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Abstract. Spatial synchrony in abundance among populations at different locations has
been studied for many species. Different statistics have been used as measures of synchrony,
and various techniques have been employed to test the hypothesis that there is no synchrony.
In this paper we first describe and contrast various measures of synchrony and then discuss
testing for no synchrony. Tests that ignore the serial correlation are commonly employed
but are incorrect if there is serial correlation present, as is often the case with populations
followed over time. Alternative approaches and their limitations are presented including
tests based on residuals, adjusted degrees of freedom tests, and bootstrap procedures. We
recommend tests based on residuals in a model-based setting. We also discuss some of the
difficulties of finding model-free approaches and suggest some methods based on confidence
intervals for future study.

Key words: autoregressive models; bootstrapping; concordance; correlation; hypothesis testing;
Moran effect; spatial synchrony; time series.

INTRODUCTION

The densities of populations in different locations
are frequently observed to fluctuate synchronously.
Such behavior, known as spatial synchrony, has been
described, for example, in small mammals (Bonrup-
Nielson and Ims 1988, Krohne et al. 1988, Hansson
1990, Machin-Rogalska and Nabaglo 1990, Heikkilä
et al. 1994), butterflies (Pollard 1991, Sutcliffe et al.
1996, 1997), grouse (Ranta et al. 1995b), various spe-
cies of moths and aphids (Hanski and Woiwod 1993),
sheep (Grenfell et al. 1998), forest defoliators (Mason
1978, Williams and Liebhold 1995, Myers 1998), and
acorn crops (Crawley and Long 1995).

Two basic causes of synchrony have been proposed:
dispersal and the effects of exogenous factors, fre-
quently weather, that influence each of the populations
in the same way. Populations that are linked by dis-
persal may fluctuate synchronously because increases
in density at one location produce emigrants that move
into nearby populations (Barbour 1990, Holyoak and
Lawler 1996). Exogenous factors such as weather typ-
ically vary in the same direction over a large region
and thus can have the same influence on many popu-
lations (Haydon and Steen 1997). Moran (1953) dem-
onstrated that populations with common linear auto-
regressive models have the same correlation as shared
exogenous factors, such as the weather. Since most
populations are influenced by weather to some degree,
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the widespread occurrence of spatial synchrony is not
surprising. Other exogenous factors include natural en-
emies that disperse between sites or are synchronized
themselves for reasons independent of prey density. For
example, Myers (1988) proposed that virus infections
might spread between populations and serve to syn-
chronize densities of forest tent caterpillars. Heikkilä
et al. (1994) proposed that mustelid predators might
synchronize densities of microtine rodents in Scandi-
navia.

Most observations of synchronous fluctuations in
density have concerned different populations of the
same species. A number of studies, however, have doc-
umented synchrony between species. The most famous
example is the snowshoe hare–lynx oscillation in bo-
real forests of North America, which is also correlated
with several other species of mammalian predators and
their prey (Elton and Nicholson 1942, Royama 1992).
The principal focus of this paper is on the spatial syn-
chrony of densities of the same species at different
locations, but the same statistical issues apply to the
wider context.

Despite a surge of interest in spatial synchrony, lim-
ited attention has been given to the issue of how syn-
chrony of populations should be measured and tested.
Synchrony has been measured in a variety of ways, and
various methods have been employed to determine
whether the observed pattern of synchrony differs sta-
tistically from that expected under ‘‘no synchrony.’’
These topics are the central focus of our paper. We will
first examine various ways to measure synchrony in
observed series of data and then view measures in terms
of models for random processes underlying the data.
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FIG. 1. Midsummer densities of white-footed mice for eight populations in western Massachusetts, USA (Elkinton et al.
1996).

These models provide the basis for our investigation
into tests for no synchrony. After arguing that many of
the commonly used procedures can have serious prob-
lems, we outline some alternative methods and outline
the challenges in conducting statistical inference in this
setting.

The spatial synchrony of population densities that
we examine here is but one of various forms of syn-
chrony that abound in the biological world. Many or-
ganisms exhibit synchronized behavior or physiology,
such as synchronized life cycles, mating behaviors, es-
tral cycles, etc. Many of the statistical issues raised
here may also be pertinent in assessing these other
types of synchrony.

MEASURES OF SYNCHRONY

Suppose the data consist of n different series mea-
sured at the same T points in time, where xit is the
population density (or some function of it such as
log(density)) for series i at time t. For location i, the
series is represented by xi1, . . . , xiT.

To illustrate, we use a 10-yr time series of densities
of the white-footed mouse, Peromyscus leucopus, that
we and our colleagues (Elkinton et al. 1996) collected
at eight sites in western Massachusetts, USA. At each
site we estimated densities with standard mark–recap-
ture methods (Otis et al. 1978) in August of each year.
For this problem, there are n 5 8 locations and T 5
10 time points. Figs. 1 and 2 display the data using
density and log(density), respectively.

Most studies that document synchrony begin with
plots like Figs. 1 and 2, and synchrony is often said to
exist when the population densities rise and fall to-
gether. Figs. 1 and 2 show that the visual impression
of just ‘‘how synchronized’’ the series are can depend
on whether densities or transformed densities are used.
In many cases, from visual inspection, the trajectories
are so similar that the investigators feel no need for
further statistical demonstration of synchrony. Exam-
ples include Hornfeldt (1978) and Mason (1978). In
other cases a variety of measures of synchrony are
calculated.

