
the Rees site encompassed a considerably larger spatial do-
main than that of the Feshie. Cells that exceed a user-defined
slope criterion, which was set to 7 % by examining the aver-
age slope of cells that underwent bank retreat in field surveys
for all simulations presented herein (Fig. 2a), are then identi-
fied as candidate cells for undergoing bank erosion. Whether

Figure 2. Lateral migration algorithm schematic.

bank erosion occurs by mass failure or lateral channel migra-
tion, eroding banks are often marked by steep slopes; and as
such, this criterion was used as the first metric for comput-
ing bank sediment erosion. While below the angle of repose
for both consolidated and unconsolidated sediment, this 7 %
threshold simply served as a first approximation of those ar-
eas that may exhibit sufficient slope to undergo bank retreat
and was designed to be inclusive of areas that might be be-
low slope failure criteria, but may nevertheless undergo bank
retreat as a function of near-bank shear stress, discussed be-
low. This slope delineation produces groups of cells, which
are removed from the selection if the group’s area falls be-
low a user-specified threshold (Fig. 2b). This area cutoff was
used for computational efficiency, and was set to 30 cells (i.e.
30 m2 on the Feshie and 120 m2 on the Rees), which pro-
duced good agreement between model-predicted bank ero-
sion and field-observed bank erosion patches; we also ob-
served that very small area thresholds would create discon-
tinuous patches of lateral retreat, leading to model instability
and hydraulic artefacts in subsequent runs.

Earth Surf. Dynam., 7, 247–274, 2019 www.earth-surf-dynam.net/7/247/2019/
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For each cell within these groups, the bed shear stress in
the surrounding cells was sampled using a 3× 5 neighbour-
hood window oriented in the cardinal direction of the candi-
date cell’s aspect. The bed shear stress values in these cells
were then averaged, producing a single shear stress value for
the delineated group of cells. Those cell groups with aver-
age shear stress below a user-defined criterion, here set to
50 N m−2, were excluded. The use of near-bank shear stress
as a predictor variable for estimating lateral bank retreat has
been applied by numerous researchers, including Ikeda et
al. (1981), Howard (1992, 1996), Sun et al. (1996).

The cells that remained were those exceeding both the
slope and near-bank shear stress thresholds; and for each of
these cells, the model then removed material from a num-
ber of adjacent cells specified by Eq. (11) and shown in
Fig. 2d1, which computes the lateral extent of bank erosion
(n), rounded to the nearest whole cell, shown in Fig. 2d, as a
function of slope (S) and near-bank shear stress (τ ; Fig. 2d):

n= round
((τ

3
+ 1

)
∗
S

15

)
. (11)

The location of these n cells was determined by moving away
from the initial candidate cell at 1-cell increments in a di-
rection opposite to the initial candidate cell’s cardinal aspect
direction (i.e. simulating lateral bank retreat moving away
from the channel). The number of cells adjacent to the ini-
tial candidate cell is shown in Fig. 2d. All delineated cells
were then surrounded by a 3×3 neighbourhood window, and
the full group of candidate cells at the conclusion of this de-
lineation routine is shown by the red polygon in Fig. 2d1.
Within each of these 3×3 neighbourhoods, all cells were re-
duced in elevation to a level equal to that of the lowest cell
in the neighbourhood (sensu Nicholas, 2013b), and eroded
sediment was immediately transported downstream and de-
posited in a manner identical to that described below for bed
transport and deposition.

Bank erosion and bank material transport and deposition
are computed prior to bed morphodynamics (Fig. 1); and to
conserve computational overhead, hydraulics are not recom-
puted between these steps; as a result, bed scour is not altered
in areas proximal to eroding banks. Further, because candi-
date cells for bank erosion are identified simply on the basis
of slope and shear stress, it is possible that cells away from
the wet/dry boundary (i.e. the channel bed) can undergo ero-
sion in this manner as well. We believe this approach is ap-
propriate here as hydraulics and morphodynamics are com-
puted only once per flood (at peak discharge); and as such,
steeply sloping cells susceptible to erosion may be inundated
within the channel at the event peak, but may still undergo
subaerial failure on the rising or falling limb of the hydro-
graph. We note that Eq. (11) was used for simulations on
both river systems studied here, which varied considerably
in their constituent volumes of fine/cohesive sediment and
vegetation extent (see Sect. 3). Thus, these values are likely
applicable for a variety of rivers, but we caution that for sys-

tems with exceptional bank cohesion, whether via vegetation
or fine sediment, adjustment of these parameters may be nec-
essary. Finally, as opposed to a physically based relationship
between shear stress, bank slope, and the extent of lateral
erosion, Eq. (11) was derived through qualitative calibration;
that is, rather than presenting a deterministic methodology
for quantifying bank retreat, this approach is simply reflec-
tive of the best qualitative correspondence between mod-
elling results and field observations of areas undergoing bank
erosion.

2.4 Bed or bank sediment transport and deposition

Once entrained, bed or bank sediment is mobilized down-
stream along flow lines which are delineated using velocity
vectors from Delft3D. Although MoRPHED is inherently a
cell-based (i.e. raster) model, Delft3D-derived velocity vec-
tors did not necessarily pass through the centre of any given
cell within the MoRPHED model grid. To account for this,
the nearest grid cell was computed along the Delft3D ve-
locity vectors at downstream intervals equal to the compu-
tational domain cell size (i.e. 1 m on the Feshie, 2 m on the
Rees; see Sect. 3). In the field, deposition of sediment consis-
tently occurs in diffuse patterns, such as “tear-drop” forms of
lobate bars, prograding bedload sheets, and thinly mantled
overbank deposits (Ashmore, 1982; Ferguson and Werritty,
1983; Wheaton et al., 2013). To mirror this diffuse deposi-
tion, the model distributes sediment within a 5×5 window of
cells surrounding the candidate deposition cell, with the can-
didate cell receiving 1/3 of the deposited sediment, the adja-
cent 8 cells receiving 1/3 of the deposited sediment between
them, and the outer ring of 16 cells receiving the final 1/3
of deposited sediment. In the case of dry cells that occur in
the 5×5 neighbourhood, the dry cell(s’) sediment is divided
among the population of wetted cells in the neighbourhood.
The total volume of deposited sediment within this 5×5 win-
dow is equal to the fraction of all entrained sediment from
upstream given by a user-defined path-length distribution at
the centre cell’s distance downstream from the entrainment
location (Fig. 3).

At each cell along the flowpath, the volume of sediment
to deposit in the centre cell is given by a path-length distri-
bution (Fig. 4). In the simplest sense, this distribution details
the proportion of all eroded sediment which is deposited at
a particular distance downstream, and provides a representa-
tion of field-mapped source–sink pathways found in braided
rivers (Williams et al., 2015). These distributions have been
studied by numerous researchers and found to take several
forms in braided rivers, as reviewed in Sect. 1. MoRPHED
deposits a proportion of the path-length specified volume
of sediment in each wetted cell of the 5× 5 neighbourhood
described above. Path-length distributions in the model can
take typical field-measured forms (Gaussian and Exponential
Decay; Pyrce and Ashmore, 2003b), or can take any user-
specified form (e.g. multi-peaked) as specified by an input
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text file. Because sediment deposition is simply computed
via a provided path-length distribution (and particles are not
dynamically tracked on their journey downstream), sediment
transport effectively occurs instantaneously in the model. As
such, a key assumption within MoRPHED is that modelled
events are of sufficient duration to allow particles to transit
the full length of the specified path-length distribution. Lab-
oratory results of braided gravel-bed rivers have, however,
indicated that particle transport and deposition, and develop-
ment of a path-length distribution, occur quite rapidly after
the onset of competent flow (see Kasprak et al., 2015). At
any given cell within the model domain, elevation change is
computed as the difference between erosion and deposition
at that location. It is possible for any particular cell, over the
course of a model run, to experience erosion exclusively, de-
position exclusively, both erosion and deposition, or a total
lack of sediment scour and deposition.

