
Wright State University

From the SelectedWorks of Joseph W. Houpt

2013

Systems Factorial Technology with R
Joseph W Houpt, Wright State University - Main Campus
Leslie M Blaha
John P McIntire
Paul R Havig
James T Townsend, Indiana University - Bloomington

Available at: https://works.bepress.com/joseph_houpt/31/

http://www.wright.edu
https://works.bepress.com/joseph_houpt/
https://works.bepress.com/joseph_houpt/31/


Systems Factorial Technology with R
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James T. Townsend
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Systems Factorial Technology (SFT) comprises a set of powerful nonparametric models and
measures, together with a theory-driven experiment methodology termed the Double Factorial
Paradigm (DFP), for assessing the cognitive information processing mechanisms supporting
the processing of multiple sources of information in a given task (Townsend & Nozawa, 1995).
We provide an overview of the model-based measures of SFT together with a tutorial on de-
signing a DFP experiment to take advantage of all SFT measures in a single experiment. Illus-
trative examples are given to highlight the breadth of applicability of these techniques across
psychology. We further introduce and demonstrate a new package for performing SFT analyses
using R for Statistical Computing.

Introduction

Systems Factorial Technology (SFT) is a framework for
studying how different sources of information combine in
cognitive processing (Townsend & Nozawa, 1995). These
sources can be as similar as visual information from the left
and right visual field or as disparate as the demands of two
different tasks such as driving while talking on a cell phone.
SFT stands out as a particularly powerful framework because
the various ways in which information can be combined are
classified based on mathematically defined model properties.
Despite the constraints due to the rigor of the definitions,
SFT is quite general in that it requires no distributional or
parametric assumptions about the cognitive processes. Us-
ing these precise mathematical definitions, there are a num-
ber of tests within the SFT framework to reject large classes
of possible processing properties and support very specific
properties.
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While the mathematical rigor is an advantage of the
framework, the technical details can be overwhelming. In
this paper, we describe the general process of SFT experi-
mental design and analysis and introduce a package for the
R statistical software (R Development Core Team, 2011),
while leaving the description of the mathematical details to
others (Townsend, 1972, 1974; Townsend & Ashby, 1983;
Townsend & Nozawa, 1995; Townsend & Wenger, 2004;
Townsend & Honey, 2007; Dzhafarov, Schweickert, & Sung,
2004; Houpt & Townsend, 2010b, 2011, 2012). We begin by
outlining the general purpose of SFT and the specific ques-
tions the methodology can and cannot address. We then de-
scribe the measures in SFT, the Mean and Survivor Interac-
tion Contrasts and the workload capacity coefficients. We
cover the necessary experimental manipulations to use the
measures, the statistical tests associated with the measures,
and how to use the R package for the measures. We will
end with a description of the Double Factorial Paradigm, an
experimental setup that allows one to use both the Survivor
Interaction Contrast and the capacity coefficients. In each
section, we will describe the relevant functions in the sft R
package and give a brief example. For reference, a complete
list of the functions currently implemented in the package is
given in Table 1.

The Goals of SFT

As stated in the introduction, SFT is a framework for un-
derstanding the cognitive processing of multiple sources of
information. These multiple sources could take the form of
information from different modalities, such as audio and vi-
sual information, or different properties of a stimulus within
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Function Description
capacity.and Calculates the capacity coefficient for exhaustive (AND) processing.
capacity.or Calculates the capacity coefficient for first-terminating (OR) processing.
capacityGroup Performs workload capacity analysis on each participant and each condition.
estimateNAH Calculates the Nelson-Aalen estimator of the cumulative hazard function.
estimateNAK Calculates the Nelson-Aalen estimator of the cumulative reverse hazard function.
estimateUCIPand Estimates the cumulative reverse hazard function of an UCIP process on an AND task.
estimateUCIPor Estimates the cumulative hazard function of an UCIP process on an OR task.
mic.test Performs either an Adjusted Rank Transform or ANOVA test for an interaction at the

mean level.
sic Calculates the Survivor Interaction Contrast and associated measures.
sic.test A nonparametric test of for significant positive and negative parts of an SIC.
sicGroup Performs SIC analysis on each individual and each condition of a DFP experiment.
siDominance Tests for the ordering of survivor functions implied by selective influence using KS

tests.
ucip.test A nonparametric test for capacity values significantly different than those predicted

by the estimated UCIP model.
Table 1
A complete list of the functions included in the sft package with a brief description. The capacity and sic functions are
explicated in the text below. UCIP refers to unlimited capacity, independent, parallel. For more details on the syntax for each
function, the manual is available on the Comprehensive R Archive Network (http://cran.r-project.org/web/packages/sft/sft.pdf).

a modality, such as color and shape. In many cases the
sources are based on the experimental design and not nec-
essarily on psychologically meaningful features, such as the
top half and bottom half of a face (cf. Burns, Pei, Houpt,
& Townsend, 2009). Questions about how the sources are
processed together can be grouped into four classes: archi-
tecture, stopping rule, stochastic dependence and workload
capacity, each of which will be defined below (cf. Townsend,
1974).

Before going into the details of each of those properties,
we first want to point out that SFT is not designed for study-
ing a single source in isolation. Psychologists are often in-
terested in how changes in a single dimension of a stimulus
correspond to changes in performance. This includes finding
psychometric curves, just noticeable differences, etc. SFT
is not the appropriate tool for these questions. The SFT ap-
proach is focused on multiple sources of information, each
of which can be used to make a response. Additionally, the
theoretical tools described in this paper were developed for
high accuracy tasks, although the general theory can be ex-
tended to include variations in accuracy (e.g., Townsend &
Altieri, 2012).

Architecture

Within the SFT framework, architecture refers to the tem-
poral organization of the processes.1 Within this approach
we are interested in assessing if the processes fall into one of
a few broad classes of architectures, in order to qualitatively
characterize the system structure. One such class, founda-
tional to the early work in response time research (e.g., Don-

Figure 1. Serial architectures with OR (above) and AND
(below) stopping rules. In serial processes, each target is
processed sequentially. In an OR process, the participant can
stop once either A or B has completed. In an AND process,
both A and B must complete before a response is made.

ders, 1969), is a serial architecture. When a serial architec-
ture is employed, each source of information is processed
one at a time in a sequence, i.e., serially. For example, if a
participant is watching the left and right side of a display to

1In other areas of cognitive modeling, architecture is used to
refer to fixed properties of the cognitive system. In some cases,
this may include the temporal organization of the information pro-
cessing, but they are distinct concepts. Architecture in the sense
of this paper may vary with a participant’s strategy, especially on
high level cognitive tasks in which a participant has a fair amount
of control over strategy (Fifić, Nosofsky, & Townsend, 2008; C.-
T. Yang, 2011; C.-T. Yang, Hsu, Huang, & Yeh, 2011; C.-T. Yang,
Chang, & Wu, 2012). Architecture in the other sense could refer to
properties that we classify under other monikers, such as workload
constraints on information processing efficiency.
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determine if a small dot appears (see Townsend & Nozawa,
1995), a serial architecture would mean she first checks if the
dot has appeared on one side, then the other. Note that a serial
architecture does not necessarily mean the dots are checked
in a specific order or even the same order each time, but only
that one side is checked before the other on each trial. Two
types of serial architecture are depicted in Figure 1. The dif-
ference between these serial processes is the stopping rule,
which is discussed in the next section.

Figure 2. Parallel architectures with OR (above) and AND
(below) stopping rules. In parallel processes, each target is
processed at the same time. In an OR process, the partici-
pant can stop once either A or B has completed. In an AND
process, both A and B must complete before a response is
made.

In contrast, both sources of information may be processed
simultaneously, i.e., in parallel. With a parallel architec-
ture, the participant watching the monitor would concur-
rently check both the left and right sides for the appearance
of a dot. Parallel architectures are depicted in Figure 2. Like
the serial models in Figure 1, the difference between these
parallel processes is the stopping rule, which is discussed in
the next section.

As another example of the distinction between parallel
and serial processing, consider a categorization task in which
categories are determined by two different dimensions, say
color and form (see Fifić, Little, & Nosofsky, 2010). In a se-
rial process one would first check which category is indicated
by the shape (color) of the object, then check which category
is indicated by the color (shape). In a parallel process, both
color and shape are examined at the same time.

Figure 3. A coactive model, based on the summed activation
of the channels.

A special case of parallel processing, referred to as coac-
tive processing, is when the information is pooled before a
decision is made. In a standard parallel model (e.g., those
depicted in Figure 2), a decision about each source of infor-
mation is made separately; then each of those individual de-
cisions are combined (usually according to a stopping rule,
defined below) for the final decision or action. In a coac-
tive architecture, all of the information is used together to
directly make the final decision. The pooling can take differ-
ent forms, although the most well developed coactive models
assume the information is summed and the total is compared
to a threshold to make a decision (e.g., Schwarz, 1989, 1994;
Townsend & Nozawa, 1995; Houpt & Townsend, 2011).
This coactive model is depicted in Figure 3.

An interesting example of a case when coactive process-
ing is possible is when information sources from different
modalities are processed together (e.g., Miller, 1982). Sup-
pose you need to determine if someone speaking had said
“bad” or “dad” based on seeing the speaker’s mouth and
hearing the word spoken (see Altieri & Townsend, 2011).
If you first check for the difference between the “b” and “d”
based only on what you hear, then based only on how the
speaker’s mouth looked when she pronounced the word, this
would be a serial process. If you simultaneously process the
visual cues and the aural cues, you are using a parallel pro-
cess. Coactive processing is the special case in which, in-
stead of separately determining if the mouth indicates “bad”
and the sound indicates “bad,” you pool evidence from both
modalities to make the decision.

Other architectures may be possible, particularly with
more than two sources of information. Many of those pos-
sible architectures can be formulated in terms of combina-
tions of parallel and serial processes. These more advanced
models are beyond the scope of this paper, but the theoretical
work on SFT for more than two sources continues to evolve.