Measures for two series

We first consider measures of synchrony between
two series, say series i and j, followed by consideration
of measures for more than two series.

1. Correlation in series values.—Many studies
(e.g., Machin-Rogalska and Nabaglo 1990, Pollard
1991, Adler 1994, Garber and Burger 1995) have mea-
sured synchrony between two series using either Pear-
son or Spearman correlations. The Pearson correlation
is a well-known measure of the strength of the linear
relationship between two series, but one that changes
under nonlinear transformations of the data such as
taking logarithms. The Spearman correlation is in-
variant to monotonic transformations of the data and
so remains the same for either density or log(density).

Synchrony between populations can also be quan-
tified using cross-correlograms, which are graphs of
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FIG. 2. Log(mice densities) of white-footed mice for eight populations (Elkington et al. 1996).

lag correlations between series vs. lag intervals (vary-
ing from negative to positive values). This is usually
more appropriate when measuring synchrony among
different species, as in Miller and Epstein (1986) and
Ranta et al. (1995a), but can also be applied to study
spatial synchrony among disjunct populations when
population peaks are not coincident (Liebhold et al.
1996). This type of lag in synchrony may arise via
dispersal effects or as a result of geographically vary-
ing responses to synchronous exogenous influences.

2. Correlation in residuals.—Another approach is
to fit a model for each series and then calculate the
correlation between the residuals. A common strategy
has been to first fit an autoregressive model (usually
an AR(1) or AR(2)) in which the current value depends
on a specified number of previous values in a linear
fashion. For example, Hanski and Woiwod (1993) and
Sutcliffe et al. (1996) fit AR(1) models while Williams
and Liebhold (1995) used AR(2) fits, all in terms of
log(density). The idea behind this approach is to try
and measure the correlation in the noise, possibly aris-
ing from an exogenous factor such as weather, after
accounting for local dynamics. This is discussed further
from a modeling perspective in Population measures
and models.

Some (e.g., Ranta et al. 1995a, Koenig 1998) use
correlation among residuals after ‘‘detrending’’ the se-
ries to remove a linear trend. Others (e.g., Ranta et al.
1995b) used residuals after removing periodic behavior
modeled as a function of time with trigonometric func-
tions. While detrending makes sense when all of the

series are either increasing or decreasing, removing
periodic behavior may be removing the synchrony of
interest.

3. Measures based on change.—To many investi-
gators, synchrony means simply the tendency of the
series to move in the same direction, especially for
large fluctuations. Letting dit 5 xit 2 xi,t21, another mea-
sure of synchrony is the correlation in these changes
(e.g., Steen et al. 1996, Bjørnstad et al. 1999). The
differences are also sometimes used to remove nonsta-
tionarity in the series.

We propose a simpler related measure of how the
two series change together, namely

A 5 (number of times series i and j move ini j

same direction)/(T 2 1). (1)

Notice that A is the same whether we use density or
any monotonic transformation of it. The Aij, which
ranges from 0 to 1, can be converted to a measure
similar to a correlation, ranging from 21 to 1, by de-
fining tij 5 2Aij 2 1. We can also view t as a modified
version of Kendall’s tau (Kendall 1970). Kendall’s tau
uses all possible pairs of points, but given the temporal
nature of the data, we use only adjacent time points.

4. Coincidence of peaks.—Other investigators have
measured the coincidence of peaks in the density data.
For example, Crawley and Long (1995) studied the
synchrony in acorn production among individual oak
trees in England. Myers (1998) compared outbreak vs.
nonoutbreak years of various species of forest lepi-
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TABLE 1. Measures of synchrony for selected pairs of locations and mean value over all 28 pairs for the mouse data (Elkinton
et al. 1996).

Series r r (log) SP t 5 2A 2 1 N C r (res) SP(res)

1, 2
1, 5
1, 6
1, 7
2, 5
2, 6
2, 7
5, 6
5, 7
6, 7

0.850
0.497
0.574
0.682
0.499
0.607
0.640
0.861
0.304
0.271

0.836
0.613
0.773
0.559
0.588
0.719
0.558
0.687
0.610
0.348

0.818
0.503
0.685
0.527
0.455
0.697
0.576
0.685
0.455
0.345

0.778
0.778
0.333
0.778
1.000
0.556
0.556
0.556
0.556
0.111

3
3
1
2
4
2
2
2
2
1

0.750
0.750
0.333
0.667
1.000
0.500
0.500
0.500
0.500
0.500

0.833
0.730
0.795
0.387
0.670
0.715
0.419
0.718
0.449
0.062

0.817
0.583
0.767
0.317
0.467
0.667
0.367
0.750
0.200
0.133

Mean, all pairs 0.680 0.718 0.672 0.595 0.577 0.692 0.6310

Notes: Abbreviations are: r 5 Pearson correlation for density; r (log) 5 Pearson correlation for log(density); SP 5 Spearman
correlation; A 5 proportion of time the series change in the same direction; N 5 number of coincident peaks; C 5 proportion
of coincident peaks expressed as a fraction of the maximum number of peaks in the two series; r (res) 5 Pearson correlation
on residuals; SP(res) 5 Spearman correlation on residuals. The residuals resulted from fitting a lag-1 model on the log scale.

doptera at different locations around the world. Both
papers used a chi-square test for no synchrony.

