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A New Perspective on Visual Word Processing Efficiency

Joseph W. Houpta,1,∗, James T. Townsenda, Christopher Donkinb

aDepartment of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
bSchool of Psychology, The University of New South Wales, Sydney, NSW 2052, Australia

Abstract

As a fundamental part of our daily lives, visual word processing has received much attention in the psychological
literature. Despite the well established advantage of perceiving letters in a word or in a pseudoword over letters alone
or in random sequences using accuracy, a comparable effect using response times has been elusive. Some researchers
continue to question whether the advantage due to word context is perceptual. We use the capacity coefficient, a well
established, response time based measure of efficiency to provide evidence of word processing as a particularly efficient
perceptual process to complement those results from the accuracy domain.
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As a fundamental part of our daily lives, visual word1

processing has received much attention in the psycholog-2

ical literature. However, the interest in visual word per-3

ception extends beyond its value in communication. The4

written word is a complex stimulus with which most adults5

have a large amount of experience. Unlike faces, there is6

no reason to believe we have any innate ability to perceive7

words. Thus, word perception may represent the limit of8

perceptual learning in the absence of innate ability.9

Due to the relative ease with which most adults read,10

it is reasonable to assume that word perception is an ef-11

ficient process. This is further supported by the intuition12

that with more experience with a process we become more13

efficient and we are quite experienced with the written14

word. Often, the efficiency is measured using single letter15

perception as a base line. When word context offers an16

advantage in the accuracy or processing time of perceiv-17

ing a letter, this supports the claim that word perception18

is efficient.19

From the early days of experimental psychology, re-20

searchers have been interested in the value of a word con-21

text for perceiving letters. In one study, letters were dis-22

played sequentially to participants at faster and faster rates23

until they could no longer correctly identify the letters.24

They found that participants maintained accuracy with25

shorter durations when the letters were presented as part26

of a word compared with random letter sequences (Cattell,27

1886).28
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One problem with studies of this nature is that they do29

not control for the fact that forcing a string to be a word30

constrains the number of possible letters in the string.31

Hence, it is not clear from those early results whether the32

advantage is a perceptual advantage or a decisional advan-33

tage. For example, if the last letter of a four letter word34

is “h”, then the second to last is most likely an “s”, “t”35

or “c.” Thus, there is redundant information about the36

identity of the second to last letter: both the perceptual37

information about the shape of that letter and the deci-38

sional information about the letter conditioned on the last39

letter being an “h.” If random letter strings are used, there40

is no longer the same constraint on the likely identity of41

the second to last letter: “x” is just as likely as “s” so the42

only information is the perceptual information about the43

second to last letter.44

In the late 1960’s an alternative task was designed to45

eliminate the decisional advantage of word context so as46

to examine the perceptual effects. In this task a letter47

or word was tachistoscopically displayed to a participant.48

Participants then chose from two possible choices, one of49

which was correct. In the letter condition, the choices50

were letters. In the word condition, both choices were51

words that differed in only a single letter. This design is52

depicted in Figure 1. Since both alternatives were words,53

the word context was no longer informative as to the iden-54

tity of the letter. Participants were still more accurate55

at perceiving letters in the word condition than the letter56

condition (Reicher, 1969). Furthermore, they found that57

participants are also more accurate when identifying let-58

ters in words than random letter sequences. This is known59

as the word superiority effect.60

In a follow-up paper, Wheeler (1970) falsified a num-61

ber of alternative explanations for the word superiority62

effect. One possible explanation that Wheeler tested was63

Preprint submitted to Acta Psychologica December 17, 2013



Figure 1: An example trial in the Reicher (1969) task. The par-
ticipant initiated stimulus onset and the presentation time was cali-
brated such that participants had 90% accuracy.