2.5 Sediment import and export

For each simulated event, the model tracks the volume of sed-
iment passing the downstream or lateral reach boundaries. In
effect, export of sediment occurs when the length of the user-
specified path-length distribution exceeds the downstream or
lateral boundaries of the model domain. When this occurs,
the remaining volume of sediment (the amount of eroded
sediment not yet deposited along the flow line) is recorded
as having been exported from the reach. Sediment import is
user-specified and can be (a) set equal to the volume of sed-
iment export during the preceding event (e.g. sediment equi-
librium; Grams and Schmidt, 2005), (b) specified as a percent
of sediment export during the preceding event, or (c) speci-
fied via a text file detailing absolute volumetric sediment im-
port during each event (e.g. sedigraph time series). Algorith-
mically, the model computes flowpaths from each wetted cell
at the upstream reach boundary and distributes the total vol-
ume of imported sediment to each cell of each flowpath as
specified in the user-input path-length distribution. Sediment
is introduced to the reach at the end of each event (Fig. 1;
i.e. following hydraulic and bed or bank morphodynamic
modelling) and prior to initiation of the subsequent event,
as this allows for the import of sediment once exported sedi-
ment volumes are known. Sediment leaving the lateral reach
boundaries was included in the total export volume, along
with sediment leaving via the downstream reach boundary.

2.6 Model verification

To compare the outputs of the model with field-based surveys
of channel evolution, we derived several morphometric pa-
rameters along with comparing DEMs of difference (DoDs)
and contributions of individual braiding mechanisms to total
geomorphic change. Each of these three verification compo-
nents are discussed below.

2.6.1 Morphometric indices

We manually quantified the braiding index (IB) for the initial
and final field surveys and model runs of each simulation de-
scribed here. Braiding index was computed by averaging the
number of channels across five evenly spaced transects along
the length of the model domain (Howard et al., 1970; Egozi
and Ashmore, 2009). Channels were defined by wetted areas
as modelled using Delft3D at estimated baseflow for each
modelling site. In addition, we measured the total sinuosity
(ST) of the modelled reach for the first and last model runs
in each system. Total sinuosity (Richards, 1982) was defined
by the ratio of the length of all anabranches (LA) compared
to the down-valley length of the model domain (LD):

ST =
LA

LD
. (12)

Finally, we computed the number of confluences, diffluences,
and channel heads for initial and final field and model DEMs.
The procedure for delineating confluences, diffluences, and
channel heads is detailed by Wheaton et al. (2013). In brief,
it requires manual location of areas where one anabranch
splits into two anabranches (a diffluence), areas where two
anabranches join to form one anabranch (a confluence), and
locations where small side channels or chutes begin (a chan-
nel head). In theory, the number of confluences should be
roughly equal to the number of diffluences plus the number
of channel heads for a braided river. Instances where dif-
fluences and channel heads outnumber confluences are in-
dicative of distributary systems (e.g. deltas; Jerolmack and
Mohrig, 2007), while sites dominated by confluences are
indicative of dendritic networks that collect low-order flow
paths into a few main channels.

2.6.2 DEMs of difference (DoDs)

We differenced DEMs of initial and final field surveys
and model simulations using Geomorphic Change Detection
software (GCD, version 6; http://gcd.joewheaton.org, last ac-
cess: 22 February 2019; Wheaton et al., 2010). Differencing
DEMs from two survey periods produces a DoD, or a map
of geomorphic changes that occurred during the inter-survey
period. While the DEM differencing process is straightfor-
ward, accounting for error in the resultant DoD is neces-
sary as each constituent DEM contains an inherent level of
error (that may vary on a cell-by-cell basis), which can ul-
timately influence the estimated magnitude of geomorphic
change in the DoD. Here we modelled DEM error using the
most straightforward of the available approaches: we sim-
ply assumed that each of the constituent DEMs contained no
error and computed the DoD. We then applied threshold val-
ues (i.e., removed areas of change from the DoD) to changes
less than ±0.1 m in magnitude (herein termed the “mini-
mum level of detection” or minLoD). For decadal-scale mod-
elling and field surveys on the River Feshie, we employed a
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Figure 3. Particle transport and deposition routine. Panel (a) shows computation of the proportion of sediment to deposit as a function of
eroded sediment via a particle path-length distribution, (b) shows the neighbourhood window approach for averaging deposited sediment
over adjacent cells.

Figure 4. Path-length distributions used in MoRPHED modelling
on (a) the River Feshie and (b) the Rees River. Peak of the distri-
butions corresponds to average along-flow spacing between conflu-
ence and diffluence pairs.

threshold of ±0.2 m to better visualize and delineate braid-
ing mechanisms and to account for the larger magnitude ele-
vation changes that occurred over wide swaths of the braid-

plain over this extended timescale. While this simple thresh-
old value method is not necessarily the most robust method
available for modelling error in field-surveyed DEMs, those
DEMs output from the model do not contain survey error
as would be expected from field-based DEMs. As such, a
simple minLoD of 0.10 m allowed us to use identical error
modelling methods to directly compare areas of change in
field and modelled DoDs while simultaneously removing a
great deal of the survey noise and uncertainty present in field
DEMs, along with removing extremely low-magnitude ele-
vation changes in modelled DEMs.

From DoDs, we extracted elevation-change distributions
(ECDs, a histogram of all volumetric changes), along with
deriving the net sediment imbalance during each survey and
model period (the percent departure of the sediment budget
from equilibrium conditions).

2.6.3 Braiding mechanisms

Using Geomorphic Change Detection (GCD) software, we
mechanistically segregated both field- and model-derived
DoDs by delineating the processes responsible for each area
of geomorphic change (Ashmore, 1991; Wheaton et al.,
2013). These processes can be separated into 4 “braiding
mechanisms” described by Ashmore (1991): central bar de-
velopment, lobe dissection, transverse bar conversion, and
chute cutoff. To these, Wheaton et al. (2013) added an ad-
ditional 6 mechanisms that are not unique to braided rivers:
bank erosion, channel incision (i.e. bed erosion), overbank
sheets, confluence pool scour, bar trimming, and lateral bar
development. Hereafter, these 10 processes are referred to
simply as “braiding mechanisms”. We mapped the areas
in DoDs where each of these mechanisms occurred; ar-
eas where we could not confidently assign a mechanism of
change were classified as questionable or unresolved change.
While this approach is inherently subjective, the delineation
of braiding mechanisms, and more broadly mechanisms of
geomorphic change, has been completed for numerous study

www.earth-surf-dynam.net/7/247/2019/ Earth Surf. Dynam., 7, 247–274, 2019



256 A. Kasprak et al.: Modelling braided river morphodynamics

sites (Wheaton et al., 2013; Kasprak et al., 2015; Sankey et
al., 2018a, b), and efforts aimed at the automated mechanistic
segregation of geomorphic change have also been presented
in the literature (Kasprak et al., 2017). This classification al-
lowed us to compute and compare the volumetric contribu-
tion of each braiding mechanism to total geomorphic change
in both field and model-derived DoDs.

3 Study sites

3.1 Rees River, South Island, New Zealand – event and
annual scales

The braided gravel-bedded Rees (Fig. 5) drains a 402 km2

catchment of the uplifting metasedimentary Southern Alps
and flows into Lake Wakatipu. The 2.5 km study reach is an
actively braided channel which flows through a deglaciated
valley, and the river is braiding in response to sediment de-
livery from the tectonically active landscape (Williams et al.,
2013). The hydrology of the system is dominated by a re-
sponse to both seasonal snowmelt and rainfall, and under-
goes floods in the spring, summer, and autumn that may
completely alter the morphology of the braidplain over the
course of a single flood. A temporary gauging station at In-
vincible (6 km upstream of the study reach) operated from
2009 to 2011 and is used to drive hydraulic components of
the model. Mean discharge during the 2010 and 2011 hy-
drological years was 20 m3 s−1, with a maximum flow of
475 m3 s−1 (Williams et al., 2015). The survey data on the
Rees include 0.5 m resolution DEMs constructed via a fu-
sion of terrestrial laser scanning (TLS) and optical-empirical
bathymetric mapping surveys (Williams et al., 2014), which
were downsampled to 2 m resolution for modelling. In total,
10 floods ranging from 51 to 403 m3 s−1 were captured as
part of the ReesScan project (Brasington et al., 2012) from
2009 to 2011, with post-flood DEMs surveyed in the period
between each high flow. These pre- and post-flood DEMs,
along with a continuous hydrologic record and a high degree
of dynamism across the braidplain at the event scale make
the Rees an ideal candidate to examine the performance of
the model at the event and annual scales.