Measures of synchrony can also be constructed from
the coincidences of peaks as has been done in the lit-
erature examining synchrony in physiological pulse se-
ries (see Yang and Rao 1993 and references therein).
One approach is to use N 5 number of times that series
i and j both have peaks. This measure fails to account
for how regularly either of the series peaks, so a more
useful measure is C 5 N/M, where if Mi and Mj are the
number of peaks in series i and j, respectively, then M
5 maximum [Mi, Mj]. Note that if the series always
move up and down together, then C 5 1. Other mea-
sures might use troughs or both peaks and troughs.

5. Coefficient of variation.—Several investigators
have used the coefficient of variation in density as in-
dicators of synchrony. Ims and Steen (1990), for ex-
ample, form the coefficient of variation (sample stan-
dard deviation among locations/mean over locations)
at each time and use the average coefficient of variation
over years as a measure of synchrony. We believe how-
ever, that the average coefficient of variation is a poor
choice as a measure of synchrony as it takes no account
of possibly different levels of the populations. One can
readily construct different collections of series, each
collection in perfect synchrony in that they all move
up and down in exactly the same way, and yet the
average coefficient of variation can be made arbitrarily
small or large by manipulating the overall means of
the different series. While standardizing values in each
series may help, it is difficult to interpret the resulting
measure.

Measures for multiple series

With three or more series, a single measure of syn-
chrony might be desired, although it should typically
be used in conjunction with some measure of pairwise
synchrony which conveys more information. One pos-
sibility is to average any of the pairwise measures, such
as the correlation, over the n(n 2 1)/2 different pairs

of series. The average measure of going up and down
together,

AO O ij
i j,i

Ā 5 (2)
(n 2 1)n /2

has the particularly nice property of being the same as
the overall proportion of time (over all pairs) that pairs
of series agree in their change in direction. The average
Spearman correlation, say S̄, is related to a measure of
concordance among series based on ranks. Rank the
data in each series and let Rit denote the rank of the
density at time t in series i, R̄.t denote the average rank
for the n series in year t, and R̄.. 5 SiStRit/nT denote
the overall mean. The ‘‘coefficient of concordance’’
(Kendall 1970:95, Herrara 1998), which measures syn-
chrony in terms of the ranks, is defined by

T
2¯ ¯12 (R 2 R )O • t • •

t51W 5 . (3)
3T 2 T

The maximum value of W is 1, which is achieved when
the rankings in each series agree perfectly over the
years. The relationship to S̄ is that S̄ 5 (nW 2 1)/(n 2
1).

Numerical illustrations

We first illustrate using the mouse data, where the
various measures of synchrony are computed for each
of the 28 pairs of series. Table 1 provides values on
selected pairs and Fig. 3 displays the relationships be-
tween some of the different measures over all pairs.
The measures include r 5 correlation using density,
r(log) 5 correlation using log(density), and r(res) 5
correlations using residuals after fitting an AR(1) mod-
el on the log scale. The different measures can provide
conflicting information. For example, with series 5 and
7, r 5 0.304, but r(log) 5 0.610, while for series 2 and
5 the correlation measures are low to moderate (ranging
from 0.455 to 0.670) yet A and C are both 1. Fig. 3
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FIG. 3. Relationship among various measures of syn-
chrony for each of the 28 pairs of stands in the mouse data
(Elkington et al. 1996); r 5 Pearson correlation on density;
r(log) 5 Pearson correlation on log(density); A 5 proportion
of time the series change in the same direction; r(res) 5
Pearson correlation on residuals after lag-1 fit on log scale;
CV 5 average coefficient of variation over time. The diagonal
lines in the first two plots indicate where the two measures
are equal.

also demonstrates the weak relationship of r(log) with
A and the average coefficient of variation.

Further comparisons can be demonstrated with ar-
tificial data, as displayed in Fig. 4. In Fig. 4a both
correlations are 1, and the two series always move in
the same direction but the visual impression of syn-
chrony is weak due to the low temporal variability in
one series relative to the other. (Although one of the
series looks constant over time, it does vary somewhat.)
In Fig. 4b there is low to moderate correlation but
perfect agreement in moving up and down together and
in coincidence of peaks. The correlation between
changes in the two series were also moderate, being
0.5700 and 0.5345 for Pearson and Spearman, respec-
tively. In Fig. 4c there is very low correlation between
the series and A 5 0.55 but very high correlation in
the residuals after fitting an autoregressive model of
order 2. The data in the last case were generated by
simulating from an AR(2) model with high correlation
in the errors but different dynamic coefficients in the
two series and show that high correlation in the errors,
arising from an exogenous variable, may not manifest
itself in terms of high correlation between the series
values.