Stopping Rule

A second question that arises with respect to the combi-
nation of multiple sources of information is that of the stop-
ping rule, or how many sources of information are processed
before a person responds.2 Similar to the SFT approach to
architecture, the SFT approach is concerned with the qual-
itative classes of stopping rule, rather than exact quantita-
tive measures of information, and so the methods will assess
which class of stopping rule is engaged given a particular

2In many models, the amount of information required to stop
processing a given source (i.e., the threshold in an information ac-
cumulator model, cf. Link & Heath, 1975; Ratcliff & Smith, 2004;
Brown & Heathcote, 2008) can vary. This also falls under the gen-
eral category of stopping rule. However, the SFT approach does not
include the more detailed analyses involved in identifying changes
in the amount of information needed for each sub-process to finish.
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task. One possibility is that a person must exhaustively pro-
cess all of the information available before responding. We
will often refer to this as AND processing, in reference to the
Boolean rule combining the decision on each source, but it is
also known as an exhaustive or maximum time stopping rule.
AND stopping rules can be used with serial models (bottom
of Figure 1) and parallel models (bottom of Figure 2).

Alternatively, a person may respond as soon as he detects
a target, regardless of how many other sources of informa-
tion are present. This stopping rule is often referred to as
self-terminating. Self-terminating stopping rules encompass
a variety of possible decision situations ranging from deci-
sions based on a single target among distractor information
to needing to identify a subset of multiple targets for a de-
cision, although not all targets as in the AND case. In the
special case in which all sources of information indicate a
target (also known as a redundant-targets task), a person can
respond as soon as any one source is finished processing.
This is referred to as a first-terminating process, or often,
simply OR, again in reference to the Boolean logic rule. Self-
terminating stopping rules can be combined with serial mod-
els (top of Figure 1) and parallel models (top of Figure 2).

The design and demands of an experiment will often re-
quire a participant to use a particular stopping rule to cor-
rectly respond. For example, if participants were asked to
respond positively only if they detected both a dot above the
midline and a dot below the midline of a display, then they
would need to check both above and below before respond-
ing (e.g., Townsend & Nozawa, 1995; Eidels & Townsend,
2009). If the instructions change so that a positive response
is made if there is a dot detected in at least one position,
above or below (or both), then the task no long requires the
AND stopping rule but allows for self-terminating responses.
However, even when the task allows for a self-terminating
process, people may still exhaustively process the informa-
tion, as observed in some clinical populations (e.g., Johnson,
Blaha, Houpt, & Townsend, 2010).

Stochastic Dependence and Selective Influence

Another well-studied property of combined information
processing is the extent to which each process depends on
the others. We formalize this construct with the probabilistic
definition of independence. If the distribution of the pro-
cessing times of all of the sources is equal to the product
of the distributions of the processing time of each individual
source, we say that they are independent. Otherwise, they
are dependent.

A closely related, although not identical concept is that
of selective influence. An experimental manipulation se-
lectively influences the processing of a source if that fac-
tor changes the processing of that source, but processing of
all other sources is unchanged. In the dot detection experi-
ment described above, selective influence of the contrast ma-

nipulation of a dot would mean that reducing or increasing
the contrast of the dot above fixation does not change how
quickly dots below fixation are detected and vice versa. For
a more formal treatment of selective influence, see Dzhafarov
(2003) and Dzhafarov and Gluhovsky (2006).

There are different ways that the independence might fail,
some of which may also cause failures of selective influ-
ence. One way that a dependence between the processing
times could arise is when an external factor, such as attention,
speeds up or slows down the processing of all of the sources.
When a person is more focused on the task, processing times
will be faster for all sources. When he is less focused, pro-
cessing times will be slower. Thus, if the processing time
for one source is known to be fast, it is more likely that
the person was focused and hence processing times for the
other sources are likely to be faster. Therefore, the process-
ing times are dependent. Despite this dependence, selective
influence may still hold, as long as the experimental manip-
ulation does not affect the participant’s attention.

Completion times may also be dependent due to inter-
actions among the processes (e.g., Townsend & Wenger,
2004; Eidels, Houpt, Pei, Altieri, & Townsend, 2011),
which will also lead to failures of selective influence
(cf. Townsend & Thomas, 1994). For example, with config-
ural stimuli, such as faces (Fifić & Townsend, 2010) or words
(Houpt & Townsend, 2010a), different sources of informa-
tion within the stimulus can facilitate each other. One way
this may occur in faces is that the more detail one perceives
from the left side of a face image, the more information one
has about the right side of that same face image. Facilitation
among sources of information can also occur when partici-
pants are highly trained with a stimulus such that the compo-
nents are unitized and practiced (e.g., Blaha, 2010).

A further potential source of dependence arises if partici-
pants discern, even implicitly, conditional stimulus probabil-
ities based on the presentation rates of different stimulus el-
ements (Mordkoff & Yantis, 1991). This dependence can be
mitigated by careful experimental design, and we will return
to discuss this issue in greater detail in the ‘Stimulus Rates
and Contingencies’ section.

Workload Capacity

A fourth property characterizing the processing of multi-
ple sources is how the processing rate of each source changes
as more sources are added. This characteristic is termed
workload capacity, which is a special case of the general
system information processing capacity (see Townsend &
Ashby, 1983). Note that in the SFT context, ‘capacity’
refers to the information throughput characteristics of the
system, addressing the question of how much work can be
completed (i.e., information processed) in a given amount of
time. Additionally, ‘workload’ refers to the manipulation of
the number of sources of information (e.g., number of stimu-
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lus modalities, number of features in an object). Thus, work-
load capacity assesses how much information is processed
over time when the amount of information available to be
processed is manipulated. For example, a recent study ap-
plied the workload capacity construct to inform models of
the Thatcher illusion (Donnelly, Cornes, & Menneer, 2012).
They showed that, although participants were faster at de-
tecting a manipulation of the features when multiple manip-
ulations were present in the stimulus, there was no evidence
that the processing of each feature had changed. This result
is evidence against positive interactions between the feature-
specific processes, a common explanation of the Thatcher
illusion.

As with architecture and stopping rule, the SFT approach
is to qualitatively assess any changes in processing rates by
classifying capacity into one of three categories: limited, un-
limited, and super capacity. Limited capacity processing is
when performance on each individual source degrades as the
number of sources increases. This degradation is typically
interpreted as a slowing of individual information sources’
processing rates in the presence of additional sources. Un-
limited capacity refers to performance which reflects no ef-
fect of an increased workload on each individual process
(i.e., the additional sources do not influence the processing
rate of the original information sources). Finally, super ca-
pacity is when performance on each source is better under in-
creased workloads, meaning that the addition of more infor-
mation sources has resulted in increased processing speed for
the other individual sources. Humans are not likely to be un-
limited capacity, let alone super capacity, with a large num-
ber of sources. Nonetheless super capacity is often observed
in experimental settings using a limited number of sources
(e.g., Houpt & Townsend, 2010a; Blaha, 2010). In some
cases, this is the result of facilitation (a positive stochastic
dependence) among the processes. Another situation that
would result in super capacity is if participants exhibit less
focused attention on single source tasks, perhaps because
they are relatively easy, but focus more attention on the task
when there are multiple sources present.3 Further research on
how super capacity can arise is an exciting direction for SFT
in applied cognitive psychology (cf. Repperger et al., 2009).
Under this capacity taxonomy, the aforementioned Thatcher
illusion study by Donnelly et al. (2012) found unlimited ca-
pacity, despite the popular notion that the perception of face
parts is super capacity when the parts are presented in their
normal configuration.

The Measures in SFT

Having delineated the basic processing aspects, we now
turn to the SFT measures available for analyzing these prop-
erties. We note that all four of the constructs above are inde-
pendent properties, so a system can be defined by any com-
bination of architecture, stopping rule, (in)dependence, and

workload capacity level. If it were possible to directly ob-
serve the time it takes for each process to complete, analy-
sis would be greatly simplified. Unfortunately, observed re-
sponse times are based on the aggregate of the various prop-
erties. For example, when an audio target and visual target
are present in an OR task, a given response time could be
produced by any combination of each of the properties above
(Townsend, 1972; Townsend & Ashby, 1983). Even if we
know how long responses to audio and visual targets take in
isolation, all combinations are still possible, although some
trade-offs are necessary depending on the observed response
times on the OR task. For example, slower response times
in the redundant target condition could be due to limited-
capacity, parallel processing or unlimited-capacity, serial
processing. It is therefore critical to find ways to analyze
all four properties simultaneously from a single set of mea-
surements.

SFT includes measurements that are informative with re-
gards to architecture, stopping-rule, workload capacity and
stochastic dependence. The Mean Interaction Contrast and
the Survivor Interaction Contrast are tools for analyzing ar-
chitecture and stopping rules and can, in some cases, also
be informative about stochastic dependencies. The capacity
coefficients for OR processes, COR(t), and AND processes,
CAND(t), are useful for measuring workload capacity and
stochastic dependencies; some inferences about architecture
may also be possible from the capacity coefficients.4

One important feature of the SFT measures is that they
are nonparametric in nature, thereby enabling researchers to
investigate the information processing properties for a given
task without any parametric assumptions about the response
time distribution. All of the measures present here are based
on some transformation of the empirical response time dis-
tribution.

The Survivor Interaction Contrast and Mean Interaction
Contrast

The Survivor Interaction Contrast (SIC; Townsend &
Nozawa, 1995) indicates the architecture and stopping-rule
of the underlying information processing system. To esti-
mate the SIC for a participant in a given task, response times
are needed from conditions in which the speed of process-
ing each individual source of target information is factorially
manipulated. Then an interaction contrast of the estimated
survivor functions of the response times for those conditions
is taken.

3We do not wish to claim that participants frequently, or even
ever, attend more to the task when there are multiple sources of
information. We only wish to indicate that it is not entirely an un-
reasonable possibility.

4Each of the tools in isolation are relatively weak with respect
to analyzing stochastic dependence, but are powerful when used
together (Eidels et al., 2011).



6 SFT WITH R

0 200 400 600

0
.0

0
0

0
.0

0
4

Density

0 200 400 600

0
.0

0
.4

0
.8

CDF

0 200 400 600

0
.0

0
.4

0
.8

Survivor

0 200 400 600

0
4

8

Cumulative
Hazard

0 200 400 600

−
1
0

−
6

−
2

Cumulative
Reverse Hazard

Figure 4. Different functions describing the same random variable (in this case, an exGausian random variable). On the far
left is the probability density function (or PDF). Next is the CDF, Pr{X ≤ t}, then the survivor function, Pr{X > t}. The final
two graphs are the cumulative hazard function, H(t), and the cumulative reverse hazard function, K(t).

