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2 Nice Guys Finish Fast 

Abstract 

Systems Factorial Technology is a powerful framework for investigating the fundamental 

properties ofhuman information processing such as architecture (i.e., serial or parallel 

processing) and capacity (how processing efficiency is affected by increased workload). The 

Survivor Interaction Contrast (SIC) and the Capacity Coefficient are effective measures in 

determining these underlying properties, based on response-time data. Each ofthe different 

architectures, under the assumption of independent processing, predicts a specific form of the 

SIC along with some range of capacity. In this study, we explored SIC predictions of discrete 

(Poisson) and continuous (Linear Dynamic) models that allow for certain types of cross-channel 

interaction. The interaction can be facilitatory or inhibitory: one channel can either facilitate, or 

slow down processing in its counterpart. Despite the relative generality of these models, they 

predict a restricted range of SIC function and capacity coefficient values. 

[Word count: 140] 
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22 The issue of how we process multiple signals or multiple attributes of a given object is of 

23 considerable interest to psychologists. Different signals can be processed simultaneously (i.e., in 

24 a parallel manner) or sequentially (i.e. in a serial manner). Additionally, the signals can be 

25 processed in independent channels, or alternatively, the channels can somehow communicate 

26 with each other in such a way that one channel facilitates or inhibits processing in the other 

27 channel. In this paper we explore response-time (RT) predictions of parallel models that allow 

28 some degree of cross-channel interactions. 

29 The following example will serve us throughout this report: suppose that two sources of 

30 information, say, an auditory and a visual signal, are processed in parallel channels 1 and 2 

31 respectively. The channels can operate independently from one another, as shown in Figure lA. 

32 That is, the activation in channel 1 does not affect the activation level in channel 2, and vice 

33 versa. Conversely, the channels may interact, as in Figure lB. The interaction can be positive 

34 where each channel facilitates the processing of its counterpart causing an overall reduction in 

3 5 the time it takes to finish the processing of the incoming information. Hence, nice guys finish 

36 fast. Alternatively, the channels may inhibit each other's activity causing a slowdown in 

37 performance and hence, bad guys finish last. 

38 In the absence of direct access to the underlying mental processes, researchers have 

39 traditionally adopted behavioral measures such as mean RTs to assess how different, most often 

40 simultaneously presented signals are processed (e.g. , Danders, 1869; Sternberg, 1969). 

41 Investigators have generally been concerned with broad information processing issues such as 

42 whether multiple sources of information are processed in serial or in parallel. However, these 

43 techniques typically assume independent processing in the respective channels and little research 

44 has been carried out to investigate the effects of dependencies between processing channels. 
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45 One shortcoming ofmethodologies traditionally used to asses parallel versus serial 

46 processing is that mean RTs alone often cannot differentiate bet\veen competing models. Serial 

47 and parallel systems may mimic each other by exhibiting the same pattern of observed response 

48 times (e.g., Snodgrass & Townsend, 1980; Townsend, 1972, 1990a). For example, Snodgrass 

49 and Townsend proved that parallel models with limited capacity can easily mimic broad classes 

50 of serial models. A related issue is a possible trade-off bet\veen processing capacity and 

51 architecture, in which RT measures are consistent with parallel processing while capacity is in 

52 some sense 'limited' and consistent with serial processing (c.f., Townsend & Ashby, 1983). 

53 Workload capacitv, or simply capacity, refers to the system's performance when the load is 

54 varied. If the processing rate on one channel remains invariant when another signal is added, 

55 then the capacity of the system is unlimited. Alternatively, if increasing the work load by 

56 presenting an additional signal slows down processing in a given channel then capacity is 

57 limited. 

58 To overcome the problem of model mimicking, Townsend and colleagues (e.g., 

59 Schweickert & Townsend, 1989; Townsend, 1984; Townsend & Nozawa, 1995; Townsend & 

60 Schweickert, 1989) developed robust statistical measures that utilize entire RT distributions 

61 rather than mean RTs. Townsend & Nozawa (1995) developed a mathematical theory (and a 

62 related methodology), dubbed Systems Factorial Technology. Specifically, they provided a test 

63 that employs an interaction contrast bet\veen RT distributions from different experimental 

64 conditions --known as the survivor interaction contrast (SIC) --to distinguish bet\veen serial and 
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65 parallel processing architectures (and within the latter category, independent-parallel from 

66 coactive-parallel models). 1 This index will be defined formally in the next section. 

67 Parallel and serial models predict unique functional forms for the SIC. For example, 

68 suppose that a human observer is asked to respond affirmatively if an auditory signal and visual 

69 signal both appear. To respond correctly, the observer must exhaustively process both 

70 modalities. Under this regime, if the two signals are processed in parallel, then the predicted 

71 survivor contrast is negative, as depicted in Figure 2A. If the signals are processed serially, then 

72 the predicted SIC has a distinctive S-shaped curve that begins at zero and then becomes negative, 

73 crosses the abscissa, and then becomes positive before returning to zero. The SIC signatures for 

74 serial models are presented elsewhere (Townsend & Nozawa, 1995). In this paper we examined 

75 the effects that different levels of cross-channel interaction have on the SIC signature of parallel 

76 models. 

77 

78 [Figure 1 here] 

79 

80 Although SIC predictions do not depend on distributional or parametric assumptions, 

81 they do depend on the assumption of selective influence of experimental factors (see e.g., 

82 Sternberg, 1969). For an experimental manipulation to 'selectively influence' a particular 

83 process, the manipulation must affect the target process and no other process. For example, a 

84 sound intensity manipulation is said to selectively influence the auditory channel if it affects 

85 processing of the auditory signal but has no effect on processing of the visual signal. Townsend, 

86 Dzhafarov, and colleagues (Dzhafarov, 2003; Kujala & Dzhafarov, 2008; Townsend & 

1 In a coactive model, activation from multiple channels is summed and compared to a single threshold prior to 
decision. In the case ofthe Poisson coactive model, for example, counts from two or more channels can accumulate 
in a common buffer, in which the overall amount of counts is subsequently compared to the decision criterion. 
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87 Schweickert, 1989; Schweickert & Townsend, 1989; see also Townsend, 1990b) have provided 

88 robust theoretical assays in addition to statistical tests for assessing whether the conditions for 

89 selective influence are present. 

90 If the channels in a parallel system interact with each other then the experimental 

91 manipulation targeted on one channel will have an effect on the other, violating the assumption 

92 of selective influence. Unlike 'pure' parallel or serial models, the channels are no longer 

93 independent; activation from one channel, such as the auditory channel, may be sent to the other 

94 channel and vice versa. The outcome of this cross-channel communication may be facilitatory or 

95 inhibitory depending on the nature ofthe interaction. In the current study we examined several 

96 classes of formal and computational parallel-interactive models, and explored their predictions 

97 with respect to the SIC and workload capacity, beyond the cases where selective influence holds. 

98 The SIC test is traditionally employed within the context ofa factorial design. We begin 

99 by outlining the paradigm often referred to as "the double factorial design." We then explain the 

100 basic methodology for calculating the SIC and discuss the predictions for parallel independent 

101 models. Next, we describe two types ofmodels, discrete state and continuous state, that are used 

102 to explore early cross-channel interactions (pre-accumulator) and late interactions (post­

103 accumulator).2 We then report simulation results of these models in terms of the SIC and 

104 workload capacity patterns they predict. Finally, we discuss the similarities and differences in the 

105 predicted SICs due to changes in the locus in which interactions occur. 

106 

107 The Double Factorial Design 

2 Cross-channel interaction may be early on in the process, representing perhaps a dependence ofthe activation in 
one channel on the input from the other. Or else, the interaction may occur at a later stage, for example if the 
activation in a channel depends on the activation in the other. 
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108 The double factorial design combines two levels ofmanipulation. The first manipulation 

109 is concerned with the presence versus absence of target items. For instance, in a target detection 

110 task with auditory and visual targets, four types of trials exist: double target trials, in which an 

111 auditory signal and a visual signal are presented at the same time, visual target alone, auditory 

112 target alone, and finally target absent trials. This manipulation ofpresence versus absence is used 

113 to create double versus single target conditions, which are necessary for the calculations of our 

114 capacity measure, as we shall see in later sections. A second manipulation of salience performed 

115 on the subset of double target trials yields four sub-types of trials: HH trials, where both the 

116 visual and the auditory target appear in their highly salient form (for example, a loud beep sound 

117 and a bright dot of light), HL and LH trials, where one target is highly salient whereas the 

118 salience level of the other target is low (e. g., loud sound and a dim dot, or a bright dot and weak 

119 sound) , and LL trials where both targets have low salience. 