3.2 River Feshie, Scotland – annual and decadal scales

The weakly braided gravel-bedded Feshie (Fig. 5) is a trib-
utary of the Spey River and drains 231 km2 of mountainous,
postglacial terrain. Underlain by metamorphic and igneous
rocks, the basin ranges from 230 to 1260 m in elevation. The
mean flow near the river’s outlet was reported by Ferguson
and Werritty (1983) as 8 m3 s−1 withQ5 = 80 m3 s−1. Topo-
graphic data for the 1 km study reach of the Feshie consist
of 9 years of resurveys (2000, 2002–2008, 2013) comprising
more than a decade of channel change using RTK-GPS (real-
time kinematic GPS, 2000–2006) along with TLS and RTK-
GPS fusion scans performed for three surveys (2007–2008,

Figure 5. Morphodynamic modelling sites. Overview maps of Rees
River (a) and River Feshie (b). Hill-shaded DEMs (2 m resolution
for Rees and 1 m resolution for Feshie) are shown atop aerial pho-
tograph base layers. Information on data availability for both sites
are shown in lower panels.

2013). DEMs generated from field surveys on the Feshie
had a cell resolution of 1 m. Additionally, the Feshie dataset
contains continuous hydrograph data (∼ 55 years) and aerial
photo records (∼ 60 years), along with UK Ordnance Survey
channel planform maps dating to 1869. The Feshie has been
the site of a great deal of previous research ranging from bar
morphodynamics (Ferguson and Werritty, 1983; Wheaton et
al., 2013) to development of riverine survey and DEM differ-
encing or change detection methodologies (Brasington et al.,
2007; Vericat et al., 2007; Hodge et al., 2009; Wheaton et al.,
2010). The combination of annual resurveys capturing over
a decade of channel change in combination with mapping
and aerial photographs dating back over a century make the
Feshie an ideal candidate to examine the performance of the
model at the annual and decadal scales. In addition, the Fes-
hie site provides a mechanistic contrast to the Rees in that
overall flood-to-flood dynamism is reduced via vegetation
cohesion and fine sediment (Ferguson and Werritty, 1983),
whereas the comparatively finer and more labile Rees under-
goes widespread geomorphic change across the braidplain,
inhibiting the establishment of vegetation. On the Feshie, the
dominant mechanisms of change vary from those seen on the
Rees, particularly with regard to chute cutoff and bank ero-
sion (Wheaton et al., 2013).
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4 Results

4.1 Hydraulic model calibration

4.1.1 Rees River

Because we modelled the same reach of the Rees previously
analysed by Williams et al. (2013), we simply used the values
of ks (0.10) and υ (0.10) obtained in that study (Table 1). We
found that these values resulted in good agreement between
field-measured and modelled water depth, velocity, and inun-
dation extents. The reader is referred to Williams et al. (2013)
for more detailed analysis of the validity of Delft3D on the
Rees (and in braided gravel-bed rivers in general).

4.1.2 River Feshie

In contrast to the Rees, no comprehensive validation and ver-
ification of Delft3D exists on the Feshie; as such, we lever-
aged existing surveys of wetted areas from 2003 to 2007
in concert with surveyed water depth in those years to ex-
amine the performance of Delft3D. Because field surveys
were conducted at low flows to facilitate rapid measurement
of braidplain topography, here we are only able to verify
the results of Delft3D at these low flows. However, Delft3D
has been employed and verified on braided gravel-bed rivers
at the flood stage (Javernick, 2013), demonstrating that the
model can accurately reproduce flood-stage hydraulic fea-
tures and can be used to drive morphodynamic evolution
at the event-scale. For modelling on the Feshie, we esti-
mated discharge by downscaling the average observed flow
for the relevant survey period at the nearest gauging station
(Scottish Environment Protection Agency no. 8013, Feshie
at Feshiebridge) located approximately 11 km downstream
using an empirically derived discharge-area coefficient of
0.71 (Wheaton et al., 2013). The value of discharge taken
at Feshiebridge was the average flow during each year’s sur-
vey period (average of 2 weeks). We estimated the down-
stream water elevation using surveyed inundation extent in
combination with the DEM for each year modelled. Down-
stream water surface elevation estimated from the spatial data
were cross-checked using a reach-scale conveyance calcula-
tion (Williams et al., 2013).

Results of our validation of Delft3D on the Feshie at low
flow are shown in Fig. 6. Here we report (a) the mean of
depth differences between modelled and observed values
(Ddiff), along with (b) the congruence of the modelled and
measured inundation extents (Fc; Bates and De Roo, 2000)
as described by the ratio of intersection and union areal ex-
tents. These two metrics are described by Eqs. (16)–(17).

Figure 6. River Feshie hydraulic modelling. Surveyed water sur-
face extent in each of the five years (2003–2007) was compared to
modelled inundation extent in the same years using discharge lev-
els approximated using data from the gauge at Feshiebridge. Areas
observed (but not predicted) to be inundated shown in blue, areas
predicted (but not observed) to be inundated shown in green. Areas
which were correctly predicted as being inundated shown in red.
Base layer is a hill-shaded 1 m DEM.

Ddiff =

n∑
i=1
xmod− xobs

n
(13)

FC =
IAobs ∩ IAmod

IAobs ∪ IAmod
· 100 (14)

The metrics indicate that at low flow, Delft3D accurately
predicted both depth and inundation extent across the Fes-
hie study reach. Both Ddiff and Fc are consistent with val-
ues obtained by Williams et al. (2013) on the Rees (mean
Ddiff = 0.04, mean Fc = 81.2 on the Feshie) and are indica-
tive of a good agreement between hydraulic predictions and
field-observed flow characteristics, despite the empirically
scaled discharge.

4.2 Event-scale morphodynamic modelling: Rees River

We modelled a single flood event on the Rees River that
occurred between 8–16 December 2009 as the result of
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Table 1. Delft3D hydraulic modelling parameters.

Sim. Time Cell D84 Colebrook–White Eddy viscosity
Site time (h) step (s) size (m) Nodes (m) roughness (ks) (υ, m2 s−1)

Rees 1 0.025 2 352 231 0.035 0.10 0.1
Feshie 1 0.025 1 201 116 0.1 0.29 0.1

heavy rainfall in the upstream watershed (Fig. 7). Peak flows
reached a maximum instantaneous discharge of 259 m3 s−1

at the upstream Invincible gauging station during the after-
noon of 9 December. Two smaller peaks in the hydrograph of
75 m3 s−1 (afternoon of 8 December and morning of 12 De-
cember) also occurred during this event. Our modelling em-
ployed a single representative grain size (D50) of 20 mm. We
used an equilibrium sediment budget condition for this sim-
ulation (Sect. 2.5). Geomorphic change captured by pre- and
post-flood TLS revealed that the most volumetrically sig-
nificant mechanisms of change were transverse bar conver-
sion (22 %), bank erosion (21 %), and lobe dissection (19 %).
Qualitatively, event-scale dynamics across the study reach
are marked by widespread geomorphic change, particularly
in the centre of the braidplain where development of a single
main channel occurred via channel incision, bank erosion,
and avulsions of smaller anabranches leading to deposition
and subsequent dissection of mid-channel bars. Geomorphic
change on the edges of the braidplain was somewhat muted,
consisting largely of infilling of anabranches and accretion of
central bars. Field-surveyed elevation changes ranged from
−1.70 to +1.32 m (Fig. 7d). The braiding index (IB) de-
creased from 3.6 to 2.0 following the flood, and total sinu-
osity (ST) decreased from 4.5 to 2.9.