The survivor function, S (t), is the probability that an event
has not yet occurred by time t, i.e., the survivor function of a
random variable X is S X(t) = Pr{X > t}. See Figure 4 for a
depiction of the various descriptions of a random variable.
For response times, it is the probability that a participant
has not responded by a given time. S (t) is the complement
of the more familiar cumulative distribution function (CDF),
FX(t) = Pr{X ≤ t},

FX = Pr{X ≤ t} = 1 − Pr{X > t} = 1 − S X(t).

Much of the early work with the SIC focused on simple
visual detection tasks, so an experimental manipulation to
speed up and slow down processing is frequently referred
to as a salience manipulation. Conditions that should lead
to faster processing are usually denoted by an “H” for high
salience; slow conditions are usually denoted by an “L” for
low salience. For example, SHL(t) is the survivor function of
the response times when the first target is high salience and
the second target is low salience.

With all of the notation in place, we now can state the SIC
for two sources of target information,

SIC(t) = [SLL(t) − SLH(t)] − [SHL(t) − SHH(t)] . (1)

Each of the two parts of the contrast in brackets should
generally be positive: Response times in a low salience con-
dition should tend to be slower than in a high salience con-
dition, and slower response times lead to larger survivor
functions relative to the high salience conditions. While
this ordering does not always hold, the assumption of ef-
fective selective influence is sufficient to guarantee the sur-
vivor functions are ordered as expected, SHH < {SLH,SHL}

and SLL > {SLH,SHL} (see Figure 5).5 Effective selective
influence does not imply any particular relationship between
SHL and SLH and their order does no effect any conclusions
about the models.

When effective selective influence holds, each of the par-
allel and serial models with OR and AND stopping rules,
have unique SIC forms regardless of the distributions of the
individual channel completion times (Townsend & Nozawa,

1995; Dzhafarov et al., 2004). Figure 6 depicts these SIC
forms. A parallel model with an OR stopping rule has an en-
tirely positive SIC. A parallel model with an AND stopping
rule has the opposite, an entirely negative SIC. Serial pro-
cesses with OR stopping rules have flat SICs, equal to zero
for all times. A serial process with an AND stopping rule is
first negative, then positive, producing an s-shaped signature.

Additionally, two types of coactive models, one based
on Poisson processes (Townsend & Nozawa, 1995) and the
other based on diffusion processes (Houpt & Townsend,
2011), also have SIC forms that differ from the serial and
parallel models. Like the serial-AND models, these coac-
tive processes have an SIC that is first negative then positive.
The SIC for a coactive model is shown in Figure 7. The fea-
ture that distinguishes the serial-AND and coactive models is
the relative negative and positive areas under the SIC curve;
serial-AND processes have equal positive and negative areas
while coactive processes have more positive area under the
SIC curve. To measure the area under the curve, we use the
integrated SIC. Due to a useful property of positive random
variables (such as response times), the integrated SIC turns
out to be an interaction contrast of the mean response times,

MIC(t) = [MLL(t) −MLH(t)] − [MHL(t) −MHH(t)] . (2)

Thus, when the SIC exhibits an s-shape, a positive Mean In-
teraction Contrast (MIC) indicates a coactive process and a
zero MIC indicates a serial process with an AND stopping
rule.

Other SIC forms can also arise from channel interactions
(Eidels et al., 2011). These interactions lead to violations of
selective influence, so the SIC forms are no longer required
to be those shown in Figure 6. Instead, depending on the

5The additional adjective “effective” simply means that the
salience manipulation has an effect: Channel processing times
should be faster when the input is high salience. Here we mean
a particularly strong type of faster, that the response times for the
fast condition should stochastically dominate the response times for
the slow condition: S H(t) ≤ S L(t) for all t with S H(t) < S L(t) for at
least some t.
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Figure 5. An example of survivor functions with the or-
der implied by effective selective influence. HH indicates
that both targets are processed relatively fast, i.e., are high
salience. HL indicates that one target is high salience and the
other is low salience; LH and LL follow the same scheme.
Note that the relationships SHH < SHL, SHH < SLH, SLL >
SHL, and SLL > SLH are implied by selective influence, but
a specific ordering relationship between SHL and SLH is not
implied.

degree of interaction, parallel-facilitatory models can have
SIC shapes ranging from the predicted independent form
to matching the s-shaped coactive form. Inhibitory, paral-
lel models with OR stopping rules remain entirely positive,
whereas inhibitory, parallel models with AND stopping rules
can have SIC forms ranging from entirely negative to nearly
entirely positive. The analogous work on interactive serial
models is yet to be completed.

SIC in R. The sft package in R (R Development Core
Team, 2011) includes the function sic to calculate the SIC
and MIC.6 The function takes response times from each of
the salience conditions, HH, LH, HL and LL, and returns a
stepfun object representing the estimated SIC.7 The func-
tion returns additional useful information for interpreting
the SIC. It includes the results of a series of Kolmogorov-
Smirnov tests for distribution ordering used to check for the
expected ordering of survivor functions mentioned above,
SHH < {SLH,SHL} and SLL > {SLH,SHL}. The survivor or-
dering test can also be run in isolation, using the function
siDominance.

The sic function also performs a statistical analysis to de-

Parallel

A
N

D

Serial

O
R

Figure 6. Survivor Interaction Contrast predictions for par-
allel and serial models with AND and OR stopping rules,
assuming selective influence.

Coactive

Figure 7. Survivor Interaction Contrast prediction for the
Poisson and diffusion based information summing coactive
models.

termine whether the positive and negative parts of the SIC
are significantly different from zero. Currently the only
statistical test of the SIC is based on the generalization of
the two-sample Kolmogorov-Smirnov test, as described in
Houpt and Townsend (2010b).8 This test performs two null-

6We will cover the sft functions together with the relevant theory
and definitions without detail regarding data formats; we address
the formatting of data for use in sft in a later section.

7The calculation of the SIC is based on the R function ecdf.
Both the ecdf function and the stepfun class are included in the
stats package as part of R (R Development Core Team, 2011). For
details on these, or any other function or class in R, we suggest the
use of the help function.

8Some researchers have attempted to apply bootstrapping for
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hypothesis tests to separately assess the positive-going de-
viations from S IC(t) = 0 and the negative-going deviations
from S IC(t) = 0. The first test for whether the largest posi-
tive value of the SIC (D+) is significantly different from zero
is a one-sided test with H0 : D+ ≤ 0 and Ha : D+ > 0; the
result of this test is reported as sic$ positive with both the
test statistic value and exact p-value returned. The second
test is a one-sided test for whether the largest negative value
(D−) is significantly different from zero, with H0 : D− ≥ 0
and Ha : D− < 0. The result of this test is reported as
sic$ negative with both the test statistic value and exact p-
value reported.

There is also a separate function, mic.test, for performing
a two-tailed test of the MIC value under the null hypoth-
esis that MIC = 0 against the alternative hypothesis that
MIC , 0. There are two options, if ART=TRUE the ad-
justed rank transform test (ART; Sawilowsky, 1990; Reinach,
1960), a nonparametric test, is used. If ART=FALSE, then
an ANOVA is used. Like the sic function, mic.test takes re-
sponse times from each of the salience conditions as input.
It then returns the exact p-value and test statistic from the
chosen test.

Example 1 demonstrates the use of the sic function ap-
plied to data simulated from a Serial-AND model. The sur-
vivor dominance tests all indicate proper ordering, mean-
ing the SIC shape should be interpretable. Both D+ and D-
are significant, indicating that the SIC has both positive and
negative parts. Both Coactive and Serial-AND models pre-
dict significant positive and negative parts, so we also check
MIC, which is not significantly different from zero. These
results would lead us to reject parallel processes and Serial-
OR models in favor of a Serial-AND model.

Example 1: sic

# Simulate single channel response times
> T1.h <- rweibull(300, shape=2, scale=400)
> T1.l <- rweibull(300, shape=2, scale=800)
> T2.h <- rweibull(300, shape=2, scale=400)
> T2.l <- rweibull(300, shape=2, scale=800)

# Combine into "observed" response times
# assuming a Serial-AND model
> hh <- T1.h + T2.h
> hl <- T1.h + T2.l
> lh <- T1.l + T2.h
> ll <- T1.l + T2.l

# Run the SIC analysis
> SerialAND <- sic(hh,hl,lh,ll)
> SerialAND
$SIC
Step function

Call: stepfun(RTall, c(0, sicall))
x[1:1200] = 87.674, 89.236, 171.39, ...,
1201 plateau levels = 0, 0.0033333, 0,

$Dominance
Test statistic p.value

1 S.hh > S.hl 0.4100000 1.254669e-22
2 S.hh > S.lh 0.3866667 3.314705e-20
3 S.hl > S.ll 0.3300000 6.480362e-15
4 S.lh > S.ll 0.2800000 6.100898e-11
5 S.hh < S.hl 0.0000000 1.000000e+00
6 S.hh < S.lh 0.0000000 1.000000e+00
7 S.hl < S.ll 0.0000000 1.000000e+00
8 S.lh < S.ll 0.0000000 1.000000e+00

$positive
Houpt-Townsend KS-SIC test

data:
HH: HH HL: HL
LH: LH LL: LL
D^+ = 0.17, p-value = 0.0131
alternative hypothesis: the SIC is above 0
at some time

$negative
Houpt-Townsend KS-SIC test

data:
HH: HH HL: HL
LH: LH LL: LL
D^- = 0.24, p-value = 0.0001769
alternative hypothesis: the SIC is below 0
at some time

$MIC
Adjusted Rank Transform test of the MIC

data:

hypothesis testing with the SIC, however there are problems with
that approach. One can estimate pointwise confidence intervals,
then check the confidence interval at each point to see if it includes
zero. If one were to conclude that the function is significantly non-
zero then the type I error rate will be much higher without appropri-
ate correction. With a large number of estimated points on the SIC,
a correction based on the assumption that each test is independent
(e.g., Bonferroni) would make it nearly impossible to find a signifi-
cant value of the SIC. Determining the appropriate correction based
on the true dependencies among the points is possible, but it is more
straightforward to simply treat the SIC as a function for hypothe-
sis testing. Bootstrapping tests are possible for hypothesis about
the function, but asymptotic tests (such as the Houpt & Townsend
(2010b) test) are usually (always?) more powerful. Based on these
issues, we have decided not to include bootstrap tests for SIC and
C(t) measures in either the package or this paper.
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HH: HH HL: HL
LH: LH LL: LL
MIC = 0, p-value = 0.8744
alternative hypothesis: the MIC is not zero

> plot(SerialAND$SIC, do.p=FALSE)
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Figure 8. Plot of a simulated serial-AND SIC from running
the sic function in Example 1.