120 The survivor function for each of the factorial conditions (HH, LH, HL, and LL) can then 

121 be estimated from response times to yield the SIC. The survivor function is the complement of 

122 the cumulative distribution function, such that S(t}= 1- F(t). While the cumulative distribution 

123 function, F(t), tells us the probability that processing of a given stimulus is finished before or at 

124 time t, the survivor function marks the probability that processing has not yet terminated. The 

125 SIC is computed by taking a double difference of survivor functions from the different factorial 

126 conditions, SIC( t) =[SLL (t) - SLH(t)] - [SHL (t)- SHH(t)] . 

127 The SIC predictions for two independent parallel models are presented in panels A and B 

128 of Figure 2 (for formal proofs and predictions for serial models, we refer the reader to Townsend 

129 & Nozawa, 1995). Townsend and Nozawa also derived predictions for a special case of parallel 

130 processing, referred to as coactive processing, in which information from two channels 
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131 converges to satisfy a single criterion. A schematic of such a model is presented in Figure 1 B, 

132 and the SIC prediction is plotted in Figure 2C. Under some assumptions, which we discuss later, 

133 the coactive model is in fact a special case of an interactive-facilitatory model. 

134 

135 [Figure 2 here] 

136 

137 We systematically varied the degree of cross-channel interaction within several classes of 

138 simulated models, and tested how it affects the form of the SIC. Varying the level of interaction 

139 makes parallel models flexible in terms oftheir predictions. In particular, it allows the model to 

140 mimic a range of architectures from independent-parallel (when the level of interaction is 

141 negligible or effectively null) to coactive. Consequently, parallel interactive models can predict a 

142 range of SIC signatures. Nonetheless, we found that despite the inherent flexibility of interactive­

143 parallel models, their SIC functions do in fact span a finite range, thus allowing the falsification 

144 of certain classes ofmodels based on observed data. For example, a facilitatory AND model (a 

145 system with two parallel channels which facilitate each other and stops as soon as the slower of 

146 the two finishes processing) can produce a range of SIC functions from completely negative to 

147 mostly positive. An entirely positive SIC, often observed in some of our studies (e.g., Eidels & 

148 Townsend, 2009; Eidels, Townsend, & Algom, in press; Townsend & Nozawa, 1995), would 

149 allow one to reject this broad class ofparallel models. 

150 We explored, in this paper, both continuous and discrete models of parallel processing 

151 with two varieties of interaction, one at the input stage (pre-accumulator) and one during the 

152 accumulation stage. For each model, we assumed that processing of two or more sources of 

153 information is carried out simultaneously in parallel channels. We allowed either first­
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154 termination (i.e., terminate processing when either channel1 or 2 finishes; OR rule) or 

155 exhaustive processing (i.e., terminate processing when both 1 and 2 channels finish; AND rule). 

156 Furthermore, in all models, we manipulated the level of excitatory and inhibitory cross-channel 

157 interactions. However, the exact manner by which one channel affects the other differed across 

158 the two varieties. 

159 Next, we present the models in greater detail and explain how the cross-channel 

160 interaction is realized in the discrete and continuous classes ofmodels. The interaction can be 

161 facilitatory, with one channel 'helping' the other, or inhibitory, where one channel slows down 

162 the processing of its counterpart. Therefore, for each class ofmodels there exist four cases of 

163 interest: facilitatory interaction associated with an OR rule, facilitatory with an AND rule, 

164 inhibitory OR, and inhibitory AND. After describing the models we present the simulation 

165 results showing the SIC functions for different levels of interactions for each of these four cases. 

166 

167 'Early' and ' Late' Cross-Channel Interactions 

168 Each channel can interact with its counterpart in different loci. In Figure 1 C and 1 D we 

169 illustrate two possible loci of interaction, which we have explored in detail. In Figure1 C, 'early' 

170 interaction, the interaction occurs before the accumulator in both channels. We refer to these 

171 models as "pre-accumulator interaction" models. This type of interaction is a model for 

172 dependent inputs. In facilitatory models, higher input in one channel leads to more activation 

173 feeding into the accumulator of the other channel. In inhibitory models the higher input in one 

174 channel leads to lower input to the accumulator of the other channel. 

175 In Figure 1D, 'late' interaction, accumulated activation on one channel is added to- (in 

176 case of facilitation) or subtracted from- (in case of inhibition) the input of the other channel. In 
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177 this type ofmodel, it is the total activation, not just the input level of one channel that affects the 

178 other. We refer to these models as "post-accumulator interaction" models. Naturally, in 

179 facilitatory models higher total activation on one channel leads to higher input level in the other 

180 channel's accumulator, whereas in inhibitory models higher total activation leads to lower input. 

181 

182 Discrete and Continuous Activation Models 

183 The pre- and post-accumulator types of interaction were realized in this study within two 

184 types of models: A discrete state model, based on a Poisson process, and a continuous state 

185 model, which is based on a stochastic linear dynamic system. 

186 Discrete Activation Models 

187 We modeled discrete-state parallel-interactive processes with two parallel counting 

188 processes or channels. The input to each channel was treated as a Poisson process, with the rate 

189 determined by the salience level of an assumed stimulus processed by that channel (salient 

190 stimulus = high rate, faint stimulus = low rate). Each channel in the model accumulates counts 

191 until a prescribed criterion is reached. Channels could facilitate or inhibit each other by sharing 

192 positive or negative counts, respectively. For models ofpre-accumulator interaction, only the 

193 most recent count could be shared. For models of post-accumulator interaction, any amount of 

194 the previously accumulated counts could be shared. In the AND case ("detect signal 1 and 2"), 

195 overall processing in the system ceased only when both channels reach their respective criterion. 

196 In the OR case, overall processing stopped once either channel I or 2 reaches its criterion. The 

197 following examples illustrate the process of counting with facilitatory versus inhibitory channel 

198 interaction. 
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199 Consider first a facilitatory model, where the probability ofcross-channel interaction is 1 

200 in both directions -- from channel 1 to 2, and from channel 2 to 1. This means that activation is 

201 fully shared between channels, but the exact manner differs across pre- and post-accumulation 

202 models. Both model varieties start with [0, 0]. On the first step, a count occurs on both of the 

203 channels. In the pre-accumulator models, each incoming count on a given channel is also added 

204 to the other channel, setting the state of the system to [2, 2]. On the second step, a count occurs 

205 on the first channel but not on the second. Nonetheless, due to the interaction, the same count is 

206 also sent from the first to the second channel, updating the state ofthe model to [3, 3]. Notice 

207 that in this extreme case the channels are perfectly correlated and will terminate processing at the 

208 same time (as long as their criterion values are identical). In the post-accumulator models, all 

209 accumulated counts are shared. If the state of the model is [2, 2], then all counts are shared from 

210 both channels to the other, increasing the state to [ 4, 4]. 

211 Alternatively, consider an inhibitory model where the probability of channels' interaction 

212 is again symmetric and equal to 1. Suppose that the model state is [2, 2] and a count is added to 

213 channel 1. With cross-channel inhibition, activation added to one channel is subtracted from the 

214 other in one of two ways, depending on the locus on interaction: In the pre-accumulator models 

215 the added count to channel 1 is simultaneously subtracted from channel 2, so the new state would 

216 be [3, 1]. In the post-accumulator model, in contrast, a count would be subtracted from channel 2 

217 due to sharing from channel I a rate proportional to2p (since there are two counts in channel I) 

218 and likewise for decreases in channel 1 due to sharing from channel 2. By assumption, a channel 

219 cannot have fewer than zero counts. For instance, if the model starts at [0, OJ and a count is 

220 added to channel 1, a count would not be subtracted from channel 2 even if the probability of 

221 interaction is p =1. In that case, the updated state of the model becomes [1, 0]. 



Nice Guys Finish Fast 12 

222 A formal description of the discrete activation models is provided in Appendix A. We 

223 investigated the RT predictions, and in particular the SIC predictions ofthese models by carrying 

224 out computer simulations and, in some cases, examining numerical computations based on 

225 analytic solutions. We tested both facilitatory and inhibitory models with varying levels of cross­

226 channel interaction starting with completely independent channels, where the probability of 

227 interaction was null, p=O, all the way through p=1. In Appendix A we present the general model, 

228 but for brevity report results in which the sharing between channels is symmetric and the criteria 

229 are equal. 