Population measures and models

Population measures, analogous to the data-based
ones, can be defined in terms of stochastic models gov-

erning the series. Models are essential for describing
the mechanisms associated with synchrony and also
provide the framework for a discussion of statistical
inference. Let Xit denote the random quantity for the
ith location at time point t and Xt 5 (X1t, . . . , Xnt) the
collection of values, over locations, at time t. We will
be concerned primarily with jointly stationary models
for which our measures of synchrony will not depend
on time. Joint second order stationarity assumes that
the mean, variance, and correlation structure of (Xt,
Xt11, . . . , Xt1k) is the same for any t and arbitrary k;
see Brockwell and Davis (1996:15) for a formal defi-
nition. The stronger notion of strict joint stationarity
assumes that the joint distribution of (Xt, Xt11, . . . ,
Xt1k) is the same for any t and arbitrary k. Stationarity
allows many models, including multivariate ARMA
models, but the model cannot involve any nonconstant
deterministic functions of time.

Under second order stationarity we can define the
population correlation

r 5 corr(X , X )ij it jt (4)

between series i and j, which will not depend on t. This
is the population version of r. Under strict stationarity
we define

p 5 probability that series i and j change ini j

same direction (5)

which is the parametric version of the measure of agree-
ment A.

For nonstationary series, one can define similar
quantities by taking expected values over time, but we
will not pursue this here.

There are three immediate ways to define no syn-
chrony among series; (1) r 5 0, for each pair of series,
(2) the series are stochastically independent, and (3) p
5 0.5 for each pair. These are related but not equiva-
lent. For example, independence implies zero corre-
lation, and independence along with the distribution of
either Xi,t11 2 Xit or Xj,t11 2 Xjt being symmetric around
0 (as happens for Gaussian models) implies pij 5 0.5.

Some investigators might prefer to focus on changes
Dt 5 Xt 2 Xt21, where typically X 5 log(density). While
it always possible to move back and forth between a
model for X and one for D, there are no general results
relating the correlations among series for the two mod-
els. The serial correlation in Dt over time is also im-
portant, because of its potential impact on statistical
inference. If X follows a stationary process with v1 5
lag 1 correlation and v2 5 lag 2 correlation, then corr(Xt

2 Xt21, Xt21 2 Xt22) 5 [(v2 2 1)/2(1 2 v1)] 2 0.5.
Even if the original series has no serial correlation,
there is a correlation of 20.5 between successive dif-
ferences.

Further discussion requires specification of a mul-
tivariate time series model. We will focus on autore-
gressive models Xit 5 f(Xt21, Xt22, . . . , Xt2q, bi) 1 «it,
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FIG. 4. Plots of three artificially generated data sets wherein (a) r 5 1, P 5 1, and A 5 1; (b) r 5 0.3838, r 5 0.700,
P 5 1, A 5 1; and (c) r 5 20.1447, A 5 0.55, r(res) 5 0.9612 after a lag-2 fit. For an explanation of the abbreviations,
see Measures of synchrony.

where f is a known function, bi is a vector of param-
eters, and «it has conditional mean 0, where the con-
ditioning is on past values of the series. The correlation
among errors in series i and j,

r̃ 5 corr(« , « )ij it jt (6)

can arise in part from exogenous variables influencing
all of the series. This is the population version of r(res),
the correlation in residuals.

The two correlations and r are related, but oftenr̃
not the same. For models where each series depends
only on its past values, and r 5 0 are usuallyr̃ 5 0
equivalent. It is possible however, that r can be nonzero
even if is zero. This can happen with models thatr̃
allow past values of one series to influence future val-
ues of other series, as with dispersal, or when there are
lagged exogenous factors.

We illustrate some of the above points using the
linear multivariate AR(q) model:

X 5 b 1 B X 1 B X 1 . . . B X 1 «t 0 1 t21 2 t22 q t2q t

where «t is the n 3 1 vector of errors at time t, b0 is
an n 3 1 vector of intercepts, and each Bk is an n 3
n matrix of coefficients. If each of the Bk is diagonal
then this corresponds to separate AR(q) models for
each series, and zero correlation between the series is
equivalent to zero correlation in the errors. However,
nondiagonal Bk allows past values of one series to in-
fluence future values of other series, and the r’s can
be nonzero even if the are zero. One also has to ber̃’s
cautious about interpreting as capturing all of ther̃
correlation due to exogenous variables such as weather.
Suppose for example Xt 5 b0 1 B1Xt21 1 dt, where
the d itself follows an autoregressive model dt 5 Fdt21
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1 «t, where «t has conditional mean 0. (Note that dt

does not have conditional mean 0.) This describes a
model where the exogenous variables have a lag struc-
ture and can operate on a global level. This leads to
an AR(2) model ,X 5 b* 1 B*X 1 B*X 1 «t 0 1 t21 2 t22 t

where and . If F is not di-B* 5 B 1 F B* 5 2FB1 1 2 2

agonal, then the correlation in the «’s captures only
part of the correlation due to the exogenous factors. It
is possible for the «’s to be uncorrelated yet there are
nonzero correlations among the series.

For separate AR(1) models for each series

X 5 b 1 b X 1 «it i0 i1 i,t21 it (7)

where the «it are random ‘‘errors,’’ independent over t
within a series, with a conditional mean 0 and variance

, and bi1 measures the serial correlation in series i.2si

In this case

2 1/2 2 1/2(1 2 b ) (1 2 b )i1 j1
r 5 r̃ (8)ij ij[ ]1 2 b bi1 j1

for which and equality occurs only when bi1r # r̃ij ij

5 bi2 or when . Similar results hold forr̃ 5 r 5 0ij ij

separate AR(2) models (a popular choice in modeling
population dynamics) with the equality of the two cor-
relations under equal coefficients being related to the
so-called ‘‘Moran effect’’ (Moran 1953, Royama
1992). We emphasize that when the coefficients in the
dynamic models differ between two series, high cor-
relation in the errors may not translate into high cor-
relation in the series as is illustrated in Fig. 4c.