that the fact that response choices in the Reicher task were64

letters, the choices may interfere more with letter stimuli65

than word stimuli. That interference could lead to worse66

performance when the stimuli were letters, and hence re-67

sult in a word superiority effect. Although Wheeler found68

evidence for interference from the response choices, when69

the responses were delayed long enough such that there70

was no longer an effect of increased delay there was still71

a word superiority effect. In the task described below, we72

use a different method to eliminate this alternative: We73

use word responses to word stimuli and letter response74

to letter stimuli. A second possible explanation Wheeler75

tested, which also foreshadows our experimental design, is76

that people may focus their attention on only the positions77

within a word that disambiguate that word with its ortho-78

graphic neighbors. For example, the word “wren” can be79

morphed into “when” by changing the second letter, but80

cannot be changed into another word by changing the last81

letter. Like Wheeler, we use words that can be morphed82

into another word by a single letter change in any position83

within the word.84

An efficiency gain of context over letters alone is not85

unique to words. If a sequence of letters conformed to the86

pronunciation rules of English (pseudoword), then partic-87

ipants were again more accurate than letters alone (e.g.,88

McClelland & Johnston, 1977; Carr et al., 1978). This is89

the pseudoword superiority effect. Researchers have even90

found a superiority effect for familiar acronyms and ini-91

tialisms such as DVD (Laszlo & Federmeier, 2007), how-92

ever unfamiliar sequences of letters tend to be as bad or93

perhaps worse than letters alone (e.g., Reicher, 1969).94

Despite the robustness of the word and pseudoword su-95

periority effects, a comparable effect using response times96

(and controlling for decisional information due to context)97

has been elusive. In many studies, response times were98

not recorded or at least not reported (e.g., Estes & Brunn,99

1987; Allport, 2009; Ferraro & Chastain, 1997).2 Wheeler100

(1970), for example, found that response times to words101

were slower than response times to letters, regardless of102

whether responses were correct or incorrect. The absence103

of a response time word superiority effect may be in part104

explained by the possibility that people will read an en-105

tire word even if the task does not require it. Indeed,106

the concept that words are always fully read has been put107

forth as further evidence that word perception is special108

(LaBerge & Samuels, 1974). One of the goals of this paper109

is to demonstrate a response time based word superiority110

effect, and possibly a pseudoword superiority effect as well.111

The word superiority effect has another limitation, it112

has only been found with stimulus masking. When the113

stimulus screen is followed by a blank screen, letters can114

be identified with the same accuracy whether the letters115

were alone or in a word context (Johnston & McClelland,116

1973; Massaro & Klitzke, 1979).117

Even in the accuracy domain, some researchers con-118

tinue to question whether there is a perceptual advantage119

due to word context. For example, Pelli et al. (2003)120

demonstrated evidence for a model of word perception in121

which letters are perceived independently and with sep-122

arate detection decisions on each letter. Their evidence123

comes from comparing the efficiency of word perception124

as the number of letters in the word increases. Depic-125

tions of longer words have more information about their126

identity, since the more letters that are known, the fewer127

possibilities there are for the others. Hence, if a person128

is able to take advantage of this global information, they129

should need less per letter information as the number of130

letters increases. However, a model of word perception131

based on independent, separate decisions on the letters132

predicts that as the word length increases, the reader will133

still need the same amount of information per letter to134

maintain accuracy. In fact participants did need roughly135

the same amount of per letter information as the number136

of letters increased, supporting the latter model.137

Pelli et al. (2003) were not the first to propose an in-138

dependent parallel processing model for word perception.139

Massaro (1973) and Estes (1975), for example, proposed140

models in which letters are independently recognized dur-141

ing an initial stage, then word level information is used in142

a second stage. The second stage of processing accounts143

for the word superiority effect without appealing to de-144

pendence among the perception of the letters in the early145

stage and without any word to letter level feedback.146

In the next section we describe the capacity coefficient,147

a response time based measure of efficiency. We propose148

that this measure, along with a task that controls for both149

the available information and possibly mandatory word150

2Krueger (1970) found that participants were faster at searching
for target letters in words than letters; however, the search task in
which participants are focused on a particular letter differs signifi-
cantly from the Reicher-Wheeler discrimination tasks.
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reading, provides evidence of word processing as a partic-151

ularly efficient process to complement and extend those152

results from the accuracy domain.153

0.1. The Capacity Coefficient154

The capacity coefficient, C(t), is a response time based155

measure of the effect of increased load on processing effi-156

ciency (Townsend & Nozawa, 1995; Townsend & Wenger,157

2004; Houpt & Townsend, 2012). Specifically, C(t) is a158

measure of the change in processing rates as the task re-159

quires attention to more targets, or possibly more dimen-160

sions of a single target. The basic idea of the measure is161

to compare response times when performing a task with162

all parts of the stimulus present to the times that would163

be predicted if each part is processed in parallel, with no164

difference in speed whether they are alone or with other165

parts. In terms of word perception, the baseline model for166

comparison assumes that letters are identified equally as167

fast when alone or in a word context and, when the letters168

are in words, they are perceived in parallel. We will refer169

to this baseline model as the standard parallel model.170

The capacity function for an exhaustive task is de-
fined using the cumulative reverse hazard function, K(t) =
lnF (t);F (t) = P{RT ≤ t}, and is similar to the cumula-
tive hazard function used in survival analysis (cf. Chechile,
2011). If Kc1 is the cumulative reverse hazard for the first
character response times, Kc2 is the cumulative reverse
hazard for the second character, etc., and KS is the cumu-
lative reverse hazard for the string condition, the capacity
coefficient is given by,

C(t) =

[∑4
i=1Kci

]
KS

. (1)

More details on the motivation for this particular form and171

its connection to the baseline model are given in Appendix172

A.173

Interpretation of the capacity coefficient is based on the174

participant’s performance relative to the standard paral-175

lel model baseline. If a person performs better than the176

standard parallel model, C(t) > 1, their performance is177

referred to as super-capacity. This may happen if there178

is facilitation of perception between characters. Perfor-179

mance worse than the standard parallel model, C(t) < 1,180

is limited capacity. Inhibition between characters or se-181

rial processing of each character individually would lead182

to limited capacity. When performance is about the same183

as the standard parallel model, C(t) ≈ 1, then we refer to184

it as unlimited capacity.185

Houpt & Townsend (2012) developed a null-hypothesis-186

significance test for workload capacity analysis. If the null187

hypothesis that the capacity coefficient is equal to one (un-188

limited capacity) is true then the test statistic will have a189

standard normal distribution. Conclusions about the ca-190

pacity coefficient for each individual can be made using a191

z-test and group level hypothesis can be tested by appro-192

priately combining individuals’ statistics. Despite the fact193

that the capacity coefficient and thus the Houpt-Townsend194

statistic are nonparametric, the statistic is quite powerful.195

Furthermore, because the measure is not based on par-196

ticular distribution of the underlying processes, the con-197

clusions are quite general. Further details of the capacity198

coefficient are included in Appendix A.199

1. Experiment 1200

1.1. Method201

To properly compare perceptual efficiency across words,202

pseudowords, nonwords, upside-down nonwords and unfa-203

miliar characters, our task must eliminate the extra in-204

formation available given a word context. Furthermore,205

the possibility that words are exhaustively processed au-206

tomatically may lead to a disadvantage for words on re-207

sponse time measures. To address these issues, we adapted208

a task from Blaha (2010) which forces exhaustive process-209

ing of the characters in a string using an approach similar210

to Baron & Thurston (1973). This experiment consists of211

two components. First, we measure the participants’ re-212

sponse times to correctly identifying the target string. To213

ensure exhaustive processing, i.e., that participants base214

their identification on the entire string and not any subset,215

we include a distractor of a string with a single character216

different in each position in the string. For example if the217

target is “care” then “bare,” “cure,” “cave” and “card”218

are used as distractors (see Table 1). Second, the partici-219

pants distinguish between letters in isolation. Whereas in220

the exhaustive case the participant needed to distinguish221

between “bare” and “care,” we now only require them to222

distinguish between “b” and “c.” The response times on223

these tasks are used for computing the predicted perfor-224

mance of the standard parallel model.225

1.1.1. Participants226

Participants were recruited from the Indiana Univer-227

sity population. Eight females and two males participated228

in this study, all of whom were native English speakers and229

reported that they did not read or speak Japanese. Their230

ages ranged from 19-34. All participants reported having231

normal or corrected to normal vision, no difficulty reading232

English, and no prior diagnoses of a reading disorder.233

1.1.2. Stimuli234

Table 1 gives the complete list the stimuli used for both235

the single character and exhaustive trials for each type.3236

There were five types of stimuli used: words, pronounce-237

able nonwords (pseudowords), unpronounceable nonwords,238

upside-down unpronounceable nonwords, and strings of239

Katakana characters. All strings used were four characters240

3The use of only one target stimulus per version facilitated the
modeling, but in future it will be important to test these effects with
a variety of target strings.
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Target Distractors Single Character
Word care bare cure cave card c b a u r v e d
Pseudoword lerb nerb larb lemb lerf l n e a r m b f
Non-Word rlkf vlkf rtkf rlhf rljk r v l t k h f k
Upside-down