Results of morphodynamic modelling on the Rees for this
event are shown in Fig. 7. This event-scale model was run
using a steady-state discharge of 259 m3 s−1 as seen in the
December 2009 flood peak. Total model runtime for the
single event was approximately 90 min. Modelled elevation
changes in the study reach ranged from −1.76 to +0.89 m
(Fig. 7e); these and subsequent modelling results incorpo-
rate a 0.1 m minLoD (i.e. threshold) as discussed in Sect. 2.6.
Overall, geomorphic change was concentrated near the cen-
tre of the braidplain, similar to geomorphic change measured
from field data. Large swaths of bank erosion along a cen-
tral anabranch developed, although not to the extent seen in
field data. In general, geomorphic change in the modelled
DoD appears muted in comparison to the field-based DoD.
This is reflected in the ECD shown for field and model data
on the Rees (Fig. 7c), particularly with regard to the erosional
component of volumetric change (47 598 m3 in the field com-
pared to 20 663 m3 in the model; Table 2). Similarly, depo-
sitional volumes were greater in the field (35 551 m3) com-
pared to those in the model (16 188 m3; Table 2). On av-
erage, erosion depth across the study reach was 0.13 m as
observed through field measurement and 0.07 m when mod-

elled. Deposition averaged 0.10 m in the field and 0.06 m
in the model (Table 2). The most volumetrically significant
braiding mechanisms in this run were central bar develop-
ment (25 % of total volumetric change), bar edge trimming
(16 %), and bank erosion (15 %).

Case study: hydrograph discretization

The choice of model time step is one of the more impor-
tant considerations in morphodynamic modelling, whereby
the user must strike the optimal balance between a model
time step fine enough to preserve computational stability and
which is coarse enough to allow computation over meaning-
ful timescales (Brasington et al., 2007). To investigate these
questions using MoRPHED, we discretized the hydrograph
used in event-scale modelling on the Rees so as to model
three discrete points over the course of the modelled flood
(Fig. 8). These discharges were 75, 259, and 75 m3 s−1 or
the three points. Note that in this case study we did not al-
ter the time step of the model itself, which remained at the
event scale, but rather computed morphodynamic change at
three instances over the course of a multi-day flood with
three sub-peaks using an equilibrium sediment budget. Plan-
form DoD, ECD, and volumetric contribution of individual
braiding mechanisms from this discretized model run are
shown in Fig. 8. In general, morphologic changes were more
widespread across the braidplain in the case of the discretized
hydrograph modelling run than the single peak discharge hy-
drograph (Fig. 8), with overall area of change increasing, yet
still smaller than field-observed change volumes (157 504 m2

in the model compared to 287 184 m2 in field data; Table 2).
The ECD from this model run more closely approximated the
field-derived ECD, with low-magnitude elevation changes
(e.g. < 1 m) dominating the change distribution (Fig. 8).

4.3 Annual-scale morphodynamic modelling: River
Feshie

We modelled morphodynamics during the 1-year period
from July 2003 to July 2004 on the Feshie. The estimated
hydrograph for the study reach, based on the empirical
downscaling coefficient applied to the Feshiebridge gauge
(Sect. 3.2) during this period, is shown in Fig. 9a. This
survey epoch contained 16 flood peaks above competence
(20 m3 s−1; estimated by Ferguson and Werritty, 1983) at the
study reach; these are denoted in Fig. 9 and were used as
model inputs. Ashworth and Ferguson (1989) subsequently
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Figure 7. Rees River event morphodynamic modelling results. Continuous hydrograph and modelled discharge shown in (a). Elevation-
change distributions (ECDs) derived from field and model data shown in (b) and (c), respectively. Braiding index and total sinuosity for field
and model results shown below (a); numbers in parentheses indicate the difference between initial and final observations obtained from field
surveys and modelling. DoD derived from field data shown in (d), with model-derived DoD and delineated braiding mechanisms shown in
(e) and (f). Volumetric contributions of each braiding mechanism in field and modelled data shown in (g); colours in (f) and (g) are identical
for each braiding mechanism.
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Table 2. Rees River event modelling: geomorphic change detection results; results of discretized modelling shown in italics.

Field MoRPHED
Field threshold MoRPHED threshold

raw (0.1 m) raw (0.1 m)

Areal

Total area 435 604 146 472 390 555 57 387
of erosion (m2) 418 856 63 496

Total area 461 084 140 712 500 233 85 160
of deposition (m2) 389 072 94 008

Volumetric

Total volume 57 324 47 598 28 297 20 663
of erosion (m3) 28 679 20 291

Total volume 47 022 35 551 28 102 16 188
of deposition (m3) 28 130 19 480

Vertical averages

Average depth 0.13 0.32 0.07 0.36
of erosion (m) 0.07 0.32

Average depth 0.10 0.25 0.06 0.19
of deposition (m) 0.07 0.21

Average total thickness 0.12 0.09 0.06 0.04
of difference (m) 0.07 0.05

Average net thickness −0.01 −0.01 0.00 −0.01
of difference (m) 0.00 0.00

documented that flows of 20 m3 s−1 were indeed competent
for bed material in the study reach, albeit without full mo-
bility of all bed particle sizes. Our modelling on the Feshie
employed a single representative grain size (D50) of 50 mm.

Wheaton et al. (2013) noted that the most volumetrically
significant braiding mechanisms during the 2003–2004 pe-
riod were chute cutoff (29 %), bank erosion (16 %), and chan-
nel incision (15 %). Overall, geomorphic change was primar-
ily confined to a main channel bisecting the braidplain lon-
gitudinally, with one anabranch on the left side of the braid-
plain undergoing bank erosion and central bar development.
Braiding index (IB) during the 2003–2004 epoch increased
from 1.8 to 2.8, and total sinuosity (ST) also increased from
2.5 to 3.5. Results of morphodynamic modelling are shown
in Fig. 9e. Total model runtime for the series of 12 events
modelled during the 2003–2004 period was approximately
6 h. The results of DEM differencing are shown in Table 3.
Elevation changes in the modelled reach ranged from −1.25
to +1.49 m. Overall, geomorphic change was marked by the
accumulation of transverse bars and the development of cen-
tral bars throughout the model reach, along with incision of
a central anabranch. Sculpting or trimming of central bars
(Fig. 9f; e.g. Wheaton et al., 2013) was also prevalent. The
most volumetrically significant braiding mechanisms dur-

ing this model run were channel incision (26 %), transverse
bar conversion (20 %), and central bar development (14 %).
Overall, geomorphic change predicted via modelling was
greater than that observed from field data (Table 3). However,
both field and model ECDs (Fig. 9b, c) depict change distri-
butions wherein the greatest volume of geomorphic change is
the result of low-magnitude elevation changes. The average
depth of elevation changes were generally well predicted by
the model, although average erosion and deposition depths
were over-estimated by 0.02 and 0.03 m, respectively (Ta-
ble 3).

Case study: contrasting path-length distributions

Transport and deposition of eroded bed or bank sediment
in MoRPHED is a function of the path-length distribution
used in the model. While field or laboratory data describ-
ing particle transport distances can be used to produce a
path-length distribution, parameterizing such a distribution
for sites where tracer data are not available is not straight-
forward. Here we employed average confluence–diffluence
spacing to estimate the peak of the distribution (Fig. 3; Pyrce
and Ashmore, 2003a, b; Kasprak et al., 2015). To further
understand the effect of contrasting path-length-distribution
shapes and distances, we used MoRPHED to model the an-
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Figure 8. Rees River discretized hydrograph case study. DoD from MoRPHED modelling shown in (a), with ECD in (b), event hydrograph
with model points shown in (c), and volumetric contribution of braiding mechanisms in field and model shown in (d). Refer to field-based
results shown in ECD (b) and DoD (d) in Fig. 7 for comparison.

nual hydrograph on the River Feshie in a manner identical to
Sect. 4.3, except we varied the characteristics of the speci-
fied path-length distribution (Fig. 10). We employed a com-
pressed Gaussian distribution (Fig. 10a), a flattened Gaussian
distribution (Fig. 10b), and an exponential-decay-type distri-
bution (Fig. 10c; Pyrce and Ashmore, 2003b); each of these
distributions had a total length identical to our original distri-
bution on the Feshie (Fig. 10a). We also modelled two short-
ened distributions (length= 50 m): a shortened Gaussian dis-
tribution (Fig. 10d) and a shortened exponential distribution
(Fig. 10e). As previously stated, we assume that event du-

ration is sufficient for particles to transit the full length of
the specified path-length distribution, and in all simulations
we employed an equilibrium sediment budget (Sect. 2.5)
where the amount of imported sediment was set equal to that
amount crossing the downstream and lateral model bound-
aries.