There are other models that could be considered, but
a full discussion of these is outside the objectives of
this paper. See for example Ranta et al. (1997), Grenfell
et al. (1998), and Hudson and Cattadori (1999), for
discussion of other models.

TESTING FOR NO SYNCHRONY

In this section we discuss testing for ‘‘no synchro-
ny,’’ which most investigators equate with indepen-
dence or zero correlation among the series. Construc-
tion of confidence intervals will be discussed later. Un-
til the summary section, most of our discussion is lim-
ited to the context with separate autoregressive models
for each of the series.

Naive tests

The most common naive test for comparing two se-
ries is the standard test for zero correlation (e.g., Sokal
and Rohlf 1981:581, SAS Institute 1990:224), which
compares r(T 2 2)1/2/(1 2 r2)1/2 to a t distribution with
T 2 2 degrees of freedom. Despite its continued wide-
spread use in the context of assessing synchrony (e.g.,
Mackin-Rogalska and Nabaglo 1990, Pollard 1991, Ad-
ler 1994, Garber and Burger 1995, Hawkins and Hol-
yoak 1998), this test is well known to be invalid when
there is serial correlation in both series (Brockwell and
Davis 1996:230). It is valid if one of the series is white
noise.

Root and Cappuccino (1992) tested the hypothesis
that p 5 0.5 by comparing Z 5 (A 2 0.5)/(0.25/(T 2
1))1/2 to a standard normal distribution or equivalently
C 5 Z 2 to a chi-square distribution with one degree of
freedom. Even with no serial correlation over time
within the series, differences from adjacent time points
are correlated over time, and consequently this test is
invalid. The approaches suggested by Goodman and
Grunfeld (1961) to address this do not handle the dy-
namic models of interest here. In a similar vein, the
methods applied by Krohne et al. (1988) and Crawley
and Long (1995) do not account for serial correlation
and cannot be recommended.

Residual and adjusted degrees of freedom tests

There are a few strategies to deal with the problems
caused by serial correlation. One option is to use a
standard test for zero correlation on the residuals after
fitting time series models to each series. This is often
called ‘‘pre-whitening’’ (see Haugh [1976], Brockwell
and Davis [1996:230], and Pyper and Peterman [1998]
for some general discussion and Williams and Liebhold
[1995] for an application after fitting AR(2) models).
For an AR(q) model, this test compares r̃(T 2 q 2 2)1/2/
(1 2 r̃2)1/2 to a t-distribution with T 2 q 2 2 degrees
of freedom, where r̃ is the correlation in the residuals.
For T large this is approximately the same as comparing
Z 5 r̃T1/2 to a standard normal distribution (see Brock-
well and Davis 1996:230).

Another approach is to create a standardized test
statistic Z 5 M/SE(M), where M is a measure of syn-
chrony and SE(M) is an estimated standard error of M
which takes account of the serial correlation. A large
sample test based on Z can be carried out using the
standard normal distribution. This is related to ‘‘ad-
justed degrees of freedom’’ tests based on the corre-
lation. If the estimated standard error of r is of the form
(1/T9)1/2, then the suggestion is to compare r(T9 2 2)1/2/
(1 2 r2)1/2 to a t distribution with T9 2 2 degrees of
freedom. For example, in Fromentin et al. (1998) T9 5
T(1 2 b1b2)/(1 1 b1b2) where b1 and b2 are the estimated
autoregressive coefficients from fitting AR(1) models
to two series. While they did not provide any details,
this results from the fact that for two independent
AR(1) processes, the variance of r is ;1/J, where J 5
T(1 2 b1b2)/(1 1 b1 b2); this follows from Bartlett’s
formula (Brockwell and Davis 1996:232). Hence J is
like a relative sample size with T9 being an estimate
of it. In a closely related spatial problem, Clifford et
al. (1989) used an adjusted degrees of freedom test,
based on a nonparametric estimate of the standard error
of a correlation.

The residual test is based on large sample arguments,
so it is only approximately correct, but it often performs
well with moderate sample sizes. This approach also
has the advantage of being easily implemented after
fitting any type of time series models. The use of stan-
dardized or adjusted degrees of freedom tests depends
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on estimating the standard error of the measure in-
volved, which in turn depends on the dynamic models
used. Determining the standard error can be difficult
for measures other than for correlation, and even for
correlation, it is only easy for the low order autore-
gressive models. In addition, the use of T9 2 2 degrees
of freedom in the adjusted degrees of freedom test is
based on a heuristic argument. For these reasons, we
feel the tests based on residuals is preferred.