rlkf vlkf rtkf rlhf rljk r v l t k h f k

Katakana サイクオ ヘイクオ サナクオ サイフオ サイクノ サ ヘ イ ナ ク フ オ ノ

Table 1: Full set of stimuli used for capacity analysis.

long. Word frequency counts (based on Kucera & Fran-241

cis, 1967) are listed in Appendix B. Pseudowords were242

taken from the ARC Nonword Database (Rastle et al.,243

2002). The neighborhood size and summed frequency of244

the neighbors for each of the pseudowords are also included245

in Appendix B.246

Strings and characters were presented in black Courier247

font on a gray background. Each character subtended248

roughly 0.33◦ degrees of visual angle horizontally and be-249

tween 0.3◦ and 0.45◦ vertically. Strings subtended 1.5◦250

horizontally.251

1.1.3. Procedure252

All experimental conditions were run using DMDX ver-253

sion 2.9.06 developed at Monash University and at the Uni-254

versity of Arizona by K.I.Forster and J.C.Forster. Stimuli255

were presented on a 17” Dell Trinitron CRT monitor run-256

ning in 1024x720 mode. Participants used a two-button257

mouse for their responses.258

Participants were paid $8 per session, and received a259

$20 bonus upon completion of all 10 sessions. Each ses-260

sion lasted between 45 and 60 minutes and was dedicated261

to one of the five types of stimuli (e.g., word, pseudoword,262

. . . ), so there were two sessions of each type. At the begin-263

ning of each session, we read the participant the general264

instructions for the task while those instructions were pre-265

sented on the screen. The instructions encouraged partic-266

ipants to respond as quickly as possible while maintaining267

a high level of accuracy. Each session was divided into five268

blocks, one block of string stimuli and a block for each of269

the corresponding single character stimuli.270

Each block began with a screen depicting the button271

corresponding to each of the categories. An example in-272

struction screen is shown in Figure 3. Participants had273

40 practice trials, 20 of each category. Next, participants274

were given 240 trials divided evenly between the two cate-275

gories, the first 40 of which were not used in the analysis.276

The trial structure is show in Figure 2. Each trial began277

with a 300 ms presentation of a fixation cross. After a278

random delay (300-600 ms), the stimulus was presented279

for 80 ms. Participants had a maximum of 2500 ms to280

respond. If the participant responded correctly, the next281

trial started after a 400 ms delay. If the participant re-282

sponded incorrectly, a tone was played during the 400 ms283

delay. The session order was counterbalanced among the284

participants so that participants completed the different285

types on different days and in different orders.286

Figure 3: Example instruction screen indicating that the participant
should click left if they see care and right if they see bare, cure, cave,
or card.

1.1.4. Analysis287

All data were analyzed using R statistical software (R288

Development Core Team, 2011). We computed a repeated289

measures ANOVA of the correct target response times in290

each condition using the ez package (Lawrence, 2012) and291

capacity analyses were completed using the sft package292

(Houpt et al., 2013).293

A repeated measures ANOVA on the string response294

times (top left of Figure 4) indicated a crossover inter-295

action between version and target/distractor (F (4, 36) =296

20.5, p < 0.05, η2G = 0.044) and a significant effect of ver-297

sion on response time (F (4, 36) = 22.6, p < 0.05, η2G =298

0.49) but not a main effect of target/distractor (F (1, 9) =299

0.685, p = 0.43). Post-hoc analysis on target response300

times was done with repeated measures ANOVA on each301

pair of versions of the task. Using Bonferroni correc-302

tion (α = 0.05/20 = 0.0025), the following comparisons303

were significant: Word versus Upside-Down (F (1, 9) =304

50.85, p < 0.0025, η2G = 0.529); Word versus Katakana305

(F (1, 9) = 57.56, p < 0.0025, η2G = 0.697); Pseudoword306

versus Upside-Down (F (1, 9) = 34.8, p < 0.0025, η2G =307

0.438); Pseudoword versus Katakana (F (1, 9) = 53.9, p <308

0.0025, η2G = 0.643); Random versus Katakana (F (1, 9) =309

22.1, p < 0.0025, η2G = 0.398).310

The ANOVA on the string condition accuracy (bottom311

left side of Figure 4) indicated that there was an inter-312

action between version and target/distractor (F (4, 36) =313

3.69, p < 0.05, η2G = 0.079) and main effects of both version314

(F (4, 36) = 3.64, p < 0.05, η2G = 0.11) and target/distractor315

(F (1, 9) = 17.6, p < 0.05, η2G = 0.081). Both the interac-316
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Figure 2: Trial structure for Experiment 1. Trials began with a fixation cross, followed by a blank screen. After a brief, random delay the
probe appeared for 80 milliseconds. The probe was followed by a blank screen. Instructions indicating the probe and distractors were given
at the beginning of each block.
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tion (W = 0.072, p < 0.05) and the main effect of version317