The Capacity Coefficient

The capacity coefficients are based on the comparison of
performance with multiple sources to a baseline calculated
from performance with each single source of information.
These functions can indicate variations in workload capac-
ity, as well as dependencies among source processing times.
Although a capacity coefficient could be defined for any stop-
ping rule, the most commonly used are the OR capacity co-
efficient (Townsend & Nozawa, 1995) and the AND capacity
coefficient (Townsend & Wenger, 2004). The baseline for
comparison is based on the assumptions that processing of
multiple sources is unlimited-capacity, independent and par-
allel (UCIP).

OR Processes. In an OR process, the probability that
a response has not yet been made (the survivor function of
the response times) is the probability that a target has not
yet been detected on any channel. If we write S AB(t) for the
survivor function of response times when both A and B are

present targets and S A(B)(t) for the survivor functions of the
channel completion times on A when the B target is present
(and likewise for B in the presence of A), then, assuming the
sources are independent,

S AB(t) = S A(B)(t) × S B(A)(t).

With the additional UCIP assumptions, the completion
time distribution of A is unchanged regardless of whether
B is present or not, S A(B)(t) = S A(t) and likewise for B,
S B(A)(t) = S B(t). This is a situation commonly termed con-
text invariance or context independence of the response time
distributions. It follows from context invariance that a UCIP
model predicts that the survivor function when both targets
are present is equal to the product of the survivor functions
for each target in isolation,

S AB(t) = S A(t) × S B(t).

The argument holds more generally; under the UCIP as-
sumption the survivor function for any number of targets is
the product of the survivor function for each of those targets
in isolation,

S 1...n(t) =

n∏
i=1

S i(t).

For both statistical reasons (cf. Houpt & Townsend,
2012) and interpretability (cf. Townsend & Nozawa, 1995;
Townsend & Ashby, 1983; Townsend & Eidels, 2011), the
OR capacity coefficient is defined using cumulative hazard
functions, H(t).9 To get from survivor functions to cumu-
lative hazard functions one simply needs to take the natu-
ral logarithm, log[S (t)] = −H(t). Thus, because log(xy) =

log(x) + log(y), the cumulative hazard function for the UCIP
processing of n sources is

H1...n(t) = − log [S 1...n(t)] = − log

 n∏
i=1

S i(t)

 =

n∑
i=1

Hi(t).

The OR capacity coefficient is defined as a ratio of a par-
ticipant’s actual performance when all sources are present,
Ĥ1...n(t), to performance predicted from a UCIP system,

COR(t) =
Ĥ1...n(t)∑n
i=1 Ĥi(t)

. (3)

The denominator is the estimated cumulative hazard function
for the UCIP model, derived from the response times for each
process in isolation, and the numerator is the actual, observed
performance with n target sources.10

9For details on the hazard function and its use in cognitive psy-
chology, see Chechile (2003).

10We have not accounted for the additional time taken by non-
perceptual, non-decision related processes, such as motor move-
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Based on Equation 3, when the observed performance
on all sources is equal to the UCIP model prediction, then
COR(t) = 1, and we can interpret the throughput for the sys-
tem as exhibiting unlimited workload capacity. COR(t) < 1
implies worse performance than the UCIP model, and we
interpret this performance as the system exhibiting limited
workload capacity. This indicates that either there are lim-
ited processing resources, there is inhibition among the sub-
processes, or the items are not processed in parallel (e.g., the
items may be processed serially). COR(t) > 1 implies bet-
ter performance than the UCIP model, in which case we in-
terpret the throughput as exhibiting super workload capacity.
This indicates that either there are more processing resources
available per process when there are more sources of infor-
mation, that there is facilitation among the subprocesses, or
the items are not processed in parallel (e.g., the items may be
processed coactively).

An alternative measure of capacity is based on the differ-
ence of cumulative hazard functions,

COR(t) = Ĥ1...n(t) −
n∑

i=1

Ĥi(t). (4)

Although this form is non-standard, the variance function of
the estimator can easily be calculated, unlike in the standard
ratio form, thereby enabling a direct statistical test of COR(t)
(see Houpt & Townsend, 2012 for details). The qualitative
workload capacity interpretations of Equation 4 are the same
as Equation 3, but the reference value is now 0 rather than 1
(e.g., COR(t) = 0 is unlimited capacity, etc.).

OR Capacity in R. The Nelson-Aalen estimator of the
cumulative hazard function (Aalen, Borgan, & Gjessing,
2008) can be calculated using the estimateNAH function in
the sft package. It takes the response times as input, and, if
desired, will also take an array indicating whether the partic-
ipant was correct on each trial to adjust the estimate for in-
correct responses. The function estimateUCIPor returns an
estimate of a participant’s cumulative hazard function when
all targets are present, assuming UCIP processing, based on
performance on each of the single target conditions. It takes a
list as input in which each element is an array of the response
times for each of the single target conditions. An additional
list with the correct indicators for each condition can also be
included. If the correct indicators are included, the estimates
will be adjusted to account for incorrect responses (see Houpt
& Townsend, 2012 for details). For both estimateNAH and
estimateUCIPor, if the correct indicators are not provided,
the function assumes all of the response times correspond to
correct trials. Both estimateNAH and estimateUCIPor re-
turn estimated cumulative hazard functions, however estima-
teUCIPor returns an estimate of the cumulative hazard func-
tion if each sub-process were estimated using estimateNAH
and the sub-processes are combined according to a UCIP-OR
model.

The OR capacity coefficient and related statistical test
(Houpt & Townsend, 2012) can be calculated using the ca-
pacity.or function. It takes as input a list containing arrays
of response times from each condition (first the condition
with all target sources present, then each of the single target
source conditions) along with an optional list of correct in-
dicators to use with the estimateNAH and estimateUCIPor
functions. The function also includes an indicator, ratio, for
whether to return the standard OR capacity coefficient (Equa-
tion 3) or the difference variant of the capacity coefficient
(Equation 4).

The capacity.or function returns an approxfun object
representing the standard ratio OR capacity coefficient ratio
function (optional argument ratio=TRUE, which is the de-
fault) or the difference variant (ratio=FALSE) and the out-
come of the ucip.test for OR processing. The ucip.test
function returns the statistic value (a z-score) and p-value
from a two-tailed test of the null-hypothesis of UCIP per-
formance from Houpt and Townsend (2012). Note that if
ratio=FALSE, capacity.or also reports the variance of the
difference variant. If the reported p-value is less than your
chosen Type I error α level, e.g., 0.05, then at least one of the
UCIP assumptions has failed.

Example 2: capacity.or

# Generate single source response times
> rate1 <- 1/800
> rate2 <- 1/600
> pa <- rweibull(100, shape=2,

scale=1/rate1)
> ap <- rweibull(100, shape=2,

scale=1/rate2)

# Simulate a limited capacity
# Parallel-OR model
# Limited capacity means slower
# processing when there are multiple
# sources, so we use .5 times the
# original rate.
> pp.1 <- rweibull(100, shape=2,

scale=1/(.5*rate1))
> pp.2 <- rweibull(100, shape=2,

scale=1/(.5*rate2))

ments, in this derivation. This additional time would complicate the
derivation, but it only has a limited effect on the capacity coefficient
predictions when the variance of the additional time contributes rel-
atively little to the variance of the response time which is reasonable
for human data (Townsend & Honey, 2007). In particular, the ex-
tent to which the additional time changes capacity estimates scales
with the variance of the base time, leading to underestimates of OR
capacity (Townsend & Honey, 2007) and overestimates of AND
capacity (Townsend & Eidels, 2011).
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> pp <- pmin( pp.1, pp.2 )

# Run the capacity analysis
> cap <- capacity.or(list(pp, pa, ap))
> cap$Ctest
Houpt-Townsend UCIP test

data: RT and CR
z = -7.3626, p-value = 1.803e-13
alternative hypothesis: response times
are different than those predicted by
the UCIP-OR model

> plot(cap$Ct, xlim=c(0,2000), ylim=c(0,2))
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Figure 9. Plot of a simulated limited capacity coefficient
from running the capacity.or function in Example 2.

AND Processes. In an AND process, the probability
that a response was made (the CDF of the response times)
is the probability that a target has been detected on all chan-
nels. If we write FAB(t) for the CDF of response times when
both A and B are present targets, FA(B)(t) for the CDF of the
channel completion times on A when the B target is present
(and likewise for B in the presence of A), then, assuming the
sources are independent,

FAB(t) = FA(B)(t) × FB(A)(t).

As part of the UCIP assumptions, the CDF of an individual
target detection time is assumed to not change with respect

to the presence of the other source, FA(B)(t) = FA(t) and like-
wise for B, FB(A)(t) = FB(t). Hence,

FAB(t) = FA(t) × FB(t).

More generally for n sources of information,

F1...n(t) =

n∏
i=1

Fi(t).

Like the OR capacity coefficient, we take the natural loga-
rithm of both sides to obtain capacity coefficient predictions.
Because the AND model is in terms of the CDF rather than
the survivor function, this results in a cumulative reverse haz-
ard function, log[F(t)] = K(t).11 Hence, the UCIP prediction
for an AND task with n sources is,

K1...n(t) = log [F1...n(t)] = log

 n∏
i=1

Fi(t)

 =

n∑
i=1

Ki(t).

