Nonparametric Bayesian Dynamic Systems Analysis Applied to a Large Eyetracking Corpus

Joseph W Houpt
Mary E Frame, Miami University - Oxford

Available at: https://works.bepress.com/joseph_houpt/46/
Nonparametric Bayesian Dynamic Systems Analysis Applied to a Large Eyetracking Corpus

Joseph W. Houpt Mary E. Frame

Society for Mathematical Psychology Annual Meeting
Outline

1. The Problem
2. The Model
3. The Data
4. The Results
5. Conclusions
Existing Approaches
Outline

1. The Problem
2. The Model
3. The Data
4. The Results
5. Conclusions
The Model

Vector Autoregressive Process

\[y_t = \sum_{l \in (0, t-1)} a_l y_l + e_t \quad e_t \sim N(0, \sigma^2) \]
Vector Autoregressive Process

\[y_t = \sum_{l \in (0, t-1)} a_l y_l + e_t \quad e_t \sim N(0, \sigma^2) \]

\[y_t = \sum_{l \in (0, t-1)} a_l y_l + e_t \quad e_t \sim N(0, \Sigma) \]
The Model

Vector Autoregressive Process

\[y_t = \sum_{l \in (0, t-1)} a_l y_{l} + e_t \quad e_t \sim N(0, \sigma^2) \]

\[y_t = \sum_{l \in (0, t-1)} a_l y_{l} + e_t \quad e_t \sim N(0, \Sigma) \]

\[y_{t}^{(i)} = \sum_{l \in (0, t-1)} a_l y_{l}^{(i)} + e_{t}^{(i)} \quad e_t \sim N(0, \Sigma) \]
The Model

Hidden Markov Model

\[
\begin{align*}
\pi_1^{(i)} & \quad \pi_2^{(i)} & \quad \pi_3^{(i)} & \quad \pi_4^{(i)} & \quad \pi_5^{(i)} & \quad \ldots \\
\pi_{11} & \quad \pi_{12} & \quad \pi_{13} & \quad \pi_{14} & \quad \pi_{15} & \quad \ldots \\
\pi_{21} & \quad \pi_{22} & \quad \pi_{23} & \quad \pi_{24} & \quad \pi_{25} & \quad \ldots \\
\pi_{31} & \quad \pi_{32} & \quad \pi_{33} & \quad \pi_{34} & \quad \pi_{35} & \quad \ldots \\
\pi_{41} & \quad \pi_{42} & \quad \pi_{43} & \quad \pi_{44} & \quad \pi_{45} & \quad \ldots \\
\pi_{51} & \quad \pi_{52} & \quad \pi_{53} & \quad \pi_{54} & \quad \pi_{55} & \quad \ldots \\
\end{align*}
\]

\(\pi_j \sim \text{Dirichlet}\)
Beta Process – Bernoulli Process
The Model

The BP-HMM

The BP-HMM model consists of features $k = 1, \ldots, \infty$ connected to ω_k, which in turn is connected to θ_k. The parameter α and γ are used to connect these elements. The time series $i = 1, \ldots, N$ is connected to $\pi^{(i)}$, $\eta^{(i)}$, $z^{(i)}_1$, $z^{(i)}_2$, \ldots, $z^{(i)}_t$, \ldots, $z^{(i)}_{T_i}$, and $y^{(i)}_1$, $y^{(i)}_2$, \ldots, $y^{(i)}_t$, \ldots, $y^{(i)}_{T_i}$.
Outline

1. The Problem
2. The Model
3. The Data
4. The Results
5. Conclusions
The DIEM Project

- Project led by John Henderson (UC Davis)
- Overview: https://thediemproject.wordpress.com/
- Examples: https://vimeo.com/visualcognition/
- Data: https://www.mediafire.com/?mpu3ot0m2o384
Technical Details

- 85 Video Clips
- Sports, TV Shows, Advertisements, Viral Videos, etc.
- Varying sizes and lengths
- > 250 total participants
- Many viewers per clip (over 100 for some clips)

