Functional Principal Components Analysis and the Capacity Coefficient

D. Burns
Joseph W Houpt
M. J. Endres
J. T. Townsend

Available at: https://works.bepress.com/joseph_houpt/19/
Purpose

- The capacity coefficient[3, 4] is a well-established measure of the efficiency of processing combined sources of information.
- The capacity coefficient is a function.
- Typical clinical analyses, such as structural equation modeling, use scalar values or vectors with limited length as input.
- We were interested in finding an efficient way of reducing the information contained in the capacity coefficient to a scalar.

The Capacity Coefficient

The capacity coefficient ($C(t)$) is a measure of processing efficiency that looks at how reaction times change under a workload manipulation. The measure compares processing speed for the "whole" compared to the sum of its parts. In this case the parts are memory search for color (VS) and for letters (PL).

$$H(t) = \ln S(t) = \ln (1 - F(t))$$

$$C(t) = \frac{H_{VS}(t) - H_{PL}(t)}{H_{VS}(t) + H_{PL}(t)}$$

Finding the principal components and associated scores proceeds in the same manner as PCA. For each $\xi_i(t)$,

maximize $N^{-1} \sum_i \left(\int \xi_i(t) C_i(t) dt \right)^2$

such that

$\int \xi_i(t) dt = 1$ and $\int \xi_i(t) \xi_j(t) dt = 0$, $i < j$.

Varimax

- The components form a basis of the space.
- This basis can be rotated to concentrate variance and improve interpretability.

Let B be a $K \times N$ matrix representing the first K principal component functions ξ_1, \ldots, ξ_K and T any orthogonal matrix of order K. Find $A = TB$ in order to maximize the variation in the values a_{nj}.

Alternative Approaches

1. Estimate empirical CDF’s.
2. Register data. Subtract each participant’s median RT across all single and double target trials to align CDF’s.
3. Calculate smoothed $H(t)$. Transform the CDF’s into integrated hazard functions and fit with a monotone Hermite spline (or similar) to smooth.
4. Compute $C(t)$. Take the ratio of the smooth $H(t)$ to obtain smoothed $C(t)$ estimates.
5. Subtract means. Calculate the mean capacity function across participants and then subtract to better see individual variance.
6. Determine weighting function. To place more emphasis on regions with the most data, compute a weighting function across all participants based on registered RT density.

Results

<table>
<thead>
<tr>
<th>PC 1</th>
<th>PC 2</th>
<th>$C(t_{\text{median}})$</th>
<th>Mean $C(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>0.85</td>
<td>0.22</td>
<td>0.65</td>
</tr>
<tr>
<td>OPS</td>
<td>0.53</td>
<td>-0.09</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Correlations between the standard working memory tasks and different reductions of the capacity coefficient.

- The first PC has higher correlation with the ACT score and the OPS than both $C(t)$ at the median RT and $C(t)$ averaged across time.

References

Funding

This work was supported by NIH-NIMH MH 05771707 and AFOSR FA9550-07-1-0078 awarded to JT.