230 Continuous State Models 

231 We modeled continuous-state parallel-interactive processes with linear dynamic systems. 

232 Similar to the discrete state models, we specified a state space describing the accumulation of 

233 perceptual or cognitive activation in a channel at each point in time. The process of accumulation 

234 began when input entered the system from the environment or from another internal system. 

235 Again the salience level determined the magnitude of the input. To make the process stochastic 

236 we added independent white noise processes to the input. Pre-accumulator interactions were 

237 modeled by adding a multiple of the input of each channel to the other. Post-accumulator 

238 interaction was modeled by adding a multiple ofthe total activation of each channel to the other. 

239 The level of interaction was determined by the magnitude of the multiplier in either case. In 

240 facilitatory models the multiplier was positive, while in inhibitory models the multiplier was 

241 negative. 

242 We simulated the models with varying levels of cross-channel interaction starting with 

243 completely independent channels and gradually increasing the extent of the interaction. To 

244 obtain the necessary estimate of the CDF in each condition, we simulated a series oftrials with 
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245 the model to get a sample ofpredicted RTs. From those estimated CDFs we computed and 

246 plotted the SIC. For simplicity, the interaction parameters were set to be equal across channels. 

247 For a formal explication of the continuous state models see Appendix B. 

248 

249 Results and Discussion 

250 Simulation results for the models presented above are summarized in Figure 3. The 

251 qualitative SIC predictions of the discrete space and continuous space models were the same. To 

252 avoid redundancy, we only included figures ofthe former. The SIC pattern predicted by pre- and 

253 post-accumulator models were often the same but differed on some aspects. Therefore we 

254 included figures ofboth, and compare their results shortly. 

255 The SIC functions for four types ofpre-accumulator model (facilitatory AND, facilitatory 

256 OR, inhibitory AND, inhibitory OR) are presented in the first column of Figure 3. The 

257 corresponding SIC functions for the post-accumulator models are shown in the second column of 

258 Figure 3. The solid black line in each panel corresponds to the SIC function of the parallel 

259 independent model. A lighter shade represents more interaction, with the lightest line 

260 representing the SIC function with the highest level of interaction. While the Poisson models 

261 have a clear maximum level of interaction ( p = 1), the linear dynamic models are only bounded 

262 by the constraint on facilitation that the system remain stable and the constraint on inhibition that 

263 the system should complete processing in a finite time. For the parameters used in the simulation 

264 of the post-accumulator linear-dynamic models, this corresponded to cross-channel interaction 

265 values of a12 = ±4.8.= a 21 

266 A cursory comparison between the first and second columns of Figure 3 reveals that the 

267 patterns of results predicted by pre- and post-accumulator model are qualitatively quite similar. 
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268 Next, we survey the results of each class in more detail and point out discrepancies, when exist. 

269 The order of discussion coarsely follows the difficulty for interpretation, from easy to more 

270 difficult, and not necessarily the order of presentation in Figure 3. 

271 Pre-Accumulator Models 

272 For both facilitatory models (AND, OR; top two rows of Figure 3), increasing the 

273 probability of interaction resulted in faster completion times. The corresponding curves shifted 

274 farther to the left as the level of facilitation increases (as the shade lightens). For the inhibitory 

275 model (bottom panels), increased interaction resulted in slower processing, and the 

276 corresponding SIC functions shifted to the right. 

277 Figure 3A shows the SIC functions for a facilitatory exhaustive (AND) model where two 

278 parallel channels facilitated each other and stopped as soon as both channels finished processing. 

279 For the independent parallel-exhaustive models (i.e., p = 0), the SIC function was entirely 

280 negative, like Figure 2A, and commensurate with Townsend and Nozawa's (1 995) Proposition 2. 

28 1 As the probability of cross-channel interaction increased, the early part of the survivor contrast 

282 function (i.e., for small t) remained negative, but the later part became more and more positive 

283 until, for p close to or equal to 1, the size of the positive area exceeded that of the early negative 

284 area. It is important to note that the facilitatory exhaustive model failed to produce a completely 

285 positive SIC function regardless of the amount of interaction. In fact, for the highest level of 

286 interaction the curve took the form of the SIC function predicted by a coactive model presented 

287 in Figure 2C (see Townsend & Nozawa's Proposition 5). This result is predictable because 

288 perfectly correlated channels (cross-channel interactions of p = 1 in the Poisson model) mean 

289 that all activation from one channel is sent to the other channel and vice versa. Hence, 
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290 termination ofprocessing on each channel occurred when the sum ofcounts from the two 

291 channels exceeds the criterion value, exactly as in a coactive (channel-summation) model. 

292 Figure 3B shows the SIC function for a facilitatory first terminating (OR) model. For 

293 p = 0 (i.e., no cross channel interaction) the SIC remained entirely positive for all t, as predicted 

294 by an independent parallel first-terminating model (Figure 2A; see also Townsend and Nozawa, 

295 1995, Proposition 1 ). As interaction increased, the early part of the function turned negative, but 

296 the total negative area was smaller than the positive area for all levels of interaction. At the 

297 maximum value, the SIC was mostly positive with an early negative blip, again the signature of a 

298 coactive model ( cf. Figure 2C). 

299 Regardless of the termination rule then, perfect sharing ofcounts between channels is 

300 structurally identical to coactive processing. The SIC signatures of the two facilitatory models 

301 are therefore bounded (from opposite directions) by the SIC signature of the coactive model. 

302 This observation is of extreme importance as it allows the researcher to reject certain classes of 

303 models. The facilitatory-first-terminating (OR) model, for example, predicted a range of SIC 

304 functions that span a finite range from total positivity to mostly positive with an early negative 

305 region (Figure 3B). If an entirely negative SIC function is observed in experimental data, 

306 facilitatory first-terminating models can be safely rejected. 

307 Next, consider the forms of the SIC functions produced by parallel-inhibitory models. For 

308 the OR case (Figure 3D), the SIC functions were always positive regardless ofthe probability of 

309 cross-channel interaction. Increasing the level of interaction resulted in an overall slowdown of 

310 processing, as demonstrated by the horizontal stretching of the SIC function for high levels of 

311 interaction (to the extent that the SIC for the highest level had to be truncated in the figure). 
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312 However, the qualitative form of the SIC remained unaffected. Any negativity in the observed 

313 SIC rules out inhibitory first-terminating models. 

314 The SIC results ofthe inhibitory exhaustive (AND) model, in Figure 3C, pose a more 

315 serious challenge for interpretation. The SIC was entirely negative for independent processes, 

316 while the right tail gradually became positive as the level of interaction increased. For large 

317 amounts of interaction, the positive area exceeded the negative area, and with the maximum 

318 amount of interaction the function was almost entirely positive. 

319 Post-Accumulator Models and Comparisons with Predictions of Pre-Accumulator Model 

320 Beginning with the inhibitory OR case (Figure 3D), the SIC predictions for the pre- and 

321 post-accumulator models were qualitatively similar. With increased interaction, the SIC function 

322 shifted to the right but always remained positive. Thus, any observed negativity in an empirical 

323 SIC function immediately rules out inhibitory first-terminating models, regardless ofthe level, 

324 and locus of interaction. 

325 Next, consider the facilitatory OR case in Figure 3B. Once again, the qualitative 

326 predictions of pre- and post-accumulator models were similar. In the absence of cross-channel 

327 interaction, the SIC function was entirely positive. With increased interaction it gradually shifted 

328 to the left and was increasingly negative for early processing times. Even for the highest levels of 

329 interaction, though, it was mostly positive. Therefore, observing a completely negative SIC 

330 function, or even mostly negative function, excludes the facilitatory first-terminating model, 

331 again regardless of the locus of interaction. 

332 For the facilitatory AND case (Figure 3A), the SIC functions predicted by the pre- and 

333 post-accumulator models were slightly different. The pre-accumulator model generated a range 

334 of SIC functions, from completely negative when processing in the two channels occurs 
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33 5 independently, to mostly positive with an early negative blip when interaction was maximal. The 

336 post-accumulator model produced SIC functions which were negative across all tested parameter 

337 values, and thus comprised only a subset of the pre-accumulator predictions. Observing a 

33 8 completely positive SIC function rules out the facilitatory exhaustive model regardless of its 

339 class. 