Bootstrapping

Some authors have tried simulation or resampling
methods to assess synchrony. For example, Miller and
Epstein (1986) examined synchrony in multiple series
by first getting standard correlations and P values for
each pair of series. They then assessed significance by
comparing summary measures over pairs of series,
based on either the correlations or P values, to simu-
lated behavior under a null model with independence
among series and use of what they call a ‘‘matched
control’’ model within each series. One difficulty is
that the null distribution that is generated depends on
the use of the matched control model, and other null
models (i.e., with independence among series but a
different model than the matched control one for the
series) can lead to different results. Also, for some of
the measures this would only make sense with enough
series so that a reasonable number of pairs enter into
the analysis. Ranta et al. (1995a, b) used resampling
when assessing the significance of correlations among
11 Finnish provinces with 20 yr of data. However, it
is unclear how their resampling incorporates the null
hypothesis of zero correlation. The bootstrap samples
to which the observed correlation is compared should
be generated under the null hypothesis. Also, the 11
provinces in the study are fixed, yet they bootstrap by
resampling pairs of locations. Since bootstrap resam-
pling must be carried out in a manner that reflects the
original randomness in the data (see Efron and Tib-
shirani 1993:91), the locations should not be resam-
pled. Yang and Rao (1993) investigated a model-free
method for testing independence among series based
on the coincidence of peaks, by resampling from the
waiting times between peaks. This approach is attrac-
tive, since it does away with the need for a specific
dynamic model, although it must be assumed that the
waiting times are independently and identically dis-
tributed. While this method is potentially useful, it re-
quires longer series than are usually available in eco-
logical applications, in order to have enough peaks to
get a distribution of waiting times.

We describe a model-based bootstrap approach to
testing for no synchrony using the AR(1) model in Eq.
7 for illustration. For each series estimates of the co-
efficients, say bi0 and bi1, are obtained from which re-
siduals eit 5 xit 2 (bi0 1 bi1xi,t21), t 5 2, . . . T are formed.
The kth bootstrap sample, k 5 1 to K (large) consists
of {xit(k), i 5 1, . . . , n and t 5 1, . . . T}, where xi1(k)

5 xi1 (the same initial value in the respective series is
used) and

x 5 b 1 b x 1 « , t 5 2, . . . , Tit(k) i0 i1 i,t21,(k) it(k) (9)

where the «it(k) are simulated errors. Since we want to
sample under the null hypothesis of independence
among the series, the «it(k) are generated separately for
each series. Within series i, «it(k) arises by sampling with
equal probability from a set of modified residuals

. With least squares estimates (for which thee*, . . . , e*I2 iT

residuals have mean 0), ,1/2e* 5 ((T 2 1)/(T 2 3)) eit it

where the rescaling is such that the variance of a ran-
domly generated error agrees with 2 T 2ŝ 5 S e /(T 2i t52 it

. This modification is often omitted for moderate to3)
large T. If Q is the observed value of the test statistic
and the test is set up in a form that rejects H0 if Q is
large, then the bootstrap P value is

P 5 (number of times Q $ Q)/Kboot k

where Qk is the test statistic computed from the kth
bootstrap sample.

This procedure can be readily extended to handle
dynamic models other than the AR(1) and methods of
estimation besides least squares. (See Davison and
Hinkley [1997: section 8.2] for a general discussion
and Dennis and Taper [1994] for some ecological ap-
plications). One thing to note is that the residuals
should be centered if they do not have mean 0 (Efron
and Tibshirani 1993:95, Davison and Hinkley 1997:
390). As emphasized in Simulations, while the boot-
strap test in this form is attractive for its simplicity and
this is the manner in which it is often used, it is not a
panacea and can encounter some problems.

Example

Table 2 displays two-sided P values for various tests
of no synchrony for the mouse data (Elkinton et al.
1996). The bootstrap samples are generated under in-
dependence among series and using AR(1) models,
which were found to provide an adequate fit to the data.
The Br(log) P value is obtained by finding the bootstrap
P value using the simple correlation r between the
log(densities), while the Br(res) finds the bootstrap P val-
ue using the correlation between the residuals after
fitting an AR(1) model to the log(densities). For these
data the bootstrap P values for r(log) are in general
agreement with the naive P values based on r(log)
which ignore the serial correlation in the series. This
is due to the fact that the serial correlations are modest,
all below 0.2 except for 0.6 in series 7. As noted earlier,
the naive test that ignores serial correlation is essen-
tially correct as long as there is no serial correlation
in at least one of the series. Notice however that there
can be disagreements between the P value based on
r(log) and that based on r(res). Theoretical results,
along with simulations, suggest that we should use the
tests based on r(res). For these data, the bootstrap P
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TABLE 2. Two-sided P values for testing ‘‘no synchrony’’
on selected pairs of stands from the mouse data (Elkington
et al. 1996).

Series r (log) r (res) A Br(log) Br(res) BA

1, 2
1, 5
1, 6
1, 7
2, 5
2, 6
2, 7
5, 6
5, 7
6, 7

0.003
0.059
0.009
0.093
0.074
0.019
0.094
0.028
0.061
0.324

0.005
0.026
0.010
0.304
0.048
0.030
0.261
0.029
0.225
0.875

0.020
0.020
0.317
0.020
0.003
0.096
0.096
0.096
0.096
0.739

0.004
0.051
0.013
0.087
0.075
0.039
0.081
0.031
0.077
0.327

0.006
0.027
0.013
0.311
0.063
0.043
0.269
0.036
0.229
0.867

0.047
0.047
0.370
0.026
0.000
0.043
0.041
0.056
0.056
0.510

Notes: Here, r (log) and r (res) use a standard test for zero
correlation based on log(density) and residuals after an AR(1)
fit on log(density), respectively. A uses a naive chi-square
test for probability 0.5 of moving in the same direction. The
last three columns give the bootstrap P values associated with
r (log), r (res), and A, respectively.