Overall, the geomorphic changes predicted by modelling
differing path-length distributions were similar at the reach
scale, and areas of scour and deposition generally aligned
between all five of the simulations (Fig. 10a–e). Analysis
of the ECD produced using each path-length distribution re-
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Figure 9. River Feshie annual morphodynamic modelling results. Refer to the caption of Fig. 7 for details.
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Table 3. River Feshie annual modelling, geomorphic change detection results.

Field MoRPHED
Field threshold MoRPHED threshold

raw (0.1 m) raw (0.1 m)

Areal

Total area of erosion (m2) 66 074 9970 50 021 17 444

Total area of deposition (m2) 49 998 7236 58 366 20 263

Volumetric

Total volume of erosion (m3) 4433 2806 6149 5239

Total volume of deposition (m3) 2704 1543 5986 4910

Vertical averages

Average depth of erosion (m) 0.07 0.28 0.12 0.30

Average depth of deposition (m) 0.05 0.21 0.10 0.24

Average total thickness of 0.06 0.04 0.11 0.09
difference (m)

Average net thickness of −0.01 −0.01 0.00 0.00
difference (m)

Figure 10. River Feshie variable path length case study. Path-length distributions used are compressed Gaussian (a), stretched Gaussian
(b), and exponential (c), along with shortened Gaussian (d) and shortened exponential (e). DoDs for each path-length distribution shown in
middle row, with elevation change distributions (ECDs) shown in the bottom row.
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vealed that while the compressed and stretched Gaussian dis-
tributions were marked by more laterally extensive deposi-
tion at higher magnitudes (e.g. ∼ 1 m), the exponential and
two shortened distributions (Fig. 10c–e) generally contained
depositional signatures marked by numerous low-magnitude
(e.g. 1z < 0.5 m) changes. The same is true for the ero-
sional component of elevation change, with compressed and
stretched Gaussian distributions marked by a wide range
of erosional elevation changes up to and exceeding 1 m,
whereas the exponential and shortened distributions gener-
ally displayed erosional changes less than −1 m in depth.

4.4 Decadal-scale morphodynamic modelling: River
Feshie

We modelled morphodynamics during the 10-year period be-
tween July 2003 and June 2013 along the River Feshie. The
estimated hydrograph at Glen Feshie during this period is
shown in Fig. 11a; and using an equilibrium sediment bud-
get, we modelled all peaks above 20 m3 s−1 as described in
Sect. 3.2 and in Wheaton et al. (2013) for a total of 185 flood
events ranging from 20 to 95 m3 s−1.

Differencing DEMs from survey data at the beginning and
end of the analysis period reveals elevation changes rang-
ing from −2.4 to +2.1 m (Fig. 11d). DEM differencing in-
dicates that the study reach underwent slight net aggrada-
tion (+3.6 % imbalance). The most volumetrically signifi-
cant braiding mechanisms during this time period were the
development of central bars (25 % of volumetric changes),
transverse bar conversion (17 %), and bank erosion (16 %).
As the relative contribution of individual braiding mecha-
nisms may be misleading at decadal scales due to signature
overprinting and hence difficulty in interpretation of braiding
mechanism, we note that over a 5-year period (2003–2007;
Wheaton et al., 2013) on the Feshie the most volumetrically
significant braiding mechanisms were chute cutoff (24 %),
bank erosion (20 %), and transverse bar conversion (19 %).
Braiding index (IB) during the 2003–2013 epoch increased
from 1.8 to 2.4, and total sinuosity (ST) also increased from
2.5 to 2.9 (Fig. 11).

Results of morphodynamic modelling from 2003 to 2014
are shown in Fig. 11e. Total model runtime for the 185-flood
series was approximately 72 h. Geomorphic change ranged
from +2.1 to −8.07 m (Fig. 11e). A mask was employed to
exclude areas of the reach < 25 m from the upstream bound-
ary, as boundary artefacts resulting from the use of point dis-
charges in the Delft3D model produced high magnitudes of
geomorphic change (e.g. > 5 m) in these areas. While geo-
morphic change in the field was marked by generally thin-
mantled erosion and deposition across the braidplain, the
model produced more widespread, high-magnitude erosional
change (Table 4). While the depositional component of the
ECD produced by the model generally characterized that of
the field-derived ECD (Fig. 11b, c), the model predicted a
smaller area, but greater volume, of scour (Table 4). The

model generally reproduced the form and magnitudes of de-
position seen in the field, but the lowest-magnitude deposi-
tion (e.g.< 0.5 m) was more volumetrically significant in the
field than in the model. While the model did produce avul-
sion (i.e. the development and incision of a new channel on
the left-hand side of the upstream end of the braidplain in
Fig. 11), it did not produce avulsion in the same locations
seen in the field, nor with the same frequency, as evidenced
by the model predicting an incised, simplified channel net-
work in 2013; this downcutting behaviour was also seen by
Singh et al. (2017) in decadal-scale morphodynamic mod-
elling using Delft3D. This central anabranch incision was
accompanied by a reduction in channel nodes (confluences,
diffluences, and channel heads), and thus a simplified chan-
nel planform in the model as compared to the field dataset
(Fig. 11). The most volumetrically significant braiding mech-
anisms during the 2003–2013 model run were central bar de-
velopment (27 %), transverse bar conversion (22 %), and lobe
dissection (1 %). In addition, the role of bar edge trimming
(8 %), a process treated identically to bank erosion in MoR-
PHED, was magnified compared to field-derived mechanistic
segregation (2 %), as was the role of channel incision (11 %
in the model as compared to 7 % in the field).

5 Discussion

We developed a morphodynamic model that computes sed-
iment transport according to user-specified path-length dis-
tributions, and subsequently employed this model to pre-
dict channel evolution at two braided river reaches across
timescales ranging from a single event to a decade. We ob-
served that the model reproduced many of the geomorphic
changes observed in the field, although the magnitude and
mechanisms of those changes often diverged from observa-
tions using field data. At the same time, the modular design
of the modelling framework may hold promise for explo-
ration of braided channel evolution, and also raises questions
regarding the way processes are algorithmically represented
and the model’s sensitivity to those process representations.

5.1 Emergent versus parameterized processes

Braided rivers undergo geomorphic change as a result of nu-
merous morphodynamic processes or braiding mechanisms
(Ashmore, 1991; Wheaton et al., 2013; Kasprak et al., 2015).
Given its highly simplified nature, the degree to which these
braiding mechanisms must be explicitly represented as al-
gorithms in morphodynamic modelling deserves exploration.
Of the 10 braiding mechanisms discussed in Sect. 2.7.3, the
model produced 8 simply as a result of the bed erosion, trans-
port, and deposition functions included in the model. Only
bank erosion and bar edge trimming required the inclusion
of a lateral channel migration component. As the surfaces
undergoing bank erosion and bar edge trimming are not nec-
essarily submerged during a flood, these processes cannot
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Figure 11. River Feshie decadal morphodynamic modelling results. Refer to the caption of Fig. 7 for details. Note variable axes limits in
(b) and (c).
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Table 4. River Feshie decadal modelling, geomorphic change detection results.

Field MoRPHED
Field threshold MoRPHED threshold

raw (0.2 m) raw (0.2 m)

Areal

Total area of erosion (m2) 38 332 23 836 48 092 23 542

Total area of deposition (m2) 70 329 36 045 57 087 26 861

Volumetric

Total volume of erosion (m3) 13 944 12 680 25 134 23 744

Total volume of deposition (m3) 18 264 14 677 15 712 13 748

Vertical averages

Average depth of erosion (m) 0.36 0.53 0.52 1.01

Average depth of deposition (m) 0.26 0.41 0.28 0.51

Average total thickness 0.30 0.25 0.39 0.36
of difference (m)

Average net thickness 0.04 0.02 −0.09 −0.10
of difference (m)

be simply captured by an excess shear stress scour approach
(Eq. 7; Sect. 2.2).