340 Finally, the predictions of the inhibitory AND model (Figure 3C) were somewhat similar 

341 across both classes. The SIC function was completely negative for independent processing, and 

342 its right tail gradually became positive as we increased the level of interaction. For the pre­

343 accumulator model, the function was almost totally positive for the highest possible level of 

344 interaction. This model poses a challenge for interpretation as it predicted a wide range of 

345 function forms from totally negative to nearly totally positive. To overcome this problem and in 

346 general to increase one's ability to discriminate between models based on observed data, one 

347 needs to execute the second branch of systems factorial technology-- estimating the capacity 

348 coefficient, which we shall discuss shortly. 

349 Summarizing the results, most models predicted a finite range ofSIC forms . Observing 

350 an empirical SIC function that does not fall within the range predicted by a particular model 

351 allows the investigators to reject that model. Nonetheless, certain models had overlapping 

352 predictions of the SIC function. For concreteness, suppose that you observe an empirical SIC 

353 which is completely positive for all timet. One can immediately rule out the facilitatory 

354 exhaustive model (Figure 3A), as none of the SIC curves constantly stay above the abscissa, 

355 regardless of the level and locus of the interaction. However, the facilitatory first-terminating 

356 model (Figure 3B; for p = 0, which is an independent model), the inhibitory exhaustive model 

357 (figure 3C; for p =1) and the inhibitory first-terminating model (figure 3D; for all p values 
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358 including p = 0 which is an independent model) could predict a completely positive SIC 

359 function. What methodology can be utilized to distinguish between them? At this point, we shall 

360 discuss how workload capacity can help distinguishing between inhibitory, facilitatory, and 

361 independent parallel models. 

362 

363 [Figure 3 here] 

364 

365 Distinguishing between Facilitatory and Inhibitory Models that have Similar SIC Forms 

366 The Capacity Coefficient. Inhibitory, facilitatory, and independent-channels models make 

367 different predictions with regard to a measure ofprocessing efficiency that gauges workload 

368 capacity. By workload capacity, we refer to the processing efficiency of the system as we 

369 increase the load of information by, say, increasing the number of the to-be-processed targets. 

370 Townsend and Nozawa (1995) proposed a measure ofworkload capacity-- the capacity 

371 coefficient. For OR processes, the appropriate version is computed as the ratio between the 

372 integrated hazard function of the double target condition (i.e., two targets presented 

373 simultaneously) and the sum of the integrated hazard functions of the single target conditions: 

374 

375 If the survivor function is the complement ofthe cumulative distribution 

376 functionS(t) =1-F(t), and the hazard function is the probability density function over the 

377 survivor function, h(t) = 	 f(t) , then the integrated hazard function, H(t) is the integral of the 
S(t) 

378 hazard function from zero tot. The subscripts OR indicate that this index is calculated for the OR 

379 task. 
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380 Recently, Townsend & Wenger (2004) developed a comparable capacity index for the 

K 1 (t) + K 2 (t)381 AND task C (t) = 	 where K(t) is analogous to the integrated hazard function, 
' AND K12 (t) ' 

382 H(t). Ifwe let k(t) be equal to the density over the distribution function, k(t) = 	f(t) , then K(t) 
F(t) 

383 is defined as the integral of k(t) from zero to t. 

384 The interpretation of the two indices for both OR and AND conditions is the same (so we 

385 can momentarily ignore the subscripts): C(t) values of 1 imply that the system has an unlimited 

386 capacity, such that processing in a given channel is not affected by the increase in workload due 

387 to the increase in the number of targets; i.e., a given channel has the same processing rate 

388 whether a target is presented to the other channel or not. C(t) values that are below 1 suggest 

389 that capacity is limited, such that increasing the processing load (e.g., by increasing the number 

390 of targets on the display) takes a toll on the performance of each channeL Finally, if C(t) > 1 then 

391 the system is said to have super-capacity; processing efficiency of individual channels actually 

392 increases as we increase the workload. 

393 The capacity coefficient gauges the processing efficiency of the system relative to the 

394 performance expected from an unlimited capacity independent parallel modeL At the same time 

395 it indirectly provides information about architecture and channel (in)dependence. For example, 

396 the prediction of a parallel-independent model is, by definition, C(t) =1, whereas a standard 

397 serial model roughly predicts C(t) = .5 . The prediction of a parallel model with positive cross­

398 channel interactions is C(t) > 1, as is the prediction of a coactive model. 3 Very strong inhibitory 

3 Townsend & Wenger (2004) simulated linear dynamic parallel-interactive models and showed that positive 
channel interactions have a facilitatory effect on workload capacity (C(t)> 1) and that negative interactions have an 
inhibitory effect of capacity (C(t)< l). An unlimited capacity parallel model without cross-channel interactions 

= = 0) produces capacity coefficient values of 1. Notably, coactive models in which activation from each ( a12 a2 1 
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399 cross-channel interactions, in either parallel or serial mode of processing, may lead to severely 

400 limited capacity, such that C(t) < .5. The more inhibition there is bet\Neen channels, the slower 

401 each channel is relative to its performance in isolation, and this slowdown is reflected in smaller 

402 values of the capacity coefficient. Conversely, with more cross-channel facilitation, each channel 

403 is faster than it would be in isolation, and the coefficient values increase. Thus , the capacity 

404 coefficient provides an indication of the degree of facilitation or inhibition. 

405 Independent models, with different combinations of architecture (serial, parallel) and 

406 stopping rule (exhaustive, first terminating) predict unique forms of SIC functions ( cf. Figure 2). 

407 When different models predict similar survivor contrasts at least one of the models must have 

408 high levels of cross-channel interactions. Examining the SIC and the capacity coefficient in 

409 tandem provides (in some cases) a decisive test for the architecture and possible dependencies 

410 bet\Neen the processing channels. 

411 In the third column of Figure 3 we present, for each of the four models, the predictions of 

412 the capacity coefficient for various degrees of cross-channel interaction (based on simulations of 

413 the pre-accumulator Poisson model). Like the SIC plots on the same figure, the black line in each 

414 panel represents the function for an independent model and as the probability of interaction 

415 increases, the shade gets lighter. Under the assumption ofparsimony, we can assume that the 

416 same underlying processing system generates the data used for estimating SIC(t) and C(t) .4 

channels is summed together produces extremely super capacity values, higher than those observed in parallel 
models with positive channel interaction. 
4 That is, architecture does not change when we estimate these two statistics in a single experiment. For example, if 
two parallel channels operate independently, then they should be independent whether we use the data to estimate 
the capacity coefficient or whether we use just a subset of this data to estimate the SIC. Within a given experiment, a 
processing system ofsome kind cannot exhibit the signatures of independence on one measure (say, SIC(t) function 
which is all positive or all negative) and an interaction signature on the other (say, C(t) values much greater than, or 
much smaller than 1). In fact, the actual level ofinteraction (p value, in case ofthe Poisson model) is said to be 
invariant across the two measures. 
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417 With this assumption in mind, we provide the reader with a decision tree (Figure 4) in 


418 which, given the observed SIC(t) and C(t)patterns, one can decisively rule out certain models 


419 that fail to accommodate the observed pattern. The decision tree in restricted to the models tested 


420 in this study so choosing a particular model, as opposed to rejecting an unsuitable model, 


421 presents more difficulties; other models may exist that can exhibit similar SIC(t) and 


422 C(t) patterns. 


423 Choosing the Appropriate C(t) Formula. Given two different formulas, one for C0 R (t) 


424 and another for CANn(t), how do we know which one to use for our data? In some cases we 


425 know what the stopping rule should be and the appropriate measure is clear. For instance, when 


426 exhaustive processing is called for by the instructions of a detection task, a failure to comply 


427 with the instructions will lead to noticeable proportion of errors. The participants must use the 


428 appropriate rule (AND) in order to perform accurately, and the appropriate capacity measure 


429 should be CANn(t). 


430 Ifwe do not know the stopping rule in advance, the form of the SIC can be helpful in 


431 determining the appropriate capacity coefficient. Observing a completely negative SIC for all 


432 time t rules out the two candidate OR models (left branch of Figure 4; compare with SIC 


433 predictions of OR models in Figure 3); in this case, the appropriate capacity coefficient would be 


434 CANn(t). CANn(t) values greater than 1 rule out inhibitory and independent models, CANn(t) 


435 values less than 1 rule out facilitatory and independent models, and CANn(t) =1 is only predicted 


436 by independent models. 