(W = 0.033, p < 0.05) failed Mauchly’s test of spheric-318

ity and only the interaction effect was significant after a319

Greenhouse-Geisser correction (GGe = 0.518, p < 0.05),320

not version (GGe = 0.376, p = 0.065). The effects may be321

driven entirely by the accuracy on the distractors because322

there is no significant effect of version when the analysis323

is limited to the hit rate (F (4, 36) = 0.411, p = 0.31).324

We found a similar pattern with the single charac-325

ter conditions (right side of Figure 4). There was a sig-326

nificant effect of version on response time (F (4, 36) =327

4.64, p < .05, η2G = 0.089), but the main effect of tar-328

get/distractor (F (1, 9) = 0.424, p = 0.53) and the inter-329

action (F (4, 36) = 0.335, p = 0.85) were not significant.330

Post-hoc analysis on target response times was done us-331

ing repeated measures ANOVA on each pair of versions.332

Using Bonferroni correction (α = 0.05/20 = 0.0025, the333

only significant differences in response times were between334

the letters in the pseudoword and upside-down versions335

(F (1, 9) = 20.27, p < 0.0025, η2G = 0.098) and pseudoword336

and Katakana versions (F (1, 9) = 20.0, p < 0.0025, η2G =337

0.092). The other test results were as follows: Word ver-338

sus pseudoword (F (1, 9) = 0.104, p = 0.754); Word versus339

Random (F (1, 9) = 3.29, p = 0.103); Word versus Upside-340

Down (F (1, 9) = 7.55, p = 0.023); Word versus Katakana341

(F (1, 9) = 8.40, p = 0.018); Pseudoword versus Random342

(F (1, 9) = 7.07, p = 0.026); Random versus Upside-Down343

(F (1, 9) = 0.0045, p = 0.948); Random versus Katakana344

(F (1, 9) = 0.592, p = 0.461). There were not significant ef-345

fects on accuracy of version (F (4, 36) = 0.433, p = 0.784),346

target/distractor (F (1, 9) = 4.55, p = 0.062) and there was347

no significant interaction (F (4, 36) = 1.28, p = 0.295).348

Individual capacity coefficients are shown in Figure 5.349

z-scores for individual and group data, using the statistic350

in Houpt & Townsend (2012) are shown in Table 2. Each351

z-score indicates a test of the null-hypothesis that a partic-352

ipant performs equally to a standard parallel model. Sig-353

nificance values are based on a two-sided test. Nearly all354

participants are significantly different from standard par-355

allel, usually better in the word and pseudoword versions356

and worse in the Random, Upside-Down and Katakana357

versions.358

Using repeated measures ANOVA, we found a signif-359

icant effect of version on capacity (F (4, 36) = 22.64, p <360

0.05, η2G = 0.58). For post-hoc analyses, we used the z-361

scores resulting from the mean difference between subjects’362

capacity z-scores in each pair of version of the task. Word363

capacity was significantly higher than pseudoword capac-364

ity (z = 7.27, p < 0.0025), random letter capacity (z =365

22.9, p < 0.0025), upside-down capacity (z = 36.7, p <366

0.0025), and Katakana capacity (z = 45.9, p < 0.0025).367

Pseudoword capacity was significantly higher than ran-368

dom letter capacity (z = 15.6, p < 0.0025), upside-down369

capacity (z = 29.4, p < 0.0025), and Katakana capacity370

(z = 38.6, p < 0.0025). Random letter capacity was higher371

than upside-down capacity (z = 13.8, p < 0.0025), and372

Katakana capacity (z = 22.9, p < 0.0025). Upside-down373

capacity was significantly higher than Katakana capacity374

(z = 9.19, p < 0.0025).375

1.2. Discussion376

Participants responded faster to words and pseudowords377

than to upside-down nonwords and Katakana strings, fol-378

lowing a word and pseudoword superiority effect respec-379

tively. However, the comparisons between response times380

to words and response times to nonwords and pseudowords381

were not significant, and thus do not indicate superiority382

effects.383

One possible explanation of the basic string response384

time results is that the individual characters were more385

difficult to process when they were unfamiliar or upside-386

down. Even the trend toward faster performance on words387

compared to nonwords could be due to differences in the388

speed with which the particular letters are processed: Words389

tend to contain more common letters and include vow-390

els, compared to unpronounceable random letter sequences391

and more common letters are perceived faster than less392

common letters (Appelman & Mayzner, 1981).393

Herein lies the advantage of the capacity coefficient.394

By design, the measure accounts for the processing time395

of each character in measuring the performance of the396

string. Despite accounting for faster processing with let-397

ters than unfamiliar or upside-down characters, the capac-398

ity results still indicate word and pseudoword superiority399

over Katakana and upside-down strings. Furthermore, un-400

like the raw response time data, the capacity coefficient401

indicates word and pseudoword superiority over random402

letter sequences.403

Figure 5 and Table 2 show that there are also superior-404

ity effects for words and pseudowords over individual let-405

ters, i.e., assuming parallel processing of characters, par-406

ticipants were slower when the characters were presented407

in isolation rather than in a string. In contrast, capacity408

for upside-down and Katakana was limited.409

Finding word and pseudoword superiority effects with410

response times, by using workload capacity analysis, is no-411

table because the superiority effects have only been re-412

ported in accuracy in the past. Furthermore, the accu-413

racy superiority effects are dependent on post stimulus414

masking. We have demonstrated a clear superiority of415

words and pseudowords over single characters, random let-416

ter strings, upside-down strings and unfamiliar characters417

without any masking.418

Results from Experiment 1 demonstrate that the ca-419

pacity coefficient can be used to find a more robust word420

and pseudoword superiority effects than the traditional421

Reicher-Wheeler paradigm. With Experiment 2, we ver-422

ify that the response time superiority effects will hold up423

in this design when there is post-stimulus masking, as in424

the original paradigm. Additionally, in Experiment 1, the425

participants were only shown the instruction screen once,426

at the beginning of a block. Thus, differences in perfor-427

mance may be due to differences in ability to remember428
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Figure 5: Capacity coefficients for Words, Pseudowords, Random letters, Upside-down random letters and Katakana in Experiment 1.
Grey lines indicate individual participants’ capacity coefficients and the thick line indicates the average function across participants. The
capacity coefficients for each participant are only plotted in regions where reasonable estimates are possible based on individual response time
distributions.