- Eyelink 2000, 1000Hz for each eye (down-sampled to 30Hz)
- 21” Viewsonic Monitor at 1280 × 960, 120Hz
- Observers at 90cm; using chin and headrest
 - Task was to rate enjoyment of the clip
- 10 Video Clips
- 10 Observers Each
Outline

1. The Problem
2. The Model
3. The Data
4. The Results
5. Conclusions
Distribution of Features
The Results

Features
Fixations

Maximum Distance from Onset
- $\mu = 0.370^\circ$
- $\sigma = 0.367^\circ$

Maximum Speed
- $\mu = 6.982^\circ$/s
- $\sigma = 2.329^\circ$/s

Duration
- $\mu = 0.289$ s
- $\sigma = 0.305$ s
The Results

Saccades

Maximum Distance from Onset
- $\mu = 2.716^\circ$
- $\sigma = 1.943^\circ$

Maximum Speed
- $\mu = 90.861^\circ/s$
- $\sigma = 61.828^\circ/s$

Duration
- $\mu = 0.042\ s$
- $\sigma = 0.017\ s$

Houpt & Frame (Wright State)
The Results

Glissades?

- Maximum Distance from Onset:
 - $\mu = 0.745$ s
 - $\sigma = 0.728$ s

- Maximum Speed:
 - $\mu = 23.190$ s
 - $\sigma = 16.242$ s

- Duration:
 - $\mu = 0.083$ s
 - $\sigma = 0.081$ s
Feature Transitions

Forward

<table>
<thead>
<tr>
<th>From</th>
<th>Fix</th>
<th>Scd</th>
<th>Gls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fix</td>
<td>0.70</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Scd</td>
<td>0.55</td>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td>Gls</td>
<td>0.90</td>
<td>0.10</td>
<td></td>
</tr>
</tbody>
</table>
The Results

Feature Transitions

<table>
<thead>
<tr>
<th></th>
<th>Fix</th>
<th>Scd</th>
<th>Gls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>Fix</td>
<td>0.70</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>Scd</td>
<td>0.55</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>Gls</td>
<td>0.90</td>
<td>0.10</td>
</tr>
<tr>
<td>Backward</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>Fix</td>
<td>0.42</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>Scd</td>
<td>0.91</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Gls</td>
<td>0.45</td>
<td>0.54</td>
</tr>
</tbody>
</table>
The Results

Correspondence with Eyelink Parsing

<table>
<thead>
<tr>
<th></th>
<th>Fixation</th>
<th>Saccade</th>
<th>Glissade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixation</td>
<td>0.88</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>Saccade</td>
<td>0.44</td>
<td>0.45</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Outline

1. The Problem
2. The Model
3. The Data
4. The Results
5. Conclusions
Data driven discrimination of eye-movement patterns

- Across multiple videos and observers
- A statistical model (i.e., we have a distribution over parse and parameters)
- Described 100 time series with 3+ features
- Based on limited data (30Hz rather than 1000Hz)
- Features are similar to a priori categories: fixations, saccades, and glissades.
Data driven discrimination of eye-movement patterns
- Across multiple videos and observers
- A statistical model (i.e., we have a distribution over parse and parameters)
- Described 100 time series with 3+ features
- Based on limited data (30Hz rather than 1000Hz)
- Features are similar to a priori categories: fixations, saccades, and glissades.

Future: Parse based on more information (particularly location)
Data driven discrimination of eye-movement patterns

- Across multiple videos and observers
- A statistical model (i.e., we have a distribution over parse and parameters)
- Described 100 time series with 3+ features
- Based on limited data (30Hz rather than 1000Hz)
- Features are similar to a priori categories: fixations, saccades, and glissades.

Future: Parse based on more information (particularly location)

Thank you!

This work was supported by
AFOSR Grant FA9550-13-1-0087
The Analysis in Motion Initiative at Pacific Northwest National Laboratory