TABLE 3. Simulated rejection rates of tests for zero corre-
lation.

Statistic

b 5 0

T 5 10 T 5 30

b 5 0.4

T 5 10 T 5 30

b 5 0.8

T 5 10 T 5 30

A
r
r (adj)
r (res)
BW

BA

Br

Br(res)

0.1114
0.051
0.024
0.055

···
···
···
···

0.092
0.049
0.05
0.048

···
···
···
···

0.098
0.072
0.042
0.058
0.048
0.032
0.056
0.054

0.084
0.086
0.053
0.050
0.064
0.028
0.056
0.040

0.104
0.152
0.016
0.054
0.062
0.030
0.080
0.048

0.084
0.186
0.03
0.052
0.086
0.066
0.090
0.052

Notes: b 5 amount of serial correlation; T 5 number of
time points; A 5 naive chi-square test; r 5 naive correlation
test; r (adj) 5 adjusted degrees of freedom test; r (res) 5 test
based on correlation in residuals. B indicates bootstrap test
based on the designated statistic. One thousand simulations
per setting were performed with a desired rejection rate of
0.05.

values essentially confirm the nonbootstrap P values
for either r(log) or r(res).

Simulations

The performance of some of the tests was simulated
for two series using the AR(1) model in Eq. 7, with
normal errors having correlation . This also im-r̃ 5 0
plies r 5 0; see Eq. 8. Throughout, based in part on
the mouse data, we use b10 5 b20 5 0.5, 2 2s 5 s 51 2

The initial values (X11, X21) are generated from a0.14.
bivariate normal distribution corresponding to the ap-
propriate stationary distribution. Table 3 provides sim-
ulated rejection rates for different values of b 5 b11 5
b21 and T and for certain of the naive, adjusted, and
bootstrap tests. Since r 5 0, we are simulating the
probability of a Type I error, that is, of rejecting the
null hypothesis of no synchrony when there is no syn-
chrony. When b 5 0, there is no serial correlation
within the series.

The commonly employed naive test based on r per-
forms as expected, being adequate when each series is
white noise (b 5 0) but having rejection rates that are
too high with serial correlation (b ± 0) . The poor
performance of this test is exacerbated for longer se-
ries. The adjusted degrees of freedom test suffers from
the opposite problem of having rejection rates that can
be too low and hence can lead to a loss of power. The
naive test using A has rejection rates that are almost
twice the desired size throughout. The t test based on
the residuals does quite well in all cases, even for short
series.

Turning to the bootstrap tests, the test based on r,
while improving on the naive test, still has difficulty
with high serial correlation (b 5 0.8) . The test based
on A overcompensates in three of the four cases, and
now has rejection rates that are too small, while the
test based on W has generally inflated error rates. The
bootstrap test based on residuals is the only one that
performs fairly well throughout (the one low estimate

of 0.04 has a standard error of 0.006 associated with
it). For these settings not much is gained by using the
bootstrap test based on residuals rather than the t test
based on residuals. But nothing is lost either and the
bootstrap would provide better protection under non-
normal errors.

There are two important points reinforced by the
simulation results. The first is the obvious deficiency
of naive methods that fail to account for serial corre-
lation in the series, when it is present. The second,
concerning the bootstrap methods, is more subtle. No-
tice that the bootstrap tests based on r, A, and W im-
prove on the naive methods since they account for the
model, but they still encounter some problems. The
difficulty is that r, A, and W are not ‘‘pivotal quanti-
ties,’’ that is, their null distribution depends on the
parameters in the models. Different dynamic models
lead to different null distributions. By removing the
dynamic part of the model, the bootstrap test based on
residuals does not suffer from this problem to the same
extent. One approach to correcting the problems with
tests based on measures such as r, A, or W is to boot-
strap a standardized test statistic, but this requires an
estimated standard error for the statistic and offers no
advantage over the residual test in a model-based con-
text. In the model-based setting, we repeat our earlier
recommendation that tests for no synchrony be based
on the residuals.

Confidence intervals

Rather than testing for no synchrony, interest may
lie in estimating the amount of synchrony (as defined
by a suitable population measure, such as r, or p)r̃,
via estimated standard errors and/or confidence inter-
vals. Confidence intervals also offer a direct way to
test for no synchrony in a way that will avoid some of
the problems with tests described in Simulations.