The AND capacity coefficient is defined as a ratio of
the participant’s actual performance when all sources are
present, K̂1...n(t), to his predicted performance if he satisfied
the UCIP assumptions,

CAND(t) =

∑n
i=1 K̂i(t)

K̂1...n(t)
. (5)

The numerator is the estimated cumulative reverse hazard
function for the UCIP model, derived from the response
times for each process in isolation, and the denominator is
the actual performance. The UCIP prediction is in the nu-
merator for CAND(t) so that the interpretation of values rela-
tive to one is consistent with COR(t). Note that this is because
relatively larger cumulative hazard functions (H(t)) indicate
faster processing, while relatively larger cumulative reverse
hazard functions (K(t)) indicate slower processing.

As with Equation 3, unlimited capacity is exhibited by the
system when CAND(t) = 1. CAND(t) < 1 implies worse per-
formance than the UCIP model, interpreted as limited work-
load capacity. This indicates that either there are limited
processing resources, there is inhibition among the subpro-
cesses, or the items are not processed in parallel (e.g., the
items may be processed serially). CAND(t) > 1 implies bet-
ter performance than the UCIP model, interpreted as super
workload capacity. This indicates that either there are more
processing resources available per process when there are
more processes, that there is facilitation among the subpro-
cesses, or the items are not processed in parallel (e.g., the
items may be processed coactively).

As with the OR capacity coefficient, there is also a differ-
ence variant,

CAND(t) = K̂1...n(t) −
n∑

i=1

K̂i(t). (6)

11For details on the reverse hazard function and its use in cogni-
tive psychology, see Chechile (2011).



12 SFT WITH R

Again, this version allows the variance function of the es-
timator to be more easily calculated, enabling a direct sta-
tistical test of the null hypothesis CAND(t) = 0 (Houpt &
Townsend, 2012). The interpretation of Equation 6 remains
the same as Equation 5, but the reference value is now 0
rather than 1 (e.g., CAND(t) = 0 is unlimited capacity, etc.).

AND Capacity in R. The estimator of the cumulative
reverse hazard function developed in Houpt and Townsend
(2012) can be calculated using the estimateNAK function in
the sft package. It takes the response times as input, and, if
desired, will also take an array indicating whether the par-
ticipant was correct on each trial to adjust the estimate for
incorrect responses. The function estimateUCIPand returns
an estimate of a participant’s cumulative reverse hazard func-
tion for processing all targets, assuming UCIP processing,
based on performance in each of the single target conditions.
It takes a list as input in which each element is an array of
the response times for each of the single target conditions.
An additional list with the correct indicators for each condi-
tion can also be included. For both estimateNAK and es-
timateUCIPand, if the correct indicators are not provided,
the function assumes all of the response times correspond to
correct trials.

The AND capacity coefficient and related statistical test
(Houpt & Townsend, 2012) can be calculated using the ca-
pacity.and function. It takes as input a list containing arrays
of response times from each condition along with an optional
list of correct indicators to use with the estimateNAK and
estimateUCIPand functions. The function assumes that the
first item in the list corresponds to the condition with all tar-
gets present and each subsequent item corresponds to a sin-
gle target condition. The function also includes an indicator,
ratio, for whether to return the standard AND capacity coef-
ficient (Equation 5) or the difference variant of the capacity
coefficient (Equation 6).

The capacity.and function returns an approxfun object
representing the AND capacity coefficient ratio function (op-
tional argument ratio=TRUE, which is the default) or the
difference variant (ratio=FALSE) and the outcome of the
ucip.test for AND processing. Note that if ratio=FALSE,
capacity.and also reports the variance of the capacity co-
efficient difference variant. If the p-value is less than your
predetermined Type I error α level, then at least one of the
UCIP assumptions has failed.

Additional R Functionality. To run the statistical test
without returning the additional approxfun objects for the
capacity coefficient and variance, the function ucip.test is
available. Like the capacity coefficient functions, it takes
as input a list of response time arrays and a list of correct
indicator arrays with the first element corresponding to the
all targets present trials. The function also has a flag to in-
dicate whether to test the data against UCIP OR processing
(OR=TRUE) or UCIP AND process (OR=FALSE).

Example 3: capacity.and

# Generate single source response times
> rate1 <- 1/800
> rate2 <- 1/600
> pa <- rweibull(100, shape=2,

scale=1/rate1)
> ap <- rweibull(100, shape=2,

scale=1/rate2)

# Simulate an unlimited capacity
# Parallel-AND model
> pp.1 <- rweibull(100, shape=2,

scale=1/rate1)
> pp.2 <- rweibull(100, shape=2,

scale=1/rate2)
> pp <- pmax( pp.1, pp.2 )

# Run the capacity analysis
> cap <- capacity.and(list(pp, pa, ap),

ratio=FALSE)
> cap$Ctest
Houpt-Townsend UCIP test

data: RT and CR
z = -0.3614, p-value = 0.7178
alternative hypothesis: response times
are different than those predicted by
the UCIP-AND model

> plot(1:2000, cap$Ct(1:2000),
ylim=c(-1,1), type=’l’)

# To run the statistical test, without
# returning the capacity coefficient
> ucip.test(list(pp,pa,ap), OR=FALSE)

There are also parametric methods for analyzing the ca-
pacity coefficient, based on fitting the Linear Ballistic Ac-
cumulator model (Brown & Heathcote, 2008) to the data.
The procedures are outlined in Eidels, Donkin, Brown, and
Heathcote (2010). We hope to add this functionality to the
sft package in the near future.

The Joint Use of the SIC and C(t)

When the experimental manipulations selectively influ-
ence the intended process, the SIC gives a clear indication
of the architecture and stopping rule of a system. When se-
lective influence fails, such as would occur if there are in-
teractions between the processes, it is more difficult to draw
conclusions from the SIC alone. Eidels et al. (2011) demon-
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Figure 10. Plot of a simulated unlimited capacity coefficient
from running the capacity.and function in Example 3.

strated that under some levels of interaction between pro-
cesses, the SIC from one type of model can mimic the SIC
signature of another model. For example, they simulated a
Parallel-AND model with facilitation that produces a SIC
that was indistinguishable from the serial-AND SIC (Fig-
ure 6, top-right).

While this mimicry may be problematic when attempting
to use the SIC in isolation, Eidels et al. (2011) also show
that the capacity coefficient can help to discriminate among
model possibilities. Because the capacity coefficient com-
pares performance to an unlimited capacity, independent,
parallel baseline, facilitatory parallel systems will be rela-
tively faster and thus exhibit super capacity relative to the
UCIP baseline. In contrast, unlimited capacity, independent,
serial processes (also referred to as the standard serial model)
are relatively slower and exhibit have limited capacity coef-
ficient values. Consequently, when a partially negative, par-
tially positive SIC is observed and the MIC is zero, the capac-
ity coefficient can be used to distinguish between facilitatory
parallel and independent serial processes. For full details on
the use of the SIC with the capacity coefficient, refer to Eidels
et al. (2011), particularly Figures 3 and 4.

Although the SIC and capacity coefficient can be used to-
gether to analyze processing characteristics, it is important to
remember that any combination of underlying characteristics
is possible. For example, it is possible to have a limited ca-
pacity, facilitatory, parallel, exhaustive process. Whether the
capacity coefficient will indicate super, unlimited, or limited

capacity will depend on the relative degree of facilitation and
workload capacity limitation. The form of the SIC will also
depend on the degree of facilitation, ranging from all nega-
tive to nearly all positive. Nonetheless, the degree of facilita-
tion does not in any way cause the architecture (or vice versa)
just as the facilitation and architecture are distinct from the
underlying workload capacity.

Clearly the interpretation of the data is more difficult when
there are interactions among the processes, so whenever pos-
sible, it is best to use experimental factors that selectively
influence the intended processes. When there is selective in-
fluence, the SIC forms in Figure 6 will hold regardless of the
workload capacity level.

Designing Experiments for SFT

While all the SFT measures defined herein can be used in-
dividually, Townsend and Nozawa (1995) developed a single
experimental paradigm integrating all the manipulations nec-
essary to utilize both the SIC and C(t) measures on a single
set of data. This experimental design is known as the Dou-
ble Factorial Paradigm (DFP). There are two critical types of
manipulations that comprise the DFP: manipulation of work-
load and manipulation of salience. The name ‘Double Fac-
torial’ is a reference to the use of a full factorial combination
of the two manipulations with each manipulation incorpo-
rating at least two levels of each factor. In this section, we
will illustrate two types of DFP designs for experiments with
and without distractors in the stimuli. Example designs are
shown in Figures 11, 12, and 13.

The first manipulation needed in the DFP is a workload
manipulation. This manipulation is necessary to assess the
workload capacity of the system, or the information through-
put as the number of sources or targets increases. In a task
with n possible sources of information (e.g,. n = 4 letters in
a word as in Houpt & Townsend, 2010a), there are two crit-
ical levels of workload needed for the capacity coefficient:
one condition in which all n sources/targets are presented si-
multaneously (e.g., all 4 letters presented as a word or letter
string), and n conditions in which each of the sources/targets
are presented individually (e.g., each single letter presented
individually for a total of 4 single-source conditions). The
latter condition is necessary for formulating the UCIP model
predictions in the capacity coefficients (Equations 3 and 5),
while the former is needed to compare actual performance to
the UCIP prediction.

In its purest form, the workload manipulation is a change
in the absolute number of physical items in the stimulus, such
as the number of items in a visual search display or the num-
ber of features present in a face or object. However, there
are times when is it not possible to have the pure absence
of some stimulus characteristic, such as hierarchical forms
wherein the global configuration would not exist without the
local features, or when the experimental question demands
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the use of distractors in order to assess the information con-
tained in the stimuli, like separable or integral dimensions.
Workload in these cases can be considered a manipulation of
the number of target information sources against either a neu-
tral non-target or even distractor information. No matter the
class of stimuli used, it is important that the aforementioned
two condition types are present: a condition in which partici-
pants respond to all target sources together and all individual
target conditions for estimating the UCIP model prediction.