437 When the SIC does not give enough evidence to determine the stopping rule then it is 


438 best to choose the most informative version of the capacity coefficient. For example, when the 
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439 SIC is positive for all t (middle branch of Figure 4), then we cannot determine the stopping rule. 

440 Both inhibitory AND and OR models predict C 0 R (t) < 1, while facilitatory OR models predict 

441 C0R(t) > 1 but not necessarily CANn(t) > 1. Thus C0R(t) is more informative in this case.5 

442 In conclusion, models that predict the same form of survivor contrast may be 

443 distinguished by observing their C(t) predictions (and vice versa). Within the restricted universe 

444 of parallel-interactive models tested here, and given experimentally observed SIC and the 

445 capacity coefficient functions in tandem, one can identify a unique candidate processing model 

446 (end boxes of each ofthe paths in Figure 4). There are only two non-unique cases, but even in 

447 these paths the decision tree ends in two candidate models instead of many. 

448 

449 [Figure 4 here] 

450 

451 Conclusions 

452 In this study, we explored SIC predictions of several classes of interactive parallel 

453 models: models with either discrete or continuous activation states, where the locus of interaction 

454 can be either pre-accumulation or post-accumulation. For each class, we simulated facilitatory 

45 5 and inhibitory models with OR (inclusive disjunctive) and AND (conjunctive) stopping rules , 

456 and generated SIC functions for various levels of cross-channel interactions. 

457 The SIC as a tool for identifying the architecture of underlying processing systems was 

458 first introduced by Townsend and Nozawa (1995) . These researchers showed that different 

5 In some cases both CAND (t) and C0 R (t) are informative such as when the SIC function is negative for early 

times and positive for late times (Figure 4, right branch). In this case, if CAND(t) > 1 then inhibitory AND models 

can be rejected, leaving both facilitatory models. If, additionally, C0R (t) < 1 then facilitatory OR models are 

rejected in favor offacilitatory AND models. 
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459 processing models predict distinctive shapes of the SIC function. Thus, by estimating the SIC 

460 directly from data, one can rule out models that fail to predict the observed shape of the contrast 

461 function. Townsend and Nozawa limited their exploration to processing models with 

462 independent channels. Townsend and Wenger (2004) studied parallel models with interactions, 

463 but focused solely on workload capacity using linear dynamic systems. In this paper we provided 

464 a theoretically important generalization ofthe results of Townsend and colleagues by 

465 investigating the SIC predictions ofparallel models with cross-channel interaction. 

466 Two important types ofparallel models were scrutinized in this paper: discrete space and 

467 continuous space models. The discrete state model was constructed as a two channel counting 

468 model, in which the probability of a single count within each channel was given by a Poisson 

469 distribution. The probability of sharing or sending a count from one channel to another was 

470 treated as a Bernoulli triaL The continuous state model, on the other hand, was formulated as a 

471 set of linear differential equations with additive noise. There were no qualitative differences 

472 between the results of the discrete and continuous space models. 

473 Using both continuous state models and discrete state models, we modeled the effects of 

474 pre- and post-accumulation interaction between channels on the form of the SIC. Despite 

475 differences in the formulation ofthe models, their results were very similar as we demonstrated 

476 in Figure 3. 

4 77 Although we explored a wide range of parallel interactive models, they predicted a 

478 limited range of SIC forms, thereby allowing for the falsification of certain model architectures . 

479 Even in the case where different models predict identical SICs, Systems Factorial Technology 

480 still provides powerful non-parametric methods for distinguishing among the models. Every pair 

481 of facilitatory and inhibitory models that share the same SIC, for instance, can be distinguished 
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482 by analyzing their capacity predictions. Therefore, combined analysis of empirical SICs and 

483 capacity coefficients has proven to be a useful tool in model diagnosis as we demonstrated in the 

484 decision tree shown in Figure 4. 

485 Systems factorial technology is a powerful modeling technique that relies on analytically 

486 proven theorems without making parametric assumptions about the underlying distributions 

487 responsible for generating the data. As such, its predictions are general and hold for any type of 

488 processing model with a particular architecture and stopping rule, regardless of the exact way in 

489 which individual channels of the model accumulate evidence over time. For example, a two­

490 channel parallel-independent model always predicts a completely positive SIC, whether the 

491 accumulation of evidence towards decision within a channel is based on a diffusion process (e.g., 

492 Ratcliff, 1978) or a Poisson process (e.g., Smith & VanZandt, 2002). The results reported in this 

493 paper therefore show that certain types of interactive-parallel models produce typical signatures 

494 (or a limited range of signatures). And, when the empirical survivor contrast and capacity 

495 coefficient functions are different from the predicted signatures, certain classes ofmodels that 

496 fail to produce the observed outcome can be safely rejected. 

497 

498 

499 
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553 Appendix A: Formal Description of Discrete State Models 

554 

555 In this appendix we present the formal description of the discrete activation models 

556 discussed in the text. Processing channels in these models simultaneously (i.e., in parallel) 

557 accumulate evidence, in form of counts, toward some threshold. Via cross-channel interaction 

558 channels can also send counts to each other. Therefore, counts in each channel could be from two 

559 sources: (i) Within channel counts, based on the channel's response to some external stimulus or 

560 stimulus attribute, that represent the channel independent process ofaccumulating evidence from 

561 the environment. (ii) Shared counts, which were sent by the other channel, and represent the 

562 interaction across channels. 

563 Modeling Within- and Between-Channel Counts 

564 Within channel counts. In both pre- and post- accumulator models, the accumulation of 

565 information within a channel is modeled as a Poisson process. Hence, the amount of counts 

566 accumulated within a channel up to time t, denoted by u1(t) and u2 ( t) , has a Poisson 

567 distribution. To model the difference between high and low salience conditions, the rate for the 

568 high condition (H), and thus the probability of accumulating a count in an interval, was set to be 

569 higher than the rate for the low condition (L ), implying a shorter processing time for the H 

570 condition. 

571 Between channel counts. The level of interaction between channels is set by the 

572 probability p 12 of sending a count from channel 1 to channel 2 and probability p 21 ofsending a 

573 count from channel 2 to channel 1. In the pre-accumulator models, each new within-channel 

574 count is shared with probability. Because the count sharing in each time interval is a Bernoulli 
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575 trial, we can model the process of sharing over time with a Binomial distribution. We use kij(t) 

576 to denote the number of counts sent from channel ito channel j by time t. 

577 In the post-accumulator models, the sharing follows a pure birth process, in which shared 

578 counts from channel i to channel j arrive according to an exponential distribution with rate 

579 f..ly(t) =x1(t)pyf..l· x;(t) is the total activation (shared and within channel) in channel i at time 

580 t. pij is a probability that is varied to model degrees of interaction. The variable f..l, with no 

581 subscripts, is a constant rate that is independent of the degree of interaction or direction of 

582 sharing. In general the sharing rate can be set to any positive number and it does not affect the 

583 qualitative aspects of the SIC. For the purposes of this paper, we set it to be in a similar range as 

584 the input rate. 

585 Whether count sharing (cross-channel interaction) happens before or after the 

586 accumulation of counts, in the facilitatory models the shared count is added to the total activation 

587 of the receiving channel so the total activation at time t is the sum of the accumulated within­

588 channel counts and the accumulated shared counts, x1(t) =u1(t) +kj;(t). In the inhibitory models, 

589 the shared counts are subtracted rather than added. The total activation x1(t) is then the total 

590 accumulated within-channel counts u1(t) minus the shared counts, 

591 x1(t) =u1(t)- LL1kj1(t'); n ={t'[ 0 < x;(t') < y1;0::;; t'::::: t}, where n ranges over positive times for 
t 1e0 

592 which x1is above zero and below criterion (if activation is zero, or if that channel had reached its 

593 criterion, then the shared counts bear no effect). 

594 A channel completes processing when the total activation reaches threshold y1 • If the 

595 system is an OR system, then the system also finishes processing at this point. If it is an AND 
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596 system, then the other channel will continue unaffected by the completed channel. A channel is 

597 assumed to have between 0 and Y; counts, so the model is defined over the y1 x y2 state space. 