The geomorphic changes that the model most commonly
produce are those that result from focused scour and lon-
gitudinally continuous deposition, given the nature of the
scour and deposition functions used in the model. In par-
ticular, channel incision, bar edge trimming, bank erosion,
and lateral or central bar development are common processes
produced by the model (Figs. 7, 9, 11). Additionally, given
the single-peaked Gaussian distributions used herein, those
braiding mechanisms which involve deposition immediately
downstream of an erosional source are difficult to reproduce.
For example, Wheaton et al. (2013) demonstrated the impor-
tance of chute cutoff as a braiding mechanism on the Fes-
hie, noting that chute development across point bars not only
manifested as erosion, but that the scoured material was often
deposited immediately downstream of the chute. Similarly,
scoured bank material (e.g. mass failures) may often be de-
posited at the bank toe rather than transported downstream.
In both cases, the model makes no differentiation in trans-
porting the eroded sediment, mobilizing the material accord-
ing to the user-specified path-length distribution; as such,
proximal couplets of erosion and deposition are difficult to
reproduce in the model. Finally, we note that chute cutoff
in the model always occurred in locations of pre-existing
chutes across point bars. Because chute cutoff often occurs at
the falling stage of floods, when braidplain-inundating flows
are first being confined into anabranches, our model may not
properly reproduce chute cutoff as a result of only comput-
ing peak flood hydraulics, and averaging shear stress across

a range of model cells. Although headward erosion of these
pre-existing chutes typically occurred in the model, thus in-
creasing their extent, we did not observe any instances where
chute cutoff was initiated in the model without an existing
chute or channel head being present on a bar surface. As
such, chute cutoff may represent a braiding mechanism that
must be explicitly included in the model’s code in order to be
properly represented in the future.

Finally, it is worth noting that we did not explicitly include
avulsion as 1 of the 10 braiding mechanisms examined here
for consistency with the mechanisms analysed by Ashmore
(1991) and Wheaton et al. (2013), and also because avulsion,
by nature, arises from a combination of the examined braid-
ing mechanisms; that being said, avulsion is certainly essen-
tial to the development and maintenance of braided planform
rivers (Ferguson, 1993). While the model is algorithmically
capable of producing avulsion through a combination of lat-
eral bank retreat and sediment scour or deposition, these did
not occur at the same frequency as was seen in the field;
this is particularly evident in the decadal-scale simulation’s
incised and simplified channel planform, along with the re-
duction in channel nodes as compared to field observations
(Fig. 11). At these extended timescales, the model appears to
exhibit a positive feedback loop where bed sediment scour
drives increased flow capture and bed shear stress, resulting
in further downcutting of the channel. Adjustments in bed
sediment scour, sediment deposition (in particular, more fo-
cused deposition of material to offset erosion and drive flow
deflection), along with increased rates of lateral bank erosion
all have the potential to drive more frequent avulsion, prevent
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over-scouring of the bed, and provide greater fidelity to field
observations of channel morphodynamics when modelling at
decadal and longer timescales.

5.2 Sensitivity to process representation

5.2.1 Hydrograph discretization

In Sect. 4.2.1, we modelled a single event on the Rees as
three discrete discharges on the hydrograph (Fig. 8). Because
MoRPHED under-predicted the volume of change, partic-
ularly due to the absence of low-magnitude scour, during
the single-event simulation (Fig. 7), we sought to under-
stand whether discretizing the hydrograph would allow for
an improved prediction of overall volumetric change, and
low-magnitude erosional change in particular. Overall, dis-
cretizing the hydrograph into three modelling time steps only
marginally increased predictions of volumetric change across
the study reach: total volumetric change in the discretized
run (Fig. 8) was 39 771 m3 compared to 36 851 m3 in the
single-event model run (Fig. 7). Both modelling approaches
underestimated the amount of volumetric change in the field
(83 149 m3).

Discretizing the hydrograph also increased the amount of
low-magnitude scour predicted by the model (Fig. 8b), more
accurately reflecting the field-derived ECD (Fig. 7b). It is
likely that this is the result of the 0.1 m elevation threshold
used in our change detection (Sect. 2.7.2), whereby additive
changes due to erosion largely did not exceed 0.1 m depth
after a single flood event, but did exceed this threshold when
three discrete hydrograph points were measured. Whereas
erosional processes that lead to high-magnitude scour, such
as bank erosion, dominated the ECD in the single-event
model run, processes such as channel incision and lobe dis-
section were more prevalent in the discretized hydrograph
model run. Additionally, several areas of high-magnitude
bank and bar trimming were largely offset by deposition of
imported or scoured material during the discretized hydro-
graph run, thereby decreasing the overall magnitude of scour
in those areas (Fig. 8b).

5.2.2 Path-length distribution

We modelled annual-scale morphodynamics on the Feshie
using five different path-length distributions (Sect. 4.3.1).
There is overall similarity between the DEMs produced by
the model (and hence the DoDs shown in Fig. 10) using
these distributions, yet subtle differences may reflect the dis-
tinct nature of the spatial arrangement of erosion and depo-
sition. Overall, the similarity between the modelled distri-
butions may also be the result of the smoothing algorithms
used in the model to ensure computationally stable output
surfaces, such as the along-flow averaging of shear stress and
neighbourhood windows used for deposition (Sect. 2.4), both
of which may act to reduce the variability introduced by the
choice of a particular path-length distribution.

In fluvial settings, erosional processes typically operate
over small spatial scales (e.g. bank erosion, bar trimming,
pool scour), and the magnitude of scour in these focused
areas is typically higher than diffuse, broad-scale deposi-
tional processes such as overbank sheets or accretion of mid-
channel or lateral bar material (Wheaton et al., 2013). As
such, we suggest that the overall similarities, as well as the
differences, between our model’s outputs using these con-
trasting path-length distributions reflects the ability of de-
position to counterbalance elevation changes due to scour
of material, and the fact that the diffuse nature of the path-
length distributions used here make this counterbalancing
difficult. For example, the compressed and stretched Gaus-
sian distributions (Fig. 10a, b) are both marked by broad ar-
eas of erosion and deposition typically falling between±1 m
in elevation change. However, high-magnitude areas of ero-
sion are more rare, yet still present, in the stretched Gaus-
sian distribution, which may be due to the more longitudi-
nally extensive deposition of scoured material partially off-
setting elevation changes due to erosion. The compressed and
stretched Gaussian distributions stand in contrast to the ex-
ponential and shortened distributions (Fig. 10c–e), where el-
evation changes are largely confined between ±0.5 m, and
overall are more fragmented across the model reach. This
does not reflect a reduced magnitude of erosion as Eq. (7)
was used in all cases to predict scour depth; rather, the frag-
mented nature of elevation changes, along with the narrower
range of those changes, is likely due to the propensity for de-
position to offset erosional changes given the more focused
nature of the path-length distributions in Fig. 10c–e. Never-
theless, in all distributions used, the volume of material de-
posited in a given cell following erosion upstream is always
a fraction of that which was eroded. Using the distributions
in Fig. 10 and the deposition smoothing window detailed in
Sect. 2.4, the volume of deposited sediment falls between
0.4 % and 8 % of the volume which is eroded; and as such,
erosion may outpace deposition in many cells.

5.2.3 Path-length modelling as compared to CA and
CFD morphodynamics

While a full benchmarking comparison of our approach with
other CA or CFD schemes is beyond the scope of this inves-
tigation, which solely seeks to demonstrate a novel hybrid
approach to morphodynamic modelling, we can nevertheless
draw general conclusions regarding the performance of this
approach as contrasted with existing modelling efforts. We
note that Williams et al. (2016a, b) performed both CA hy-
draulic modelling using an approach similar to Murray and
Paola (1994), and 2-D CFD morphodynamic modelling (us-
ing Delft3D) on the same reach of the Rees River that was
investigated using MoRPHED. At both low and high flows
(7.3 and 54.7 m3 s−1, respectively; Williams et al., 2016a,
Fig. 6), the CA hydraulic model over-predicted inundation
extent and braiding intensity as compared to either field ob-
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servations or CFD modelling, which were closely correspon-
dent. The over-prediction by the CA model resulted from the
sole reliance on bed gradient to route flow, as opposed to
also incorporating the momentum components of the Navier–
Stokes equations (Coulthard and Van de Wiel, 2012; Fon-
stad, 2013). Given that MoRPHED employed CFD-driven
hydraulics (Sect. 2.1), and given that the boundary condi-
tions employed in that modelling were largely identical to
those used by Williams et al. (2016b), we hypothesize that
the hydraulic modelling component of our approach on the
Rees was likely in agreement with previous CFD modelling
efforts conducted there.