The salience manipulation is needed to assess the process-
ing architecture and stopping rule with the SIC (and MIC
when needed). This manipulation changes the processing
speed for the different targets or sources of information. The
variation of the processing rates of each source of informa-
tion enables inferences about the spatio-temporal arrange-
ment of those subprocesses (i.e., the architecture) based on
the measurement of a single response time. Often the choice
of salience manipulation will depend on the task and the use
of distractors in the class of stimuli. We will review be-
low some example manipulations previously used in tasks
with and without distractors. Regardless of the design, how-
ever, the choice of physical salience manipulation must meet
the assumption of selective influence, i.e., each manipulation
must affect only the speed of processing of one of the sub-
processes of interest.

Example DFP without Distractors. Figure 11 illus-
trates a DFP experimental design for a simple visual detec-
tion task in which there are only targets and no possible dis-
tractor information from Eidels and Townsend (2009). This
is a variation on the original DFP design by Townsend and
Nozawa (1995) in which participants were asked to make
responses about the detection of one or more dots of light
presented in a dark environment. In this task, the workload
manipulation is the presence or absence of two possible tar-
gets: a dot above fixation and a dot below fixation. When a
target is absent, it is not replaced by a distractor, so the work-
load in this task, corresponding to the physical information
in the stimulus, directly translates to the number of possible
targets. With two possible targets, each of which could be
present or absent, the whole task has three possible target
workload levels: 0 (target absent), 1 (single target present)
or 2 (double/redundant target present). The two single target
conditions provide the data for the UCIP prediction in the ca-
pacity coefficient, and the double target present, also called
redundant target, condition provides the data to be compared
to the UCIP prediction in the capacity coefficients.

When a target is present in Figure 11, it can occur at one
of two contrast levels, as illustrated by the lighter and darker
grey dots, representing higher and lower contrast levels, re-
spectively. This is the manipulation of target salience. The
high contrast dots are well above detection threshold levels,
appearing very bright to the participants, resulting in fast de-
tection response times. The lower contrast level results in

slower detection because it is not as bright as the high con-
trast level. Note that this low contrast does not need to be at
the participant’s absolute detection threshold, it only needs
to be low enough to produce slower response times relative
to the high contrast dots, in accordance with the selective
influence assumption. In fact, it is desirable to find a lower
contrast level here that will order the response time distribu-
tions according to selective influence but that still results in
high detection accuracy.

When the workload manipulation is combined with the
salience manipulation, there are multiple redundant target
stimuli. In this dot task with two salience levels and two
targets, there are four redundant target stimuli that provide
the data for computing the SIC.

Figure 11. Double Factorial Paradigm simple visual detec-
tion task design. High salience of the dots is a higher contrast
level against the black background than the low salience con-
trast level, which was closer to threshold detection levels. In
this task, the light from the lower dot is one source and the
light from the upper dot is the second source.

Note that the stimuli in Figure 11 can be used for
both AND and OR decision rules, depending on the pre-
determined stimulus-response assignment structure. If par-
ticipants are asked to respond when they detect the presence
of any dot, then the response rule is OR because they can
correctly respond ‘yes’ when presented with the the top dot
alone, the bottom dot alone, or both dots together. If partic-
ipants are asked to respond ‘yes’ only when they detect two
dots on the screen, then they are following an AND stop-
ping rule; they can only respond ‘yes’ correctly when the top
and bottom dots are presented (upper left quadrant of Fig-
ure 11 only), and must respond no when zero or one dot is
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presented. Note that the decision rule for this task is not de-
pendent on the salience manipulation of the targets.

Example DFP with Distractors. The DFP can be mod-
ified for use on tasks involving distractors in lieu of the pres-
ence/absence manipulation. There are two ways in which
distractor information can be conceptualized in the DFP
framework: as an uninformative placeholder for the absence
of a target (especially when true absence is not possible) or
as another source of information about the appropriate re-
sponse. The use of distractors is particularly critical for tasks
in which a pure absence manipulation is not possible, such
as a global-local object discrimination task. An example of a
hierarchical forms DFP design used by Johnson et al. (2010)
is illustrated in Figure 12; we note here that the use of distrac-
tor information is critical in this task because a global object
cannot exist without the local objects. Figure 12 illustrates
a design in which the distractor is simply a placeholder: a
single distractor dash is used to signify the absence of a tar-
get and provides a baseline shape from which the salience
manipulation (the ‘pointy-ness’ of the arrowhead) can be de-
fined (high is more pointy (a more pronounced arrowhead),
while low is less pronounced and more similar to the dash).
The assumption here is that because the distractor only has a
single value, it is providing minimal competing information
during the task. Thus, the single target conditions (global
right arrow with local dashes and global dash composed of
local right arrows) provide the single target conditions for the
UCIP prediction in C(t), and the redundant arrow conditions
(global right arrows composed of local right arrows) provide
the all-targets condition for C(t) as well as the four redundant
target stimuli (HH, HL, LH, LL) for the SIC and MIC cal-
culations. In Johnson et al. (2010), participants were asked
to make an OR decision similar to the above dot detection
task: respond ‘yes’ when you see any right-pointing arrows,
global or local or both, and respond ‘no’ only when you see
no right-pointing arrows (the dash composed of dashes). But
just as in the dot detection task, this same set of stimuli could
be utilized in an AND decision task, where ‘yes’ responses
are only to the redundant global-local right-pointing arrows.

Distractors can also be conceptualized as a second
source of information and can be manipulated (number and
salience) just as the target sources are. Such manipulation
is critical for experiments addressing questions about the
nature of information in multidimensional stimuli, such as
whether the dimensions are integral or separable (Garner &
Felfoldy, 1970; Garner, 1974). Manipulations of distrac-
tors are needed for modeling classification or discrimination
tasks, for example, and variable distractors play a key role in
visual and memory search tasks. Figure 13 illustrates a way
to use distractors as additional, possibly competing, infor-
mation sources with the global-local arrows. In this design,
rather than the target absent being a single neutral non-target
dash, the non-target distractors are left-pointing arrows that

Figure 12. Global-local arrow stimuli in the target
present/absent DFP design from Johnson, et al. (2010). Ar-
row salience is defined relative to the neutral dash that points
neither left nor right. The low salience right pointing arrows
have smaller arrowheads and are harder (slower RT) to dis-
tinguish from the dash than the high salience right pointing
arrows with the more pronounced arrowheads.

can also vary in salience. The task here could be an OR de-
cision (respond ‘yes’ if there are any right-pointing arrows,
global, local or both) or AND (respond ‘yes’ only when both
the global and local arrows are pointing right). Interestingly
in this example, when there is an AND decision on the re-
dundant right pointing arrows, there is a corresponding OR
decision being made about the left arrows. When there is
an OR decision on the right arrows, there is a corresponding
AND decision on the redundant left arrows. Additionally, for
assessing response biases and counterbalancing the experi-
ment, the experimenter can leverage this to provide instruc-
tions emphasizing the AND or OR rule for the right or left ar-
rows simply by changing the experimenter-made assignment
of arrow direction to target/distractor class or response key.
Because both the targets and distractors are manipulated in
their number and salience, it is possible to model both types
of stimuli with the SFT measures to enumerate the process-
ing characteristics of both the targets and the distractors, al-
though we cannot say whether or not the same mechanisms
are engaged in both cases.

Stimulus Rates and Contingencies. Consideration
must be given early in the DFP design process to the pre-
sentation rates for each stimulus or stimulus type (redun-
dant/double targets, single targets, target absent, etc.), in or-
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Figure 13. Global-local arrow stimuli in the target versus distractor discrimination DFP design where targets are right-pointing
arrows and distractors are left-pointing arrows. Arrow salience is defined by the relative sizes of the arrowheads which make
the direction harder (slower RT) or easier (faster RT) to determine.

der to minimize or eliminate two sources of bias that can
arise from stimulus contingencies. It is possible that cor-
relations between different target sources and/or between
target and non-target items can be introduced through the
rates of presentation for the target and non-target fea-
tures/stimuli/sources. Participants can often, even implicitly,
pick up on such correlations, which can then bias task per-
formance. Of particular concern to the present effort is that,
within the DFP, it is not possible to eliminate all non-zero
contingencies, as we will illustrate below. Thus, as experi-
menters, we must be aware of these correlations, particularly
if they provide any advantage to redundant target conditions,
because such advantages have been shown to affect the size
of the redundant-signals effect and influence the comparison
between parallel and coactive models (Mordkoff & Yantis,
1991). As we discuss the possible contingencies, we will
review the stimulus rates for DFP that will minimize the
amount of rate-based contingencies present in target detec-
tion tasks and target/distractor discrimination tasks.

The statistical relationships between the various tar-
gets and non-targets are called inter-stimulus contingen-
cies (ISCs), which can result in stochastic dependencies in
the form of interchannel crosstalk between the information
sources. Mordkoff and Yantis (1991) describe mathemati-
cal expressions that can be used to derive the ISCs that may

be present in an experimental design. ISC computations are
based on the difference between the conditional probability
of one stimulus element given a second element and the base
rate of the first stimulus element. In general, it is desirable for
all potential ISCs in an experimental design to be 0, so that
there is no potential for biasing performance based on the
presence or absence of a particular stimulus element. That
is, knowing that a target or non-target is present in one chan-
nel should give you no information about whether or not a
target is present in the other channel. For a full discussion of
the influence ISCs can have on race model performance and
model identification, refer to Mordkoff and Yantis (1991).

For our discussion of ISCs and to foreshadow the coding
scheme for the sft package, we will use the following nota-
tion:

A The first source of information to be processed.
B The second source of information to be processed.
A2 High salience target stimulus on first source.
A1 Low salience target stimulus on first source.
A0 No stimulus on first source of information.
A−1 Distractor stimulus on first source of information.

Using this notation, the ISC between a non-target and a
target element is given by

IS C(A0 ⇒ B1) = P[B1|A0] − P[B1]
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or
IS C(B0 ⇒ A1) = P[A1|B0] − P[A1].

There are two ISCs of interest in the basic detection DFP
illustrated in Figures 11 and 12: the relationship between a
target in one channel and a non-target element in the other,
and the relationship of the target elements to each other. The
ISCs of interest are:

ISC(A0 ⇒ B1) = P[B1|A0] − P[B1]

ISC(B0 ⇒ A1) = P[A1|B0] − P[A1]

ISC(A1 ⇒ B1) = P[B1|A1] − P[B1]

ISC(B1 ⇒ A1) = P[A1|B1] − P[A1]

The first two lines give the interstimulus contingencies of
a target appearing in one channel given that a target is not
present in the other. Similarly, the third and fourth lines are
the interstimulus contingencies of a target appearing in one
channel given that a target is present in the other.

