November 3, 2011

Fundamental Properties of Simple Emergent Feature Processing

Robert D. Hawkins
Joseph W Houpt, Wright State University - Main Campus
Ami Eidels
James T. Townsend, Indiana University - Bloomington
Michael J. Wenger

Available at: https://works.bepress.com/joseph_houpt/5/
Fundamental Properties of Simple Emergent Feature Processing

Robert D. Hawkins, Joseph W. Houpt, Ami Eidelts, James T. Townsend, Michael J. Wenger

1 Indiana University, Bloomington, 2 University of Newcastle, Australia, 3 University of Oklahoma

Motivation

The presence of emergent features in perceptual stimuli has long been associated with gains in processing efficiency, but the nature of the underlying processing has been unclear. We begin to investigate the hierarchy of emergent features from the simplest case: pairs of dots.

Method

- Adapted the odd-quadrant task from Portillo & Pomerantz (2005)
- Same/different task: participant is asked whether any dot changed position
- Investigated changes in Orientation and Proximity

Results

Capacity Coefficient

- Measure of efficiency as workload increases (Townsend & Nozawa, 1995). Ratio of whole to sum of parts.
 \[C(t) = \frac{1 - H(t)}{R_t(1-R_0)} \]
 - \(C(t) = 1 \): standard independent parallel model (UCIP)
 - \(C(t) < 1 \): super capacity (facilitation or coactivation)
 - \(C(t) > 1 \): limited capacity

Conclusion

- Successfully replicated Portillo & Pomerantz (2005) results with a same/different task.
 - Significantly super capacity when emergent feature is present.
 - Significantly limited capacity when emergent feature is not present, even when amount of location information is the same.
 - Standard two-channel UCIP model cannot account for this.
 - Model must include emergent feature information.

Funding

This work was supported by NIH-NIMH MH-57711-15 awarded to JTT and MJK. Contact ment at hawke@indiana.edu.

References