Word Pseudoword Random Upside-Down Katakana
1 9.97∗∗∗ 3.92∗∗∗ 7.19∗∗∗ −2.62∗∗ −4.43∗∗∗

2 11.92∗∗∗ 4.44∗∗∗ −0.73 −5.95∗∗∗ −10.02∗∗∗

3 8.19∗∗∗ −6.29∗∗∗ −6.88∗∗∗ −10.88∗∗∗ −12.34∗∗∗

4 0.13 −3.38∗∗∗ −7.34∗∗∗ −6.60∗∗∗ −10.58∗∗∗

5 0.79 10.70∗∗∗ −2.36∗ −6.27∗∗∗ −6.86∗∗∗

6 7.34∗∗∗ 5.19∗∗∗ 10.61∗∗∗ −2.58∗∗ −11.99∗∗∗

7 9.34∗∗∗ 3.25∗∗ −2.27∗ −2.49∗ −5.78∗∗∗

8 7.17∗∗∗ 7.84∗∗∗ 4.68∗∗∗ 2.86∗∗ −1.79
9 5.71∗∗∗ 13.34∗∗∗ −8.43∗∗∗ −9.52∗∗∗ −7.37∗∗∗

10 3.88∗∗∗ 2.45∗ −2.46∗ −7.44∗∗∗ −9.40∗∗∗

Group 20.38∗∗∗ 13.11∗∗∗ −2.52∗ −16.28∗∗∗ −25.47∗∗∗

Table 2: Workload capacity statistics for each participant in each version of the task in Experiment 1. Under the null hypothesis the limit
distribution of the statistic has a standard normal distribution. Significance levels of z-tests are indicated by: ∗ ∗ ∗ : p < 0.001, ∗∗ : p <
0.01, ∗ : p < 0.05.
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the target–response mapping across string type. In Exper-429