With regard to morphodynamics, we can compare the
general results of Williams et al. (2016b), who simulated
the event-scale evolution of the same Rees River study
reach used here. During a flood with a peak discharge of
227 m3 s−1 that occurred over a 2-day period in April 2010
using Delft3D, Williams et al. (2016) computed 37 204 m3 of
scour, 27 692 m3 of deposition, and a net sediment budget of
−9331 m3, similarly restricting sediment calculations to ar-
eas of elevation change greater than ±0.1 m. Our own event-
scale modelling of a 4-day flood with a maximum discharge
of 259 m3 s−1 in December of 2009 produced an estimated
28 297 m3 of erosion, 28 102 m3 of deposition, and a net sed-
iment budget of −195 m3. While these results are not di-
rectly comparable, given that they were generated from mod-
els of two separate floods with varying (although similar)
peak magnitudes, durations, and antecedent channel form,
the first-order agreement between the magnitudes of geo-
morphic change for relatively similar event magnitudes pro-
vides evidence that our event-scale approach is able to pro-
duce similar magnitudes of geomorphic change as seen in
CFD modelling that utilizes an Exner-based approach (i.e.
Eq. 6) for computing morphodynamic evolution. At the same
time, divergence in the nature of geomorphic change between
the two approaches is evident. While the majority of ele-
vation changes computed by Williams et al. (2016b) were
of low magnitude (e.g. ±0.1 m) with respect to both ero-
sion and deposition, MoRPHED predicted that the majority
of sediment scour was the result of focused high-magnitude
erosion centred around −0.5 m (Fig. 7c). The depositional
component of elevation change predicted by MoRPHED was
marked by low-magnitude deposition comprising the major-
ity of changes, in line with the results of CFD modelling from
Williams et al. (2016a), thus suggesting that a path-length
approach produces similar results with regard to deposition
as compared to CFD morphodynamic modelling, whereas
the computation of sediment scour on a once-per-event ba-
sis likely requires refinement. Finally, the parameterization
of bank erosion proved challenging in both MoRPHED and
in the Delft3D simulations of Williams et al. (2016b) on the
Rees, although for differing reasons. In the case of CFD mod-
elling, disparities between field observation and model out-
puts primarily arose due to differences in the positioning and
migration direction of individual channels (see Williams et

al., 2016b, Fig. 7); whereas in MoRPHED, model outputs
generally predicted channel deepening in lieu of migration
(Fig. 7e). Within both CFD and event-scale modelling, these
results emphasize the need for further investigation into the
mechanics of intra-flood bank erosion and lateral migration
of braided rivers as a function of both near-bank shear stress
and slope of near-bank cells within the model domain. In par-
ticular, Stecca et al. (2017) provide a framework for assess-
ing the performance of non-cohesive bank erosion algorithms
and apply this within a cross-sectional framework. The ap-
plication of this framework to identify the most important
behavioural algorithms for modelling bank erosion in two-
dimensional simulations would be an appropriate next step
to improve the model that is assessed here.

In our modelling approach, the parameterization of time
as equal to a single event, or several points within one
event, in the case of the hydrograph discretization case
study (Sect. 4.2.1), stands in contrast to traditional CFD ap-
proaches, where time steps are represented by common units
(i.e. seconds, minutes, hours, etc.). We recognize that this
approach requires several simplifications, and perhaps chief
among these is the notion that event-scale erosion is largely
independent of event duration (see Sect. 2.2). For exam-
ple, using the approach described here, a flood of several
days duration would result in much less erosion than sev-
eral short floods of the same magnitude, separated by pe-
riods of low flow, as the former would be modelled as a
single event and the latter as multiple discrete events. We
made this simplification for two main reasons. First, labora-
tory and field research into particle travel distances during
floods has developed robust relationships between channel
morphology and event-scale deposition patterns (Kasprak et
al., 2015; Pyrce and Ashmore, 2003a, b) and similarly com-
puting event-scale erosion magnitudes, while inherently un-
certain, across an area of interest provides a computationally
efficient way to utilize our growing knowledge of event-scale
deposition dynamics. Second, in lieu of continuous intra-
flood topographic surveys and/or intra-flood sediment mon-
itoring at many points within a river, it is much more com-
monplace for geomorphologists to instead rely on informa-
tion collected prior and subsequent to a competent flow. In
effect, the modelling technique developed here operates on
the same temporal scale as geomorphologists often work at:
before and after a geomorphically effective flow. If such an
approach is to prove useful for predicting fluvial morphody-
namics, improvements in our ability to forecast event-scale
erosion will be required, and this is an area deserving of fur-
ther research. Similarly, this approach would benefit from an
improved understanding of the timescales at which event-
scale scour may be largely independent of event duration,
versus those longer-duration events where scour is intrinsi-
cally linked to event duration. Certainly, for those floods of
sufficient duration and/or magnitude to fundamentally alter
bar spacing and thus invalidate the initial path-length rela-
tionship used for modelling, adjustment of the modelling ap-
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proach, specifically the user-defined path-length distribution,
is required at intra-flood timescales.

5.2.4 Imperfect models as exploratory tools

Models in the Earth sciences are necessarily imperfect
(Oreskes et al., 1994), and the highly simplified nature of
MoRPHED, combined with the highly dynamic and non-
linear nature of braided river morphodynamics (Ashmore,
1991; Bristow and Best, 1993), implies that our model
will necessarily fail to achieve perfect replication of field-
observed geomorphic dynamics. However, even imperfect
models can provide meaningful insight into the processes be-
hind morphologic evolution of fluvial systems (Paola et al.,
2009; Paola and Voller, 2005). MoRPHED is designed to fa-
cilitate experimentation, particularly with regard to process
inclusion or the particular aspects of process representation
of bed and bank erosion, transport, deposition, and import
dynamics (Fig. 1). For example, in Sect. 4.3.1, we explored
the implications of altering the path-length distributions for
bed and bank sediment transport or deposition, along with
seeking to understand the advantages and drawbacks of dis-
cretizing hydrographs during model runs. The notion of mor-
phodynamic modelling that employs sediment transport rou-
tines based on particle path-length distributions is in its in-
fancy, and we have built the model as an exploratory tool that
can be used to investigate the utility of this approach toward
predictive modelling of braided river evolution. Several com-
ponents of the model may be employed to investigate long-
standing questions in our understanding of braided river dy-
namics, starting with the path-length approach itself. Recent
field-based research on braided rivers has confirmed the cou-
pled nature of sediment sources and sinks and the influence
of sediment pathways on braiding maintenance (Williams et
al., 2015). While it has long been hypothesized, and field and
laboratory data have often confirmed, that mobilized parti-
cles in braided rivers are preferentially deposited in associ-
ation with regularly occurring channel bars (e.g. Pyrce and
Ashmore, 2003a, b; Kasprak et al., 2015), the form of the
path-length distribution, and its relationship to geomorphic
unit spacing, is deserving of further study across braided sys-
tems. As such, the choice of path-length distribution and sub-
sequent comparison of model results with field observations
may provide insight into the applicability of path-length dis-
tributions on a system-by-system basis (Hassan et al., 2013).

MoRPHED may also be used to investigate the utility
of event-scale monitoring. Existing morphodynamic models
typically employ a sediment continuity approach (e.g. Exner;
Eq. 6), operating at very fine temporal scales, typically sec-
onds to minutes. This approach produces results consistent
with field observations (Bates et al., 2005), but comes at the
expense of computational overhead, thereby restricting the
timescales that can be modelled (Brasington et al., 2007).
Because the time step of the model is, by default, a sin-
gle event, computational resources are conserved, allowing

for extended simulations at annual and decadal timescales.
However, it is unclear whether processes that occur over the
course of a competent flow (e.g. avulsion, bank failures) can
be adequately captured using an event-scale modelling ap-
proach. In lieu of a continuity-based approach for comput-
ing morphodynamic change, here we employed a simpli-
fied event-scale estimation of bed scour depth as a function
of flow hydraulics and bed sediment characteristics (Eq. 7,
Sect. 2.2). At present, it is unclear whether this approach
is valid across a wide range of river styles and/or indepen-
dent of event duration; one potential way forward in model
calibration may be to scale Eq. (7) such that field-observed
changes, particularly those seen in ECDs at the event scale
(Fig. 7), are matched as closely as possible, and then pro-
ceeding with modelling over longer timescales. Such a model
calibration approach was not attempted here, but may im-
prove event-scale modelling fidelity in future work. Simi-
larly, the degree to which a hydrograph may need to be dis-
cretized and its constituent parts modelled (Sect. 4.2.1) to
capture stage-dependent processes such as the development
of chute cutoffs or bar edge trimming (Wheaton et al., 2013)
is deserving of further investigation.

