Wright State University

From the SelectedWorks of Joseph W. Houpt

November 3, 2011

Fundamental Properties of Simple Emergent Feature Processing

Robert D. Hawkins Joseph W Houpt, Wright State University - Main Campus Ami Eidels James T. Townsend, Indiana University - Bloomington Michael J. Wenger

FUNDAMENTAL PROPERTIES OF SIMPLE EMERGENT FEATURE PROCESSING

ROBERT D. HAWKINS¹, JOSEPH W. HOUPT¹, AMI EIDELS², JAMES T. TOWNSEND¹, MICHAEL J. WENGER³

¹ Indiana University, Bloomington, ² University of Newcastle, Australia, ³ University of Oklahoma

MOTIVATION

The presence of emergent features in perceptual stimuli has long been associated with gains in processing efficiency, but the nature of the underlying processing has been unclear. We begin to investigate the hierarchy of emergent features from the simplest such case: pairs of dots.

METHOD

- · Adapted the odd-quadrant task from Portillo & Pomerantz (2005)
- Same/different task: participant is asked whether any dot changed position

· Investigated changes in Orientation and Proximity

- Single Dot
- . Dot present on the left or right

- Uninformative Context

- 200 ent Feature
- · Redundant Target with Emergent Feature
- Two sources of location information such that a feature emerges from change

- Redundant Target without Emergent Feature
- Two sources of location information such that no feature emerges

FUNDING

This work was supported by NIH-NIMH MH 05771710 awarded to JTT and MJW Contact Robert at hawkrobe@Indiana.edu.

RESULTS

	70000		Orientation		
	1 > 1	11 > 1	C ₂₀₀ (1) to C ₆₀₀ (1)	Consent (1) to Const (1)	P(Com(t) > Comm(t))
1 19	Manager 1	Main RT 2	Super capacity	Limited Coperity	Difference
dinap.	pr 001	p+ 001	penor	py 001	gr (00)
01	p<.05	84.003	n.s.	pr 001	ps.001
00	pr:001	p+.001	#K001	p<.05	prote
04	p+ 001	n.s.	pc.001	pr. 201	21,001
04	p<001	p<.06	pr.001	34.01	px 001
08	ps 001	01.001	piner"	g4.001	\$1.00F
08	p+001	p+.003	> .01	pr 001	pt.001
00	p+.001	pr. 000	p+ 001	pr.801	g=:007
OR	pr 001	pr-001	p<001	px 001	pc.001
00	\$4.01	n.s.	pr 001	pr.007	ps.001
010	01.001	p+.05	24.001	gr.301	24.001

	Proximity						
	*> · *	** > * *	$C_{\rm Aux}(t)$ vs. $C_{\rm HCH}(t)$	Creary(f) VI. Capp(f)	$P(C_{has}(t)) > C_{histoph}(t)$		
	Manufit 1	Mac RT 2	Super superity	LIMITE CHARGE	Offerens		
OM/F	p+301	p+.001	p4.01	pr.801	gr-201		
P1	8.6.	≥301	n.s.	pr.001	ps:00%		
P2	Br 2001	n.e.	broot	F/801	pr 4007		
F8	p+ 001	p<00.0	A.s.	ns.	n.s.		
*	p=.001 = 1	pi.001	penor	py.001/	u+ 607		
P6	0.6.	p<.05	pi.01	p= 007	p+05		
**	8.6	p=001	ji<001	(1000kg	ps.007		
PT	0.6	px 001	p-1001	pv 001	A.L.		
F6	p= 00f	px1001	p<.01	ps 007	ps.007		

CAPACITY COEFFICIENT

- Measure of efficiency as workload increases (Townsend & Nozawa, 1995). Ratio of whole to sum of parts.
- $=C(t)=\frac{H_{ab}(t)}{H_{A}(t)+H_{b}(t)}$
- C(t)=1 standard independent parallel model (UCIP)
- C(t)>1 super capacity (facilitation or coactivation)
- C(t) <1 limited capacity

REFERENCE

Portillo, M. C., Pomerantz, J. R. (2005). Evaluating grouping via emergent features: A systematic approach. Journal of Vision, 6(9).

Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of elementary perception: An investigation of parallel, serial, and coactive theories. Mathematical Psychology, 39(4).

CONCLUSION

- Successfully replicated Portillo & Pomerantz (2005) results with a same/different task.
- Significantly super capacity when emergent feature is present.
- Significantly limited capacity when emergent feature is not present, even when amount of location information is the same.
- · Standard two-channel UCIP model cannot account for this.
- Model must include emergent feature information.