598 The cumulative distribution function for the AND rule is given by 

599 PANn(RT ~ t) =P{T; ~ t AND T2 ~ t}, and the distribution for the OR rule is given by 

600 P0 R (RT ~ t) =P{T; ~tOR T2 ~ t}, where T; and T2 are the random variables for processing 

601 times on the two channels. The probability that a channel finished processing at or before timet 

602 is equivalent to the probability that the total number of counts in the channel is at or above its 

603 criterion. Consequently, the cumulative distribution function for the AND rule can also be 

604 written as PANn(RT ~ t) =P{X1(t);::. y1 AND X 2 (t);::. y2 } and the distribution for the OR rule is 

605 given by P0 R (RT ~ t) =P{X1(t) ;::. y1 OR X 2 (t) ;::. y2 } . 

606 The above discrete state models are all Markov processes and thus can be analyzed using 

607 the general tools associated with that class of models . In particular, we can use a matrix, R, of 

608 the transition rates to specify the model and to calculate the distribution of completion times. 

609 Formally, the transition rate matrix if defined as follows . Suppose v; is the rate at which the 

610 state changes from state i , and q if is the transition rate from state i to state j . Then the entries 

ificfcj
611 of the transition rate matrix are given by rij ={qij ifi = j If Pij(t)=P{X(t)=JIX(O)=i}, 

V; 

612 then the matrix of probabilities with entries Pif can be approximated by the equation, 

613 P(t) ~ (I +Rt I nY (A1) 

614 for large n (Busemeyer & Diederich, 2009, pp. 104-117; Ross, 1995). The only difference 

615 between the models is in the specification of the transition rate matrix. 
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616 In the special case of the facilitatory, pre-accumulator models the equations for the 

617 completion time distributions are relatively straightforward to derive directly. Depending on the 

618 level ofprecision desired, these equations can be used for more efficient computation. We begin 

619 by deriving these equations for the facilitatory, pre-accumulator models, followed by 

620 descriptions of the transition rate matrix R for each of the other models. 

621 

622 Facilitatorv Models 

623 Facilitatory exhaustive (AND) model. Figure Al illustrates the state space for such 

624 model. The state of the model in the figure is represented by the number of counts on channel 1 

625 (y axis) and the number of counts on channel2 (x axis). The model starts without any counts, at 

626 [0, 0], and gradually accumulates evidence towards the thresholds y1 and y2 , thus moving in the 

627 state space up and right towards the bounds. At each point of time, the state of the model must 

628 fall within one of the five areas in the figure. A pre-accumulator model cannot complete 

629 processing if its state is within area 5 of Figure A 1, as there are not enough counts to reach either 

630 criterion. However, there are four ways in which a facilitatory AND model can in fact complete 

631 processing, corresponding to areas 1 through 4 in Figure Al. 

632 In the first case, both channels may have enough counts on their own to satisfy criterion 

633 (u1 = ypu2 = y2 ) which corresponds to the upper right comer of Figure Al in the space marked 

634 by "1". Stated in terms ofthe completion time distribution, 

635 (A2) 

636 Alternatively, one of the channels may have enough within channel counts to reach 

637 criterion, while the other may not ( u1 = y1 , u2 < y2 or u1 < y 1,u2 = y2 ). These possibilities 

638 correspond to the upper and right borders of Figure Al (marked by 2 and 3). Finally, it is 
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639 possible that neither channel has enough within channel counts to reach criterion. It that case, the 

640 channel( s) can reach criterion with the aid of the counts shared by the other channel (area 4 ), or 

641 not reach criterion at all (such that the model does not complete processing; areaS). Next we 

642 express the probability distribution for each case. 

643 (A3) 

644 (A4) 

64S When neither channel has enough within-channel activation to complete 

646 (ul < YI 'u2 < r 2; "4" in Figure 3 ), then there must be enough shared activation to make up the 

647 difference for the model to complete ( U1 + K 12 = YI> U2 = Y2 ).+ K 21 

648 (RT ~ t) = P{U1(t) < y1 , U2 (t) < y2 AND K 21(t) = -U2 (t),K12 (t ) = -U1(t)} (AS) P4 y2 y1 

649 Equation AS also holds for areaS, although for the post-accumulator models this 


6SO probability is necessarily 0 as stated above. 


6Sl As the first four events cover all possible values of the within channel counts, without 


6S2 overlap, their sum is the probability of the model completing: 


PAND(RT ~ t) 


= P1(RT ~ t) + P2 (RT ~ t) + P3 (RT ~ t) + P4 (RT ~ t) 


= P(U1 = y 1;t)P(U2 = y2 ;t)

6S3 (A6) 

+ P(UI = yi;t)P(Uz < Yz AND Kzi = Yz- Uz IUI = yi;t) 

+P(U2 =y2 ;t)P(U1 <y1 ANDK12 =y1 - U1 IU2 =y2 ;t) 


+P(UI < ypUz <rz ANDKzi =rz -Uz ,Kiz =yi-UI;t) 


6S4 The pre-accumulator model can thus be written in a closed form by inserting the 

6SS appropriate probabilities (recall: Poisson distribution for the within-channel counts, binomial 

6S6 distributions for between-channel counts): 
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y2-1 e-h,t (A. t)"z]y1 -1 e-;/.1t( ~ t)"' [ min(u!y1-u1-1)(u J l+ 	1-"" 2 "" /'1 1- 2 pk12 (1-p )"z-ku 

[ 1
~ r ~ 	 k 12 12 

Uz-0 U2 • u,-0 U1. ku-0 12 

1	 1;1. -1~-1 -),t(~ t)"' -h,t(A. t)"2 [ min(u2,y -u1-1)(u J ][ min(u,!r-uz-1)(u J l+"" e /'1 1- "" 2 pku (1- p 	 1 pkn (1- pe 2 	 )"rku 1- )•,-kz,
~ 	 ~ k 12 12 k 21 211 1 u1-0u2 - 0 U1. U2 • k12 -0 12 	 k,1-0 21 

658 To use equation AI for this model, the following equations give the entries for transition 

659 rate matrix: 

if xl = r];x2 = r2 

660 	 if xj = rj 

otherwise 

if xl = r] 
661 	 if xl =f:- r] and x2 = r 2 ' 

otherwise 

if x2 = r 2 

662 	 if x2 =f:- r 2 and X] = YJ ' 
otherwise 

if xl = YJ or X 2 = r2
663 

otherwise 

664 In the post-accumulator model, any of the counts acquired so far may be shared. Hence, 

665 the rate of transition increases as the number of counts increase. The corresponding entries in 

666 transition rate matrix are: 



Nice Guys Finish Fast 34 

667 

668 

669 

670 

671 

672 

673 

674 

675 

676 

677 

678 

679 

680 

681 

if XI =yl and X2 = y 2 

if X; =f:- Y; andxj = rj' 
otherwise 

if XI= rl 
if XI =f:- rl and x2 

otherwise 

if x2 = Yz 

if x2 =f:- Yz and xl 

otherwise 

= r 2 ' 

= Yl . 

Facilitatory first-terminating (OR) model. In a first-terminating model, only one channel 

must reach criterion ( u1+ k12 =y1or u2 + k21 = y2 ) . Mathematically, this can be stated more 

simply as the complement of 'both channels are less than criterion'. 

P(I; < tOR T2 < t ) 

= P(X1(t) = y1 ORX2 (t) = y2 ) (A7) 

= 1- P(U1(t) + K 12 (t) < y1 AND U2 (t) +K 21 (t) < y2 ) 

The pre-accumulator model can again be written in a closed form by inserting the 

appropriate probabilities. 