Finally, we note that the sequencing of individual floods
may have implications for the geomorphic evolution of mod-
elled reaches using this approach. For example, a large flood
event may result in widespread scour of the reach and, un-
der equilibrium sediment import parameters, may thus drive
a large amount of bedload import and deposition at the up-
stream end of the reach prior to the next event being mod-
elled. The choice of path-length distribution used for im-
ported sediment may further affect the degree to which large
amounts of deposition could potentially occur at the up-
stream model boundary, and the implications of these choices
on model fidelity, although not explicitly evaluated here,
deserve further study. Finally, although periodic sediment-
supplying floods have been surmised to maintain the braided
planform in lieu of continuous sediment supply, and thus may
allow braided rivers to persist under conditions of sediment
deficit at annual scales (Wheaton et al., 2015), the influence
of flood sequencing on reach-scale morphodynamics has re-
ceived relatively little attention in the literature and is de-
serving of further work in the field as well as via numerical
modelling.

Our exploratory research into decadal-scale modelling on
the River Feshie (Sect. 4.4) indicates that both the accurate
prediction of event-scale scour depth and subsequent depo-
sition location present methodological hurdles in the devel-
opment of valid morphodynamic models that operate at the
timescale of competent flows. In our model, as in the field,
erosion occurs in discrete, focused areas of high-magnitude
scour (e.g. pool scour, bar trimming, bank retreat; Ashmore,
1991; Bristow and Best, 2003; Wheaton et al., 2013). Depo-
sition occurs thinly over more broad spatial areas (e.g. bed-
load sheets, overbank sheets, bar formation), a result of the
path-length distributions employed here and the smoothing
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required to avoid the generation of rough topography that
would lead to hydraulic instability. One result of the differ-
ences in the nature of erosion and deposition is that deposi-
tion may never “catch up” to erosion if a simple path-length
distribution is employed, thus resulting in over-scouring of
channels (Fig. 11). In practice, this emergent behaviour can
be seen in the large-scale downcutting seen in the central
anabranch on the Feshie over the decadal run from 2003 to
2013 (Fig. 11, Sect. 4.4). It is possible that this artefact may
simply be the result of the differing algorithmic nature of
erosional processes versus depositional ones as represented
in the model (e.g. discrete versus dispersed). On the other
hand, it is well known that erosion and deposition carry di-
vergent spatial signatures in the field (Wheaton et al., 2013),
and it is also possible that the over-scouring of existing chan-
nels may arise from a lack of bed sediment armouring in the
model; improper representation of bank erosion magnitudes,
as discussed below; over-dispersion of deposited sediment
as described by path-length distributions; or a combination
thereof. As opposed to scour, the morphodynamic signature
of deposition generally mirrors that seen in the field (see
ECDs in Figs. 7, 9, 11), with a large contribution of total
change coming from areas of shallow deposition. However,
in future event-scale morphodynamic models, it may be nec-
essary to augment path-length distributions so as to preferen-
tially deposit material in certain geomorphic units (e.g. con-
fluence pools, deep channels adjacent to banks) in order to
develop lateral flow, bank material removal, and channel mi-
gration or avulsion (Ashmore, 1991).

Another process that is difficult to capture algorithmically
is the lateral retreat of banks. Highly erodible banks are
a hallmark of braided rivers and lead to the development
of central bars and multiple anabranches (Ashmore, 1991).
However, the Cartesian grid employed in the model, along
with the event-scale time step of the model, makes the gen-
eration of smooth bank features difficult. While approaches
are available that compute bank stability based on a factor-of-
safety approach that balances downslope gravitational forces
with the ability of bank material to provide cohesive resis-
tance to failure (Darby and Thorne, 1996; Simon et al., 2000;
Rinaldi and Darby, 2007), parameterization of these models,
especially at the reach scale, is quite difficult. The simplified
approach employed in the model averages the slope of bank
cells and the near-bank shear stress of the flow to predict
bank retreat distances (Sect. 2.3). The threshold slope and
shear stress, and their effect on lateral retreat distance, have
been empirically adjusted to emulate field-observed bank dy-
namics. We have observed that the simple treatment of lateral
erosion in the model produces bank erosion and bar edge
trimming. However, whether this simplified approach will
provide computational stability over longer-term (e.g. cen-
tennial) simulations, when bank retreat is only computed
once per flood, is unknown. Additionally, further investiga-
tion is needed to determine whether the inclusion of bank
toe deposition, as opposed to immediate downstream trans-

port according to a user-specified path-length distribution, is
necessary in the model, along with whether bank material
should be transported and deposited according to the same
path-length distribution as was used for bed material.

6 Conclusions

The morphodynamic model developed here simulates
braided river evolution at a variety of timescales via a path-
length-based approach, and here we applied the model to
two braided river reaches at the event, annual, and decadal
scales. The premise of MoRPHED is that sediment trans-
port can be approximated using a steady flow set to the event
peak discharge and path-length distributions (Pyrce and Ash-
more, 2003a, b; Kasprak et al., 2015), which, when coupled
with two-dimensional hydraulic simulations at peak flood
discharge, results in decreased computational overhead, thus
enabling longer simulations at improved spatial resolution.
We observed overall correspondence between model outputs
and field observations when comparing planform changes,
geomorphic change described by elevation-change distribu-
tions (ECDs), and morphometric indices such as sinuos-
ity, braiding index, and channel node counts (Sect. 2.7.1).
At the same time, divergence between field and model
datasets was evident, suggesting that a purely path-length-
based approach may oversimplify the highly dynamic na-
ture of braided systems (Bristow and Best, 1993). Specifi-
cally, at event scales on the Rees River, New Zealand, we
observed under-predictions of areal and volumetric changes
(total areal extent of change in the field was 287 184 m2 com-
pared to 142 547 m2 in the model, total volumetric change
was 83 149 m3 in the field and 36 851 m3 in the model). At
annual timescales on the River Feshie, UK, the model over-
predicted the extent and volume of geomorphic change (areal
extent of change was 17 206 m2 in the field versus 37 707 m2

in the model, volumetric changes were 4349 m3 in the field
and 10 149 m3 in the model). When conducting decadal-scale
modelling on the Feshie over the period from 2003 to 2013,
we observed good correspondence between areal and vol-
umetric predictions of deposition (areal extent of deposi-
tion was 36 045 m2 in the field compared to 26 861 m2 in
the model, volumetric deposition was 14 677 m3 in the field
and 13 748 m3 in the model) and the areal extent of erosion
(23 836 m2 in the field compared to 23 542 m2 in the model),
but the model over-predicted the volume of erosion through-
out the reach (12 680 m3 in the field compared to 23 744 m3

in the model).
While we did observe reproduction of all field-observed

braiding mechanisms (Wheaton et al., 2013), the relative
contribution of these mechanisms often varied from values
seen in the field. In contrast to all other braiding mecha-
nisms, neither bank erosion nor bar edge trimming emerged
simply as a result of bed scour and deposition, and instead
needed to be explicitly parameterized in the model. In addi-
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tion, chute cutoff only occurred at areas where pre-existing
chutes or channel heads were observed, and did not appear
to emerge across previously flat bar tops. While this model
represents a first step in event-scale path-length-based mor-
phodynamic modelling, further testing is needed to evaluate
the feasibility of the approach for longer-term modelling runs
and/or for the determination of whether process representa-
tion that accounts for inter-flood geomorphic change, such
as avulsion or bank mass failure (Leddy et al., 1993; Ash-
worth et al., 1994), will require explicit parameterization. We
have designed the model to be a modular framework for ex-
ploring the effect of various process representations, and as
a learning tool designed to reveal the relative importance of
geomorphic transport processes in braided river dynamics at
multiple timescales.
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