iment 2, we display the instruction screen on every trial. A430

final potential issue with Experiment 1 is the use of lower431

case letters. Words with lower case letters can vary more in432

their global shape than those with only upper case letters433

(e.g., “BARD” and “CARE” versus “bard” and “care”).434

This can bias a participant to use global shape information435

in distinguishing between letter strings. In Experiment 2,436

we use the same letter strings, but in upper case.437

2. Experiment 2438

2.1. Method439

2.1.1. Participants440

As in Experiment 1, participants were recruited from441

the Indiana University population. Ten females and 2442

males participated in this study, all of whom were native443

English speakers and reported that they did not read or444

speak Japanese. Their ages ranged from 19-34. All par-445

ticipants reported having normal or corrected to normal446

vision, no difficulty reading English, and no prior diag-447

noses of a reading disorder. None of the participants from448

Experiment 1 participated in Experiment 2.449

2.1.2. Stimuli450

The stimuli were essentially the same as those used in451

the Word, Pseudoword and Random versions in Experi-452

ment 1, except with capital letters. Because the main ef-453

fects of interest are the Word, Pseudoword, and Random454

versions, we did not run the Upside-down and Katakana455

versions in Experiment 2.456

2.1.3. Procedure457

Unlike Experiment 1, the stimuli were immediately fol-458

lowed by a mask made of Xs and Os overlayed in each po-459

sition that a letter was shown (following Reicher, 1969).460

To allow participants to maintain high accuracy despite461

the mask, we increased the stimulus presentation time to462

100 ms, which we chose based on pilot data. The trial463

structure is shown in Figure 6.464

2.2. Results465

Response times in the string condition (top left of Fig-466

ure 7), showed was a significant effect of version (F (2, 22) =467

12.6, p < 0.05, η2G = 0.25) and a significant interaction be-468

tween version and target/distractor (F (2, 22) = 6.36, p <469

0.05, η2G = 0.0046), both of which failed Mauchley’s Test470

for Sphericity (Version: W = 0.194, p < 0.05; Interac-471

tion: W = 0.532, p < 0.05) but both remained significant472

after a Greenhouse-Geisser correction (Version: GGe =473

0.554, p < 0.05; InteractionGGe = 0.532, p < 0.05). There474

was not a significant main effect of target/distractor (F (1, 11) =475

0.177, p = 0.68).476

There were also significant effects on accuracy in the477

string condition (bottom left of Figure 7). Both main478

effects were significant (Version: F (2, 22) = 14.42, p <479

0.05, η2G = 0.41; Target/Distractor: F (1, 11) = 12.6, p <480

0.05, η2G = 0.072) as was the interaction (F (2, 22) = 5.33, p <481

0.05, η2G = 0.033). Again, both version and the interaction482

failed test for sphericity (Version: W = 0.132, p < 0.05;483

Interaction: W = 0.531, p < 0.05) but remained signif-484

icant after correction (Version: GGe = 0.536, p < 0.05;485

Interaction: : GGe = 0.536, p < 0.05).486

After Bonferroni correction (α = 0.05/3 = 0.0167), all487

but one of the pairwise comparisons on the target data488

were significant, the comparison of response times in the489

Word and Pseudoword versions (F (1, 11) = 6.49, p = 0.027).490

Accuracy comparisons: Word versus Pseudoword (F (1, 11) =491

20.0, p < 0.0167, η2G = 0.374); Word versus Random (F (1, 11) =492

20.12, p < 0.0167, η2G = 0.475); Pseudoword versus Ran-493

dom (F (1, 11) = 13.23, p < 0.0167, η2G = 0.293). Response494

time comparisons: Word versus Random (F (1, 11) = 19.5, p <495

0.0167, η2G = 0.302), Pseudoword versus Random (F (1, 11) =496

13.0, p < 0.0167, η2G = 0.202).497

In the single character condition (right side of Fig-498

ure 7), there were no significant response effects of tar-499

get/distractor (F (1, 11) = 0.413, p = 0.53), version (F (2, 22) =500

1.59, p = 0.23) nor any significant interaction (F (2, 22) =501

1.15, p = 0.33). There was a significant effect of version502

on response time (F (2, 22) = 3.48, p < 0.05) but neither503

target/distractor (F (1, 11) = 0.187, p = 0.67) nor the in-504

teraction were significant (F (2, 22) = 0.0731, p = 0.93).505

Individual capacity coefficients are shown in Figure 8506

and z-scores for individual and group data are shown in507

Table 3. Nearly all participants are significantly better508

than the standard parallel model in the word and pseu-509

doword versions. In the random letter condition, half of510

the participants did not have high enough accuracy to ap-511

ply the capacity coefficient. The accuracy results for these512

participants indicate limited capacity because the pseu-513

doword string condition had particularly low accuracy at514

the group level while the letter level accuracy was not sig-515

nificantly different from the other letter conditions. In516

fact, all participants except 10 and 11 had worse perfor-517

mance on the random letters strings than would be pre-518

dicted by independent identification of each letter.4 How-519

ever, of those participants that had high enough accuracy,520

four had significantly super-capacity performance at the521

α = 0.05 level.5522

4This was measured using an accuracy analog to the capacity
coefficient: To be correct on the string, one must correctly iden-
tify each character. Independent (and unlimited capacity) process-
ing would lead to P{CorrectS} = P{Correctc1} × P{Correctc2} ×
P{Correctc3} ×P{Correctc4} where S is the string and ci is the ith
character.

5An alternative, parametric approach for measuring capacity is
given in Eidels et al. (2010) that accounts for both response time
and accuracy differences. We attempted to fit their model for an-
alyzing these data but there were too few condition across which
we could constrain parameters, leading to unreliable parameter es-
timates. Townsend & Altieri (2012) provide a generalized capacity
coefficient accounting for both accuracy and response time, although
we chose not to include it here because it currently lacks a methods
for statistical hypothesis testing.
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Figure 6: Trial structure for Experiment 2. Trials began with a fixation cross, followed by a blank screen. After a brief, random delay
the probe appeared for 100 milliseconds. A mask was presented immediately following the probe. Instructions indicating the target and
distractors were given before each trial.
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Figure 8: Capacity coefficients for Words, Pseudowords, and Random letters in Experiment 2. Grey lines indicate individual participants’
capacity coefficients and the thick line indicates the average function across participants. The capacity coefficients for each participant are
only plotted in regions where reasonable estimates are possible based on individual response time distributions.

Word Pseudoword Random
1 6.01∗∗∗ 4.44∗∗∗ NA
2 9.64∗∗∗ 2.60∗∗ −0.07
3 7.75∗∗∗ 12.6∗∗∗ NA
4 7.74∗∗∗ 9.49∗∗∗ 5.44∗∗∗

5 4.31∗∗∗ 7.03∗∗∗ NA
6 13.5∗∗∗ 9.06∗∗∗ 0.79
7 5.23∗∗∗ 5.72∗∗∗ NA
8 9.66∗∗∗ 11.0∗∗∗ 1.96∗

9 17.7∗∗∗ 15.3∗∗∗ 5.76∗∗∗

10 14.5∗∗∗ 11.3∗∗∗ 3.95∗∗∗

11 10.8∗∗∗ NA NA
12 −1.31 −2.66∗∗ NA
Group 30.5∗∗∗ 25.9∗∗∗ 7.28∗∗∗

Table 3: Workload capacity statistics for each participant in each
version of the task in Experiment 2. Capacity coefficients for partic-
ipants with lower than 80% accuracy on any of the single character
conditions or the string condition in a particular version were not
calculated. Under the null hypothesis the limit distribution of the
statistic has a standard normal distribution. Significance levels of
z-tests are indicated by: ∗ ∗ ∗ : p < 0.001, ∗∗ : p < 0.01, ∗ : p < 0.05.

Due to the missing capacity values, we performed a523

series of paired t-tests, in lieu of an ANOVA. With Bon-524

ferroni correction (α = .05/3 = .0167), word capacity525

was significantly higher than nonword capacity (t(5) =526

5.92, p < 0.0167) and pseudoword capacity was higher527

than nonword capacity (t(5) = 5.95, p < 0.0167), but word528

and pseudoword capacity were not significantly different529

(t(10) = 0.773, p = 0.458.530

2.3. Discussion531

In Experiment 2, all of the single characters were let-532

ters, so the lack of any significant effect of version on let-533

ter response time and accuracy is not surprising. The534

random letter version differs from other the two in that535

all of the characters are consonants, which may be pro-536

cessed slower or less accurate than vowels (Appelman &537

Mayzner, 1981), but there was no evidence of that dif-538

ference here. Instead, the capacity differences among the539

versions are due to the differences in response times in the540

string conditions. Words and pseudowords were processed541

faster than random letters and had higher capacity val-542

ues, consistent with Experiment 1 and the word and pseu-543

doword effects. Also in keeping with Experiment 1, words544

and pseudowords were super-capacity, indicating superior545

performance of the letters in those contexts over letter in546

isolation. Thus, even using masking and upper case let-547

ters and minimizing the reliance on memory, there is still548

a clear indication of the standard superiority effects.549

One unexpected result was that the random letter se-550

quences were also super-capacity for many participants,551

despite being significantly lower capacity than the word552

and pseudoword version. This may be due to the exten-553

sive practice participants had with the target string. Even554

consonant sequences can show superiority effects if they555

are highly familiar (Laszlo & Federmeier, 2007). Alter-556

natively, the generally lower accuracy in random version557

may explain the super-capacity, as the traditional capac-558

ity coefficient assumes high accuracy (this is why a half of559

the participants have NA listed in the Random column of560

Table 3: their accuracy was too low). Hence, participants561

may have weighed the relative importance of speed and562
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accuracy differently in each version, despite receiving the563