The transition rate matrices representing the pre-and post-accumulator, facilitatory OR 

models are quite close to the corresponding matrices for the facilitatory AND models. The only 

difference is that once either one of the channels has reached its criterion, the transition rate is 

zero. For the pre-accumulator model: 
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682 


683 


684 


685 


686 


687 


688 


689 


690 


691 


692 


693 


694 


695 


696 


697 


698 


if xl = Yl or Xz = Yz 


otherwise 


if xl = Yl or Xz = Yz 

otherwise 

if XI = rl or x2 = r2 

otherwise 

For the post-accumulator model: 

if X 1 = y1 Or X 2 = Y2 

otherwise 

if XI =rl or x2 = r2 

otherwise 

if XI = r l or x2 = r2 

otherwise 

Inhibitory Models 

In an inhibitory model the shared counts are subtracted from the total activation of the 

receiving channel. An additional assumption of the inhibitory models is that the total activation 

of a channel cannot go below zero (cf. Usher & McClelland 2001 ). Such an assumption is not 

necessary in facilitatory models, because channels' activation cannot be negative. Since the 

shared counts do not always contribute to the total activation the inhibitory model cannot be 

stated with the relatively simple equations of the pre-accumulator facilitatory model. Instead we 

use a random walk process to describe the inhibitory model. We begin by illustrating the state 

space and possible processing steps in such models (Figure A2). In keeping with the intended 



Nice Guys Finish Fast 36 

699 Poisson nature of the model, we treat the probability of two counts occurring in the same 

700 miniscule time increment as zero. 

701 Panel A in Figure A2 depicts the initial state of the model and the possible transitions 

702 from that state. Initially, there is no activation in either channel so the model starts at [0, 0]. 

703 When a channel gains a count, it may or may not share that count. We assume that a channel 

704 cannot have negative activation, so if a channel with zero counts receives a shared count, the 

705 shared count will have no effect. Therefore, at [0, OJ a count that is added to one channel is not 

706 subtracted from its counterpart, and the new state of the model is [1, OJ, or [0, IJ. 

707 If both channels have at least one count, but neither channel has completed processing, 

708 there exist other possible transitions, as depicted in Figure A2 -- Panel B. The model can stay in 

709 the same state, both channels could increase, or one channel could increase while the other 

710 remains constant. 

711 It is impossible for both channels to lose a count simultaneously. It is also impossible for 

712 one channel to lose a count while the other stays the same. This is because for a channel to lose a 

713 count, it must receive a shared count from the other channel and not gain a within-channel count. 

714 Since the first channel does not gain a within-channel count, it cannot share. However, the other 

715 channel must gain a within-channel count to share. This other channel cannot have received a 

716 shared count from the first channel, meaning that its total activation must also increase. Thus, for 

717 one channel to decrease, the other must increase. 

718 Once a channel reaches criterion, the behavior of the first-terminating and the exhaustive 

719 models diverges. The first-terminating model finishes processing at this point (so the model will 

720 not transition to any other state). The exhaustive model must continue processing until both 

721 channels reach criterion. After one channel completes processing it can no longer affect 
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722 processing in the other channel. The unfinished channel will continue accumulating counts as an 

723 independent Poisson process until it reaches its criterion. When both channels reach criteria the 

724 model reaches its final state (and processing is completed). 

725 We are now in a position to specify the transition rate matrix for these models. In most 

726 cases, the transition rate depends on the current state. Cases where at least one channel is zero or 

727 at criterion, pictured in Figure A2- Panels A, Band D, are dealt with first, then we specify 

728 transition rates from states in which both channels have at least one count and neither channel 

729 has reached criterion. These are the states exemplified in Figure A2 -- Panel C. As we described 

730 above, the model can transition to a state where only a single channel increased while the other 

731 channel either stayed the same or decreased, or to the same state in which both channels have the 

732 same amount of activation. 

733 Inhibitory exhaustive (AND) model. In the AND model, the unfinished channel will 

734 continue independently until it finishes. 

735 For one channel to increase while the other decreases, the first channel must gain a count, 

736 then share it. 

if X1 = YP X 2 = y2 Or X 2 = 0 
737 

otherwise 

if X1 = y1 , = Or X1 = 0X 2 y2738 
otherwise 

739 For the total activation in one channel to increase while the other remains the same, the 

740 first channel must obtain a within-channel count but not share it. 

if XI = Y1 

741 = Or X 2 = 0 and X 1 =f:- y1X 2 y2 

otherwise 
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ifx2=r2 

742 = y1or x1 = 0 and x2 =1:­x1 y2 

otherwise 

743 

744 Ifneither channel gains a count then no counts had been shared and the activation simply 

745 stays the same. 

if x1 = y1 andx2 = y2 

746 if X; =f:- Y; andxj = rj 

otherwise 

747 The post accumulator models are similar to facilitatory post-accumulator models. The 

748 diagonal entries to the transition rate matrix are the same. 

749 

if xl = Yl and x2 = Yz 

750 if X; =f:- Y; andxj = rj. 

otherwise 

751 The difference is that when a count is shared, the receiving channel decreases. Hence, the 

752 transition rates for gaining a count in a channel are, 

if XI= Yl
753 and 

otherwise 

if x2 = r2
754 

otherwise 

755 The transition rates for losing a count are, 

if xl = Yl or x2 = Y2
756 and 

otherwise 
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757 

758 

759 

760 

761 

762 

763 

764 

765 

766 

767 

768 

769 

770 

771 

772 

if xl = Yl or x2 = Y2 

otherwise 

Inhibitory first-terminating (OR) modeL The transition probabilities listed up to this point 

apply to both the OR and AND models. As discussed earlier, the two models differ once one of 

the channels finishes. In this case, the OR model does not change states. In all other cases, the 

behavior of the two models is identicaL 

For one channel to increase while the other decreases, the first channel must gain a count, 

then share it. 

if XI = YP x2 = Y2 or x2 = 0 

otherwise 

if x1 = y1 , x2 = y2 or x1 = 0 

otherwise 

For the total activation in one channel to increase while the other remains the same, the 

first channel must obtain a within-channel count but not share it. 

if xl = Yl or x2 = Y2 

if x 2 = Oandx1 

otherwise 

if x2 = r2 or XI 

if x1 = 0 and x 2 

otherwise 

=f:. Y1 

= Yl 

=f:. Y2 

Ifneither channel gains a count then no counts had been shared and the activation simply 

stays the same. 

if XI = Yl or X 2 = r2 

otherwise 
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773 Like the post-accumulator AND models, the post-accumulator inhibitory OR models are 

774 quite similar to the post- accumulator facilitatory OR models, 

0 if XI = Yl or x2 = r2
775 v ­

(x,,xz)(x,,xz) - { 1 +A + 1/(p X + p X ) otherwise-''1 2 r 12 1 21 2 

if XI = Yl or x2 = r2
776 

otherwise 

if XI = Yl or x2 = r2
777 

otherwise 

if xl = Yl or x2 = Y2
778 

otherwise 

if XI = Yl or x2 = r2
779 

otherwise 

780 



Nice Guys Finish Fast 41 

781 Appendix B: Formal Description of Continuous State Models 

782 

783 In this appendix we present the formal description of the continuous state models 

784 discussed in the text. Like the discrete models in Appendix A, we assume two parallel processing 

785 channels, but now we allow the state to be any positive real number, as opposed to just integer 

786 value. The total activation in each channel is represented by x;(t), although to conform to the 

787 standard presentation of linear dynamic systems (e.g., Townsend & Wenger, 2004), we use 

788 vector and matrix notation, i.e. x(t) = [x1 (t)J. Each channel has some input, u(t) = [ur(t)J, 
~00 ~00 

789 corresponding to the within-channel counts in the discrete state model. 

790 To represent cross-channel interactions, we use a matrix of coefficients indicating the 

791 values of the activation weights. Following Ashby's model for stochastic general recognition 

792 theory (Ashby, 1989), we use B = lbll 
b12 jfor pre-accumulator interactions, and 

b2l b22 

793 a12
] for post-accumulator interactions. The off diagonal coefficients represent the 

Gzz 

794 amount ofbetween-channel cross talk, or information sharing, so a12 determines the amount of 

795 cross-talk from channel 2 to channel 1 and a21 determines the amount of cross-talk from channel 

796 1 to channel 2. For those unfamiliar with linear dynamic system notation, it may seem odd to use 

797 for the sharing from channe12 to channel I rather then vice versa. In keeping with the a12 

798 standard notation of this class ofmodels, we use the subscripts to denote the row and column of 

799 the matrix A . 
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800 By setting the off diagonal coefficients ofmatrix A to zero, cross-channel sharing is 

801 completely eliminated, thereby making the model equivalent to an independent-parallel model. 