There are two commonly utilized task structures for the
target detection DFP design that will exhibit ISC = 0 for all
of the above ISCs of interest. In one structure, which we
refer to as the equal category rates design we first consider
the four trial types within the DFP design: redundant targets
(AiB j where i, j ∈ {1, 2}), single targets on the first source
(AiB0 where i ∈ {1, 2}), single targets on the second source
(A0B j where j ∈ {1, 2}), and target absent trails (A0B0). We
set the base rate of presentation of each stimulus type to be
equal, with i, j ∈ {1, 2}:

P[AiB j] = P[AiB0] = P[A0B j] = P[A0B0] = .25.

This makes the unconditional probabilities of each target
P[Ai] = P[B j] = .5. The relevant conditional probabilities in
this task, with i, j ∈ {1, 2}, are

P[B j|Ai] = .5

P[Ai|B j] = .5.

Thus, all the target ISC values are 0.
Note that in the equal category rate design, while the four

types of trials are presented with equal likelihood, the rates
for each individual stimulus in the design (i.e. the individual
stimuli that incorporate the salience manipulations) are not
equal. Rather, the rates for the individual stimuli depend on
the number of stimuli that fall into the four trial categories;
because there are different numbers of stimuli in each cate-
gory, the individual rates vary by category. Assuming that the
stimuli within a category are presented with equal likelihood,
this design results in individual stimulus rates of:

P[A2B2] = P[A2B1] = P[A1B2] = P[A1B1] =
1

16

P[A2B0] = P[A1B0] = P[A0B2] = P[A0B1] =
1
8

P[A0B0] =
1
4
.

A second possible DFP design, which we refer to as the
equal stimulus rates design starts by assuming that all nine
individual stimuli in the DFP target detection design are pre-
sented equally, P[AiB j] = 1

9 for i, j = 0, 1, 2, rather than bas-
ing the rate on the trial type categories. In this case, the un-
conditional probability of each target is P[Ai] = P[B j] = 2

3 ,
and the relevant conditional probabilities, again with i, j ∈
{1, 2}, are,

P[B j|A0] =
2
3

P[Ai|B0] =
2
3

P[B j|Ai] =
2
3

P[Ai|B j] =
2
3

Thus, the ISC values are all 0. Note that ISC = 0 holds
if we break down all the probabilities by the stimulus level,
high (2) or low (1), in which case all the unconditional and
conditional probabilities are equal to 1

3 .
Potential ISCs in an experiment must be further bal-

anced out with nontarget-driven decision biases that may be
present in the task which can also be determined through
contingency information (Mordkoff & Yantis, 1991). Where
ISCs concern the statistical relationship between the identity
(target/non-target) information from each source (and do not
consider the assignment of each stimulus to a response rule),
nontarget-driven decision biases are concerned with the in-
fluence that the presence of a non-target in the stimulus may
have on biasing the decision process for a given task. These
biases are captured in the computation of non-target response
contingencies (NRCs). The NRC is computed as the differ-
ence between the conditional probability of a ‘target present’
response given a particular non-target item and the baseline
proportion of ‘target present’ trials in the experiment. That
is,

NRC(N) = P[+|N] − P[+]

where P[+] is the unconditional probability of a ‘target
present’ trial and P[+|N] is the conditional probability of a
‘target present’ trial given the presence of a non-target stim-
ulus item.

For the DFP target detection designs, we want to consider
the NRCs for two stopping rules, OR and AND, using the
two common designs outlined in the previous section. In the
equal category rates design, in which P[AiB j] = P[AiB0] =

P[A0B j] = P[A0B0] = .25, for the OR stopping rule:

POR[+] =
3
4

POR[+|A0] = POR[+|B0] =
1
2

NRC(A0) = NRC(B0) =
1
2
−

3
4

=
−1
4
.
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And for the AND stopping rule:

PAND[+] =
1
4

PAND[+|A0] = PAND[+|B0] = 0

NRC(A0) = NRC(B0) = 0 −
1
4

=
−1
4
.

Thus for both stopping rules, we see by the negative NRC
values that in the DFP detection design, the presence of a
non-target trial is correlated with a ‘target absent’ response.

Now consider the equal stimulus rates design in which all
nine stimuli are presented at equal rates. Starting again with
the OR stopping rule:

POR[+] =
8
9

POR[+|A0] = POR[+|B0] =
2
3

NRC(A0) = NRC(B0) =
2
3
−

8
9

=
−2
9
.

And for the AND stopping rule:

PAND[+] =
4
9

PAND[+|A0] = PAND[+|B0] = 0

NRC(A0) = NRC(B0) = 0 −
4
9

=
−4
9
.

Again, for both the OR and AND decision rules, we see neg-
ative NRC values, implying that the presence of a non-target
trial is correlated with a ‘target absent’ response.

Thus, we can see that for DFP target detection designs,
whether your workload manipulation is target absense or the
presence of a non-varying distractor, the DFP designs that
exhibit IS C = 0 consistently produce an NRC that is is non-
zero. It is critical, then, for NRC to be minimized in a DFP
design, and as our results show, this can be dependent on
the stopping rule chosen for the experiment. In Table 2, we
highlight a good choice of stimulus rates for both the OR
and AND stopping rules that will minimize NRC, according
to the above computations.

In addition to stopping rule, the NRC value is also de-
pendent on the total number of stimuli in an experiment.
Consider the target/distractor discrimination task illustrated
in Figure 13 in which the distractor arrows are also varying
in their salience. This design contains the same four trial
type categories (redundant targets, single targets on the first
source (global arrows), single targets on the second source
(local arrows), and target absence or, in this case, double dis-
tractors). However, a key difference between this design and
the target detection with distractors in Figure 12 is the total
number of stimuli; each category in this design contains four
stimuli, for a total of 16 stimuli in the experiment instead of

nine. It follows that the equal category rates design and equal
stimulus rates design are essentially the same. Thus, for ei-
ther an OR or AND decision rule, utilizing P[AiB j] = 1

16
for i, j = ±1,±2 as the likelihood of any individual stimulus
will produce relevant ISC values of 0. Under this choice of
stimulus rate, the NRC = −1

4 indicating a negative nontarget-
decision bias in either type of task. Thus, for target/distractor
discrimination with variable distractors, the stimulus rates
that exhibit IS C = 0 and minimize NRC are the same for
both the OR and AND tasks. We have listed this in Table 3,
showing the same choice of stimulus rates for OR and AND,
unlike Table 2 which has different recommendations for OR
and AND tasks.

Importantly, across DFP designs that have been developed
in the published literature, we know of no possible DFP stim-
ulus rate structure in which the ISC values are all 0 and there
is simultaneously an absence of nontarget-driven decision
bias (i.e., NRC = 0). However, considering the above re-
sults, we can see that it may be possible to choose the stimu-
lus rates so as to minimize the nontarget-driven decision bias.
This choice may be dependent on both the choice of stopping
rule and on the total number of stimuli in the experiment. For
the OR stopping rule in the detection task with nine stimuli,
the NRC value is lower for the equal stimulus rates design,
where the presentation rates of all nine stimuli are equated.
But for the AND stopping rule in the detection task with nine
stimuli, the NRC value for the equal category rates design
is lower, so equating the presentation of the stimulus types,
rather than individual stimuli, will minimize the nontarget-
driven decision bias. When the task switches to one with
variable distractors, the OR and AND designs minimizing
NRC utilize the same presentation rates. Bear in mind that if
you choose to use or develop a DFP design for another type
of task or decision rule (Same-Different, Go/No-Go, Cate-
gorization/Classification, etc.), you will want to utilize the
above equations for ISC and NRC to optimize your stimulus
presentation rates so as to minimize the possible biases in
your design. Again, the reader is referred to Mordkoff and
Yantis (1991) for additional details on stimulus contingen-
cies.

The effect of ISC and NRC on performance and model
interpretation can be determined by manipulating both types
of contingencies and measuring the changes of the response
times in the condition(s) of interest (like the redundant target
condition). As of yet, theoretical work relating the influence
of non-zero ISC or non-zero NRC values to the SFT mea-
sures is lacking, but is an important topic of future research.

DFP Data for sft

The sft package has additional tools that allow for ana-
lyzing multiple participants and conditions at once, as long
as the data are in the proper format. The basic format is a
data frame with six (or more) variables: Subject, Condition,
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Correct, RT, Channel1, Channel2, . . . , Channeln. Each row
in the data frame corresponds to a single trial. Subject and
Condition are only used by the program to group data, so
any coding scheme can be used. Correct is a logical vari-
able indicating whether the participant correctly responded
on that trial. RT is the time the participant took to respond
on a given trial. Each Channel column indicates the level of
the stimulus presented for a particular source. The possible
values are ±2,±1 or 0, where 2 indicates high salience, 1 in-
dicates low salience and 0 indicates there was no information
presented for that source. Positive values indicate that tar-
get information was presented on that source while negative
values indicate distractor information. Because the focus of
SFT is on analyzing multiple sources of information, at least
two Channels are required, but any number are possible. The
group SIC analysis in sicGroup is currently limited to two
channels, but the capacity function, capacityGroup, is capa-
ble of analyzing data with more than two channels.

These variables will be sufficient to complete an SFT anal-
ysis of a DFP experiment with two targets/sources of infor-
mation (i.e., two channels to be modeled). Additional vari-
ables may be included in your data frame, particularly any
additional metadata like Gender, Age, Trial Number, Testing
Session Number, etc. But these variables will be ignored by
the sft functions.

Let us consider how the arrow stimuli from Figure 12
would be coded, as summarized in Table 2. For the global-
local arrows, two channels are needed, with Channel1 cod-
ing the global arrow information and Channel2 coding the
local arrow information. On either channel, the target absent
condition (the dash pointing neither right nor left) is given
the value 0; the high salience arrows are given a value of
+2 and the low salience arrows are coded by +1. This same
coding scheme can be utilized for any DFP design with tar-
get present/absent as the workload manipulation. Note that
in Table 2, we have given the recommended coding scheme
for the sft package as well as the recommended trial rates for
minimizing NRCs in the designs while maintaining IS C = 0.