same instructions for each.564

3. General Discussion565

We demonstrated clear word and pseudoword superior-566

ity effects in response times using the capacity coefficient.567

This includes a superiority of letter perception in word568

and pseudoword contexts over letters alone and over letters569

embedded in random consonant sequences. Furthermore,570

unlike the standard accuracy based effect, these superior-571

ity effects are not dependent on the presence of a mask.572

By using response times, we can also draw conclusions573

about the structure of the perceptual processes that were574

not possible to determine based on the accuracy effect.575

Foremost, we have clearly rejected an unlimited capacity,576

independent, parallel processing (standard parallel) model577

of word and pseudoword perception; the models presented578

in Massaro (1973) and Pelli et al. (2003) are not consistent579

with the findings the results reported herein.580

To further explore the implications of the capacity co-581

efficient results, we examine each of the multiple plausi-582

ble explanations for those results. When the Houpt &583

Townsend (2012) z-test is significant, then at least one of584

the assumptions of the standard parallel model must have585

been violated. Note that each of these violations have586

been considered previously for explanations of the accu-587

racy based superiority effects.588

One assumption that may have been violated is that589

of independence. If there is any type of facilitation be-590

tween the letter processes, each letter would be processed591

faster within a word or pseudoword context which would592

explain the capacity coefficient values above one. There593

could be many explanations of this facilitation. For ex-594

ample, word processing mechanisms may in fact take ad-595

vantage of the considerable amount of co-occurrence be-596

tween letters in English. As is often observed, there are597

only a fraction of possible four letter combinations used598

for words and it would be surprising if we did not take599

some advantage of this reduction in uncertainty. This cor-600

relation between letters is an important part of how con-601

nectionist models explain the word superiority effect (Mc-602

Clelland & Rumelhart, 1981; Plaut et al., 1996; Coltheart603

et al., 2001). When the characters are less familiar, such604

as upside-down letters or Katakana characters, then their605

confusability may lead to inhibition among the perceptual606

processes and thus limited capacity.607

A related component of many visual word processing608

models is the phonological pathway (e.g., Coltheart et al.,609

2001). If a phoneme is activated as a possible interpre-610

tation of some letter combination, then it may in turn611

send positive feedback to those letters, speeding up their612

processing. Hence, a phonological component of visual613

word processing could also lead to capacity coefficient val-614

ues above one. Both the correlation between letters and615

the lack of a regular pronunciation of the nonwords imply616

that these predictions are consistent with lack of evidence617

against the standard parallel model of nonword process-618

ing. The phonological explanation is also supported by619

the evidence of a pseudoword superiority effect.620

Another assumption of the standard parallel model is621

that the letters are processed in parallel, with a separate622

detection of each letter. An alternative architecture that623

does predict capacity coefficient values above one is the624

coactive architecture (Townsend & Nozawa, 1995; Colo-625

nius & Townsend, 1997; Townsend & Wenger, 2004; Houpt626

& Townsend, 2012) which pools information from multiple627

parallel sources for single decision. By pooling activation628

from each of the letters when processing a word, the word629

is processed much faster than if each letter is processed630

separately. A coactive architecture in this sense can be631

thought of as an extreme version of a facilitatory paral-632

lel model, in which all activation in each of the letters is633

shared (Eidels et al., 2011). Many connectionist models of634

visual word perception assume a type of coactive architec-635

ture. In these models the activation accumulated in favor636

of a letter is immediately passed on to the word level. In637

this framework the type of parallel model assumed in the638

standard parallel would not pass on any activation until639

the letter process is complete. Similarly, a holistic model640

of word perception (e.g., Drewnowski & Healy, 1977) has641

a coactive form: information pooled for a single identifi-642

cation. There is some middle ground between these two643

extremes. One example is that of squelching suggested by644

Pelli et al. (2003). In this case, the activation from the645

letter process would only be passed on once it is above a646

certain threshold.647

The particularly low capacity for the upside-down and648

Katakana versions could be due to serial processing of the649

individual characters. With unfamiliar characters, partic-650

ipants may be forced to check each position in the string,651

one at a time. All else being equal, serial processing is652

much less efficient than parallel processing, so it leads to653

limited capacity. It is important to note that the word654

and pseudoword results are not necessarily inconsistent655

with serial processing, but for a serial model to predict656

capacity-values above one it would need to include large657

amounts of facilitation and/or require faster processing of658

individual characters as the number of characters increases659

(cf. Whitney, 2001).660

A coactive architecture could also lead to violations661

of the assumption of unlimited capacity, so that seemingly662

more resources are available to each component when more663

components are present. Capacity values above one imply664

that the participant dedicated more than four times the665

resources in the word task compared to the letter task:666

Each individual letter process in the word has at lease the667

resources available that were available when that letter668

was presented in isolation. In this sense the advantage is669

similar to chunking; when groups of letters are recognized670

as a single unit, the resources that would have been divided671

across two individual letter units can be dedicated to a672

single chunked unit. Participants probably do not have673

truly unlimited resources to dedicate to the task, there674
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is no doubt an upper limit on the number of letters a675