802 Activation in the model is then solely dependent on the diagonal elements, representing within­

803 channel contribution. The diagonal elements b11 and b22 are parameters denoting gain or loss 

804 applied to the within channel input. Since changing the diagonal elements of B is equivalent to 

805 rescaling the inputs, we fixed them to 1, b11 = = 1. The diagonal elements and a22 areb22 a11 

806 parameters denoting the feedback rate for a particular channel. As we shall see shortly, these 

807 values can be used to ensure that the system is stable. Townsend and Wenger (2004) used 

808 parameter values that maintained stability in the system, a property that is often assumed for 

809 natural systems (cf. Usher & McClelland 2001). 

810 Deterministic Pre-Accumulator Model 

811 The two-channel pre-accumulator interactive parallel model, with no post-accumulator 

812 interaction, is given by: 

d [~]813 -x(t) =Ax(t) +Bu(t) = (Bl)
dt 0 

814 We refer to the above version of the model as deterministic, because it has no source of 

815 noise or variability. We shall shortly present the stochastic version of the model, which includes 

816 a noise term. 

817 The magnitude of the interaction parameters (off diagonal elements of B ) was varied 

818 between 0 and 1 to represent the range between complete independence and total information 

819 sharing. Similar to our explorations with the discrete state models, we set the interaction to be 

820 symmetric so that b12 =b21 • Assuming a constant input, the solution to this differential equation 

821 IS 
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822 (B2) 

823 Deterministic Post-Accumulator Model 


824 The (deterministic) two-channel post-accumulator interactive parallel model is given by: 


d [a11825 - x(t) =Ax(t) +u(t) = (B3)
dt a21 

826 In accordance with Townsend and Wenger (2004), we further simplified the model with 

827 the assumption that the activation rates within each channel are equal, , and as above,a11 =a 22 

828 cross-channel interaction coefficients are equal, = a21 • Furthermore, we assumed that the a12 

829 input to each channels is constant (for t > 0, u1 (t) = ;u (t) = ), making the system time u1 2 u2 

830 invariant. 


831 In this case there exists a closed form solution that describes the activation level in each 


832 of the channels at time t ~ 0: 


833 (B4) 

834 The channel's activation is an exponential expression, meaning that if the sum a11 + a12 

835 or a11 -a12 is positive, the activation increases without bound. To stabilize the system, we 

836 seta11 = a 22 < 0; and ja12 j=ja21 j< ja11 j=ja22 j to prevent the sum from being positive. 

837 Stochastic Pre- and Post-Accumulator Models 

838 To make the model stochastic, we added Gaussian white noise, r;(t), to the inputs. The 

839 added noise is independently and identically distributed such that it is uncorrelated over time and 
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840 across channels. The differential equation that describes channel activation in a stochastic model 

841 with two parallel channels that interact pre-accumulation is: 

d [~1842 -x(t) = Ax(t) +Bu(t) = (B5)
dt 0 

843 When the interaction occurs post-accumulation, the equation is: 

d [~1844 -x(t) =Ax(t) +u(t) = (B6) 
~ a21 

845 As in the Poisson counting models, we allowed the interaction parameters to be either 

846 positive (facilitation) or negative (inhibition), and manipulated the magnitude of the cross­

847 channel interaction. The actual interaction parameters for the post-accumulator, facilitatory 

848 models were set to be 0 (independent channels), 1.2, 2.4 and 3.6 and 4.8, with the stabilizing 

849 parameter set to -10. For simplicity, both the interaction parameters and stabilizing parameters 

850 were set to be equal across channels (a12 =a21 ;a11 = a 22 ). The particular range ofparameter 

85 1 values was chosen to ensure the stability of the modeL As stated above, the cross channel 

852 interaction in the pre-accumulator models varied in magnitude from 0 to 1, with positive values 

853 for facilitatory values and negative values for inhibitory models. 

854 
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864 Figure Captions 

865 

866 Figure 1. Schematics of four types of parallel processing models: independent parallel channels 

867 (panel A), parallel coactive model (panel B), parallel channels with pre-accumulator interaction 

868 (panel C), and parallel channels with post-accumulator interaction (panel D). 

869 

870 Figure 2. Survivor functions (left column) and SIC predictions (right column) for different 

871 processing models: parallel first-terminating (panel A), parallel exhaustive (panel B), and 

872 coactive (panel C). To calculate the SIC, one first estimates the survivor functions for each of the 

873 four factorial conditions (HH, HL, LH, and LL), and then calculates the double difference: 

874 S/C(t) =[SlL (t)-s1H (t)] -[SHL (t) -SHH(t)]. 

875 

876 Figure 3. Simulated SIC results from four types ofpre-accumulator parallel interactive models 

877 (first column) and post-accumulator models (second column): Facilitatory AND (panel A), 

878 Facilitatory OR (panel B), Inhibitory AND (panel C), and Inhibitory OR (panel D). The third 

879 column shows the predicted C(t) values, which are similar for pre- and post-accumulator 

880 interaction models. In each panel, the thick dark line represents the independent model and as the 

881 probability of interaction increases, the lines become lighter. 

882 

883 Figure 4. A decision tree for parallel-interactive model diagnosis. Given both empirical survivor 

884 interaction contrast [SIC(t)] and capacity coefficient [C(t)] estimates, one can analyze the 

885 diagram from top to bottom to rule out models that fail to predict the observed functions. The 

886 decision tree accommodates the models tested in this paper. * A coactive model is a candidate. 

887 
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Figure Al. The state space ofwithin-charmeL activation of the discrete state, pre-accumuLator 

models. They axis corresponds to the LeveL ofwithin-charmeL activation in channeL 1 while the x 

a,'l.is corresponds to channeL2. Area 1 represents the case in which FaciLitatory AND and OR 

models have compLeted processing. In areas 2 and 3, FaciLiatory OR modeLs have terminated 

and facilitatory AND modeLs may be finished if there is enough between-charmeL sharing. In 

area 4, faciLitatory AND and OR models may finish, but onLy with enough sharing. In area 5, the 

pre-accumuLator models carmot finish processing, regardLess of the amount of sharing. 
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Figure A2. The state space of total channel activation of inhibitory Poisson models. The y axis 

corresponds to the level of activation in channel 1 and the x axis corresponds to channel2. If the 

model is in the state marked by the black dot, then the possible states in the next time step are 

depicted by all of the dots, including the possibility of staying in the current state. Panel A 

shows the initial state ofthe model. Panel B shows an example ofa state in which one channel 

has acquired some activation while the other has none. Panel C shows an example of a state in 

which both channels have some activation, but neither has reached its criterion. Panel D shows 

an example of a state in which one channel has reached criterion but the other has not. If the 

model is an OR model, processing has terminated. If it is an AND model, then only the 

activation in the channel that is still below criterion can change. 


	Wright State University
	From the SelectedWorks of Joseph W. Houpt
	April, 2011

	Nice Guys Finish Fast and Bad Guys Finish Last: Facilitatory vs. Inhibitory Interaction in Parallel Systems
	NiceGuys_Page_01
	NiceGuys_Page_02
	NiceGuys_Page_03
	NiceGuys_Page_04
	NiceGuys_Page_05
	NiceGuys_Page_06
	NiceGuys_Page_07
	NiceGuys_Page_08
	NiceGuys_Page_09
	NiceGuys_Page_10
	NiceGuys_Page_11
	NiceGuys_Page_12
	NiceGuys_Page_13
	NiceGuys_Page_14
	NiceGuys_Page_15
	NiceGuys_Page_16
	NiceGuys_Page_17
	NiceGuys_Page_18
	NiceGuys_Page_19
	NiceGuys_Page_20
	NiceGuys_Page_21
	NiceGuys_Page_22
	NiceGuys_Page_23
	NiceGuys_Page_24
	NiceGuys_Page_25
	NiceGuys_Page_26
	NiceGuys_Page_27
	NiceGuys_Page_28
	NiceGuys_Page_29
	NiceGuys_Page_30
	NiceGuys_Page_31
	NiceGuys_Page_32
	NiceGuys_Page_33
	NiceGuys_Page_34
	NiceGuys_Page_35
	NiceGuys_Page_36
	NiceGuys_Page_37
	NiceGuys_Page_38
	NiceGuys_Page_39
	NiceGuys_Page_40
	NiceGuys_Page_41
	NiceGuys_Page_42
	NiceGuys_Page_43
	NiceGuys_Page_44
	NiceGuys_Page_45
	NiceGuys_Page_46
	NiceGuys_Page_47
	NiceGuys_Page_48
	NiceGuys_Page_49
	NiceGuys_Page_50
	NiceGuys_Page_51
	NiceGuys_Page_52