Now let us consider an alternative DFP design where the
target absent condition is replaced by a distractor stimulus
containing competing information. The recommended sft
data coding and trial presentation rates are summarized in
Table 3. For the arrows design in Figure 13, this means that
when a target right-pointing arrow is not present, rather than
a dash, the global or local arrow is a left-pointing arrow, con-
taining distractor directional information. With two salience
levels for both target and distractor stimuli, this design im-
plements the ±1, ±2 coding scheme described above.

For an experimental design with more than two channels,
n channels can be identified by creating a Channelα vari-
able for each α in α = 1, 2, . . . , n. For example, in a 4-
channel experiment, like the 4-letter words studied by Houpt
and Townsend (2010a), the values on the channels should

be coded in four variables: Channel1, Channel2, Channel3,
Channel4. It is important that for however many channels
are coded, the channel variables must be listed numerically
and consecutively, following the naming convention outlined
herein. Note also that as of this publication, only the capacity
functions are capable of analyzing more than two channels;
the SIC functions, sic and sicGroup, are capable of analyz-
ing only the 2-channel DFP data. Extensions to additional
numbers of factors (e.g., 2x2x2) or additional numbers of
levels per factor (e.g., 3x3) are possible as the theory and
measures can extend to n sources of information; we will add
the appropriate extensions to the sft package as such theory
is developed and published.

A set of sample data is included in the sft package, called
dots. These data, from Eidels and Townsend (2009), include
response time and accuracy from nine participants that com-
pleted two versions of the DFP task with the dots stimuli
illustrated in Figure 11. Stimuli were either two dots, one
above fixation and one below, a single dot above fixation, a
single dot below fixation, or a blank screen. The salience ma-
nipulation was the contrast level of the dots, such that each
dot was shown at either high or low contrast when present.
In the OR decision task, participants were asked to respond
“yes” if either of the dots was present; in the AND decision
task, they were asked to respond “yes” only when both dots
were present. More details of the task are available in Eidels
and Townsend (2009) or Houpt and Townsend (2010b).

The dots data is a data frame containing the six required
variables: Subject, Condition, Correct, RT, Channel1, Chan-
nel2. Subject is a character vector indicating the participant
identifier code; here we have two letter codes for each of the
nine participants. Condition is a character vector indicating
which version of the task (OR or AND) the data are from.
Correct is a logical vector indicating if the response on each
trial was correct (TRUE or 1) or not (FALSE or 0). RT is the
numeric vector of response times. Channel1 and Channel2
are numeric vectors indicating the stimulus level for the two
dots, with Channel1 giving the value for the upper dot and
Channel2 giving the value for the lower dot. There were no
distractors in this task, so there are three possible values for
Channel1 and Channel2: 0 = target absent, 1 = target present
at low contrast, 2 = target present at high contrast.

The rows in the dots data frame are the individual trials
of the experiment. That is, all data from every trial by every
participant is included. This is critical for estimating the full
response time distributions for the SFT analyses.

Example 4: dots

# Load the dots data.
data(dots)
head(dots)
summary(dots)
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sft Data Coding Trial Rates*
Trial Type Source 1 Source 2 Channel1 Channel2 OR AND

High Target High Target 2 2 1
9

1
16

Redundant High Target Low Target 2 1 1
9

1
16

Targets Low Target High Target 1 2 1
9

1
16

Low Target Low Target 1 1 1
9

1
16

Single High Target Absent 2 0 1
9

1
8

Target A Low Target Absent 1 0 1
9

1
8

Single Absent High Target 0 2 1
9

1
8

Target B Absent Low Target 0 1 1
9

1
8

Target Absent Absent Absent 0 0 1
9

1
4

Table 2
Channel Codes for DFP Target Detection Designs
*Trial Rates are the proportion of the total trials recommended for minimizing the non-target response contingencies; see text
for details. The OR task is based on the equal stimulus rate design and the AND task is based on the equal category rate
design.

sft Data Coding Trial Rates*
Trial Type Source 1 Source 2 Channel1 Channel2 OR & AND

High Target High Target 2 2 1
16

Redundant High Target Low Target 2 1 1
16

Targets Low Target High Target 1 2 1
16

Low Target Low Target 1 1 1
16

High Target High Distractor 2 -2 1
16

Single High Target Low Distractor 2 -1 1
16

Target A Low Target High Distractor 1 -2 1
16

Low Target Low Distractor 1 -1 1
16

High Distractor High Target -2 2 1
16

Single High Distractor Low Target -2 1 1
16

Target B Low Distractor High Target -1 2 1
16

Low Distractor Low Target -1 1 1
16

Target High Distractor High Distractor -2 -2 1
16

Absent / High Distractor Low Distractor -2 -1 1
16

Redundant Low Distractor High Distractor -1 -2 1
16

Distractors Low Distractor Low Distractor -1 -1 1
16

Table 3
Channel Codes for DFP Target-Distractor Discrimination Designs
*Trial Rates are the proportion of the total trials recommended for minimizing the non-target response contingencies while
maintaining interstimulus contingencies equal to zero; see text for details.

# Calculate and analyze the SIC for each
# participant in each condition.
sicGroup(dots)

# Calculate Cor and Cand for each
# participant in each condition.
capacityGroup(dots)

We do not include the extensive output here. Instead, we
encourage readers to install the sft package and familiarize
themselves with the functionality using the dots data.

General Notes on Design

Since the emergence of the DFP in 1995, the design has
been adapted from the original detection task (similar to Fig-
ure 11) to target discrimination (e.g., Johnson et al., 2010; In-
gvalson & Wenger, 2005), same-different judgments (Perry,
Blaha, & Townsend, 2008), categorization (Fifić et al., 2008;
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Fifić & Townsend, 2010), memory search (Townsend & Fi-
fić, 2004), and visual search (Fific, Townsend, & Eidels,
2008), and has been applied across a variety of stimuli such
as alpha-numeric characters, faces, and novel visual ob-
jects. It is possible that with a good choice of workload and
salience manipulations, any type of perceptual or cognitive
decision making task on any class of stimuli can be adapted
to a DFP design. Note that while we have illustrated the DFP
with visual cognitive stimuli and tasks, DFP is not limited
to the visual modality. For example, Altieri and Townsend
(2011) utilized the DFP to analyze audio-visual speech per-
ception using a design in which one source of information
was the visual stimulus of a person mouthing a word and the
other source of information was the auditory stimulus of the
spoken word.

Whatever the task, stimulus class, and modality, there are
some key things to keep in mind about the choices of both
the workload and salience manipulations:
Workload Manipulation
• Workload refers to the number of target sources, which

is sometimes the pure number of items in the display or the
number of targets relative to a constant load of distractors.
• When using distractors, keep the number constant so

that only the number of target sources is varying.
• When modeling both targets and distractors, have bal-

anced conditions of fixed numbers of distractors relative to
varying numbers of targets and fixed numbers of targets rel-
ative to varying numbers of distractors.
• Context, background or noise may be added to a stim-

ulus, but should be held constant across all conditions in the
design so as not to add another source of information com-
peting with the target sources.
• The workload manipulation should be independent of

or orthogonal to the salience manipulation so that the same
physical manipulation is not being used to influence both the
presence of a target and the speed of processing of that target.
Salience Manipulation
• The manipulations of stimuli to affect the relative pro-

cessing speeds should exhibit effective selective influence,
so that a single physical manipulation of the stimulus affects
only the speed of one subprocess at a time.
• Salience is a relative manipulation in that the low

salience manipulation should result in slower processing
than is observed in the high salience condition. For exam-
ple, a point of light near threshold is detected more slowly
than a point of light well above threshold in its bright-
ness or contrast. Thus, there is no absolute right or wrong
amount/intensity of salience manipulation here, as long as
the chosen factor levels result in an strong ordering of the
response time distributions, S high(t) < S low(t), without sig-
nificantly lowering accuracy.
• Manipulations of target salience should be independent

of the stopping rule or decision criteria for a given task.

• The salience manipulation should be independent of or
orthogonal to the workload manipulation so that the same
physical manipulation is not being used to influence both the
presence of a target and the speed of processing of that target.

In our explication of the SFT measures, particularly SIC,
we focused on the case of two targets or two processing chan-
nels, for both clarity and tractability and because most of
the studies cited herein have utilized manipulations only two
sources of information. Importantly, these measures are not
limited to only two targets and are scalable to n sources for
a given task. For an example of a three factor SFT study
(2x2x2 factorial), see Perry et al. (2008). Work is currently
under way to generalize the SIC to more sources of informa-
tion. As these advances and others are published, they will
be included in the R sft package.

Conclusion

Systems Factorial Technology has been applied in a wide
variety of psychological studies, from basic psychophysical
tasks (C.-T. Yang et al., 2011), visual cognition (Zehetleitner,
Krummenacher, & Müller, 2009), aural cognition (Altieri
& Townsend, 2011), memory (Townsend & Fifić, 2004), to
more complex tasks in social psychology (H. Yang, Houpt,
Khodadadi, & Townsend, 2011), developmental psychology
(Von Der Heide, Wenger, Gilmore, & Elbich, 2011) and clin-
ical psychology (Johnson et al., 2010; Neufeld, Townsend,
& Jetté, 2007). Despite this diverse range of applicability,
the use of SFT is fairly limited within psychology. One
major factor contributing to its lack of use is the difficulty
in translating from the complex mathematical derivations
(Townsend & Nozawa, 1995; Townsend & Wenger, 2004;
Houpt & Townsend, 2010b, 2012) to applied settings. By
developing a package for the popular data analysis software
R (R Development Core Team, 2011), we hope to alleviate
this difficulty.

In addition to making the basic tools of SFT more acces-
sible, the sft package can also serve as a repository for re-
lated code as new advances to the methodology arise. For
example, forthcoming work on the use of functional princi-
pal components analysis with the capacity coefficient (Burns,
Houpt, & Townsend, 2013) will soon be added to the sft
package.
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