person can perceive at once, but having enough resources676

available to act super-capacity with four letters is not so677

unreasonable.678

In addition to the group level findings, there intriguing679

individual differences indicted in these data, particularly680

in word and pseudoword processing capacity. This finding681

mirrors results reported in accuracy based studies (e.g.,682

Reicher, 1969) and it will be an interesting extension of683

this work to compare the capacity measure to established684

measures of individual differences in reading. In fact, re-685

search is currently underway using the capacity coefficient686

to study dyslexia (Sussman et al., 2011).687

Another important finding in this paper is that the688

word superiority effect, as measured by the capacity coef-689

ficient, is not eliminated in the absence of a post-stimulus690

mask. This raises the question as to why the accuracy691

based word superiority effect is less robust. One possi-692

bility, raised in the introduction, is that words may be693

fully processed, even if the task only requires a decision694

on a part. Thus, the accuracy advantages of a word con-695

text might be mitigated by the fact that more is processed696

in a word context than in a nonword context. This is a697

special case of the more general issue that response time is698

more sensitive to certain aspects of perception, such as dis-699

tinguishing exhaustive and self-terminating strategies and700

distinguishing coactive and parallel processing, than accu-701

racy (cf., Townsend & Ashby, 1983; Townsend & Nozawa,702

1995). In future research, it will be important to deter-703

mine if capacity coefficient measure of word superiority704

is robust against other manipulations that may disrupt705

the accuracy based effect, such as attentional allocation706

and fixation location (e.g., Johnston & McClelland, 1974;707

Purcell et al., 1978) or the size of the word Purcell et al.708

(1978).709

We can also examine these results in the context of710

other configural superiority effects measured by the capac-711

ity coefficient. For example, Eidels et al. (2008) demon-712

strated super-capacity performance when participants could713

distinguish targets based on global topological properties714

of the stimulus. In contrast, they found limited or unlim-715

ited capacity when the stimuli were made of the same parts716

as the super-capacity task, but the parts were organized in717

such a way that the targets were not distinguishable based718

on their topology. If the same perceptual mechanisms un-719

derly the super-capacity in the Eidels et al. (2008) and the720

current study, this would suggest that the super-capacity721

performance is driven by global shape of the word, in-722

cluding both the outline as well as the shapes defined by723

neighboring letters. Without additional assumptions, the724

global shape explanation would imply super-capacity per-725

formance even in the nonwords. It may be that through726

many years of experience we are specially attuned to the727

differences between shapes generated by words but not so728

well attuned for nonword sequences. The shape as the729

lone explanation of the superiority effect may be a bit of730

a stretch, but global shape may still play a role in word731

perception, particularly if there is some sort of unitized732

representation of the words that is used for recognition733

(cf., Healy, 1994).734

Whether or not learning specific global shapes con-735

tributes to word superiority, it is likely perceptual learn-736

ing is an important part of many configural superiority737

effects. Blaha (2010) examined the effects of perceptual738

learning on the capacity coefficient. Using stimuli that739

Goldstone (2000) had demonstrated could lead to percep-740

tual unitization, Blaha measured the capacity coefficient741

for targets over the course of multiple days of learning.742

When the stimuli were novel, participants were extremely743

limited capacity. Over the course of about a week of train-744

ing (relatively few trials compared to the number of times745

we see common words), most participants reached high746

levels of super-capacity. The parts used in those stimuli747

were randomly generated “squiggly” lines, for which, like748

letters, there is no reason to believe people have any in-749

nate ability to form unitized representations. Given that750

Blaha used the same task structure (with squiggly lines in751

place of letters) and found similar levels of super-capacity752

at the end of training, we believe that perceptual learning753

plays an important part in the capacity coefficient word754

superiority effect. In future work, we hope to explore this755

connection by using the capacity coefficient to measure756

word superiority at different stages of the development of757

reading ability.758

Finally, we reiterate the importance of going beyond759

the simple ANOVA analysis of these data. Merely finding760

an ordering of the means in the string conditions says noth-761

ing about the relative processing efficiencies. For example,762

faster word processing than nonword processing could be763

due to the letters in “care” being relatively faster to pro-764

cess than the letters “rlkf”. Workload capacity analysis,765

however, takes the processing of the components into ac-766

count in estimating efficiency.767

3.1. Summary768

We have demonstrated response time based evidence769

for visual word perception as a particularly efficient pro-770

cess using the capacity coefficient. This includes evidence771

that words are more efficiently perceived than predicted772

by the individual letter reading times, and evidence from773

comparing word perception efficiency to nonword stimuli.774

Based on the workload capacity analysis, there is also ev-775

idence for a pseudoword superiority effect in the response776

time domain although not as strong as for word superi-777

ority. The evidence we present negates models of word778

processing that assume parallel, independent processing of779

letters with separate decision thresholds on each channel.780

This deeper level of understanding of visual word percep-781

tion required a shift from statistics based on comparing782

means toward a more theoretically rich, modeling-based783

approach.784
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Appendix A. Derivation of Standard Parallel Ca-915

pacity916

The mathematical formulation of this construct can be
derived as follows. Suppose, as in our tasks, the partici-
pant can only respond when they have identified all of the
letters (ci) in the word (S). Then the probability that she
has responded to the word is the probability that she has

13



already identified each of the letters,

P{RTS ≤ t} = P{RTc1 ≤ t, RTc2 ≤ t, RTc3 ≤ t, RTc4 ≤ t}.
(A.1)

If we assume that the letters are perceived independently
and in parallel, then Equation A.1 can be simplified to,

P{RTS ≤ t} =

P{RTc1 ≤ t}P{RTc2 ≤ t}P{RTc3 ≤ t}P{RTc4 ≤ t}.
(A.2)

The capacity function for an exhaustive task is de-
fined using the cumulative reverse hazard function, K(t) =
lnF (t);F (t) = P{RT ≤ t}, and is similar to the cumula-
tive hazard function used in survival analysis (cf. Chechile,
2011). If Kc1 is the cumulative reverse hazard for the first
character response times, Kc2 is the cumulative reverse
hazard for the second character, etc., and KS is the cumu-
lative reverse hazard for the string condition, the capacity
coefficient is given by,

C(t) =

[∑4
i=1Kci

]
KS

. (A.3)

By taking the logarithm of both sides of Equation A.2,
we see that the baseline model predicts capacity equal to
1,

log [P{RTS ≤ t}] =

log
[
P{RTc1 ≤ t}P{RTc2 ≤ t}P{RTc3 ≤ t}P{RTc4 ≤ t}

]
log [P{RTS ≤ t}] =

4∑
i=1

log [P{RTci ≤ t}]

KS =

4∑
i=1

Ki

C(t) =1

To measure a participant’s performance against the917

baseline model, performance must be measured when each918

of the single characters are presented in isolation and when919

all characters are used together. Response times from each920

of the single character conditions are used to estimate the921

cumulative reverse hazard for each term in the sum in the922

numerator of Equation A.3. The times to respond to all923

of the characters together are used to estimate the cumu-924

lative reverse hazard function in the denominator.925

Following Houpt & Townsend (2012), we use the Nelson-
Aalen type estimator for the cumulative reverse hazard
function. We use G(t) for the number of responses that
have occurred in a given condition up to and including time
t and Tj to indicate the jth response time in the ordered
list of all of the correct response times for that condition.
Using that notation, the estimate is,

K̂(t) = −
∑
Tj≤t

1

G(Tj)
.

Appendix B. Word and Pseudoword Details926
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Kucera & Francis Neighborhood Summed Frequency
Word Frequency Pseudoword Size of Neighbors
CARE 162 LERB 2 12
BARE 29 NERB 2 12
CURE 28 LARB 5 27
CAVE 9 LEMB 2 26
CARD 26 LERF 2 15
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