In the model-based context, approximate procedures
for r are available for certain models based on the large
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sample distribution of r (e.g., Brockwell and Davis
1996:232). Rather than detail these procedures, we de-
scribe the calculation of bootstrap standard errors and
confidence intervals. Once again we illustrate with the
AR(1) models in Eq. 7, where the collection of errors,
«1t, . . . , «nt, at time t are allowed to have a general
correlation structure (see Eq. 6). The bootstrap model
is as given in Eq. 9 with the exception that at time t
we do not generate the errors independently for each
series. Instead, a random time, say t*, is sampled from
2 to T, and the generated errors are set equal to the
modified residuals corresponding to time t*. Notice that
this resampling, from the empirical joint distribution
of the residuals, retains the correlation structure among
series. (One cannot simply resample vectors of the ac-
tual densities over time as this will lose the serial cor-
relation within series.) For each of the K bootstrap
samples, the statistic of interest is computed and boot-
strap standard errors and confidence intervals are ob-
tained (see Efron and Tibshirani [1993] and Davison
and Hinkley [1997] for details). This could be done for
r, r(res), and A leading to standard errors and intervals
for r, , and p respectively. The confidence intervalr̃
can also be used to test at level a by rejecting the
hypothesis of zero correlation between two series if the
100(1 2 a)% confidence interval for the correlation
does not contain 0. Similarly a test of H0: p 5 0.5
would reject H0 if 0.5 is not in the interval for p. The
advantage of this approach is that we get both a test
and a range of plausible values for the parameter of
interest. This is a promising direction based on past
successes of bootstrap confidence intervals, but we
leave numerical evaluations of these techniques for fur-
ther investigation.

Model-free considerations

The above methods are model-based and would be
wrong if an incorrect model is fit, say an AR(1) instead
of an AR(2) or a linear model when a nonlinear one is
needed. This issue is certainly not unique to this prob-
lem, as all statistical inferences depend on some model
assumptions. It is important to utilize standard model-
building and assessment techniques for choosing a
model.

Is there a model-free way to address the problem?
One suggestion is to try and develop a model-free es-
timate of the standard error of the statistic involved,
as done by Clifford et al. (1989) for r in a closely
related spatial context, and then bootstrap a standard-
ized version of the test statistic. This needs further
development and assessment in the time-series context.
Another technique is the use of block resampling (Li
and Maddala 1996, Davison and Hinkley 1997:389) but
the value of this for small to moderate length series is
questionable, and the same issues as earlier remain re-
garding constructing tests of no synchrony.

Model-free resampling appears easier when there is
a random sample of locations and we are estimating

overall synchrony (such as an average population cor-
relation) over the larger area from which they are sam-
pled. An example would be in assessing synchrony in
acorn production over a large region based on a sample
of trees. Each bootstrap sample uses a sample of n
series with replacement from the observed series. The
resulting bootstrap samples can be used to construct a
confidence interval, as suggested by Bjørnstad et al.
(1999) for obtaining a bootstrap confidence interval for
the average correlation between differences in
log(abundance). Suppose we condition on the values
of the series at all of the locations in the population
and define M to be the average sample value of the
measure of interest over all pairs of locations in the
area of interest (e.g., the average r over all pairs in the
area). Then the bootstrap interval can be interpreted
conditionally as a confidence interval for M, but it re-
mains to be seen how this interval performs for the
average population measure (e.g., the average r over
all pairs of locations in the area of interest). This issue
needs further study. Resampling in this way should not
be used when the locations in the sample are the only
ones of interest, so the locations are fixed. Finally, even
with random locations, these bootstrap samples should
also not be used directly to construct the bootstrap P
value, Pboot, for testing no synchrony since the resam-
pling is not done under the null hypothesis.

SUMMARY

Our first objective was a discussion of various mea-
sures of synchrony that fall into four major categories:
correlation among series values, association in changes
(e.g., correlation in change, agreement in change in
direction), correlation in residuals after fitting dynamic
models, and coincidence of peaks or other extreme be-
havior of the series. As seen with our examples, these
measures may or may not coincide in their assessment
of synchrony. The measure of agreement and the cor-
relation of changes in the series most closely capture
the dictionary definition of synchrony, as they directly
relate to how the two series move together. The measure
of agreement A has the nice features of being easy to
interpret and invariant to monotonic transformations,
and the combined measure over many series is the sim-
ple average of the pairwise measures. Measures that
capture how often the peaks (and possibly troughs) of
the series coincide are also appealing for their ease of
interpretation. These would be of most use to inves-
tigators interested primarily in whether outbreaks (or
crashes) occur in common over the region of interest,
but are only useful for longer series. Although Pearson
correlation between series values is the most commonly
used measure of synchrony, it may not capture the con-
cept of synchrony between populations in an ecolog-
ically meaningful way. It is difficult to understand just
how synchronized two series with a given correlation
are and, as our examples demonstrated, this correlation
can be low while measures of movement together are
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high. High correlation in the errors or residuals can be
interpreted as indicating that there are some exogenous
variables operating in common over the different lo-
cations. This does not always translate into strong as-
sociations between either series values or changes in
the series. It does however offer the potential for syn-
chronized behavior if the population dynamics are sim-
ilar in the different locations (e.g., the Moran effect).

Our second objective was to heighten awareness of
the challenges in attempting statistical inferences, es-
pecially the popular approach of testing the hypothesis
of no synchrony. Since serial correlation is often pre-
sent in populations over time, tests that ignore it will
have problems and should generally be avoided unless
preliminary investigations clearly establish a lack of
serial correlation. When there are separate autoregres-
sive models for each series, our recommendation is to
use a test based on residuals, with the bootstrap version
offering some protection for small sample sizes. This
does not mean that the correlation in residuals is always
the appropriate way to measure synchrony, but simply
that tests based on residuals perform better than the
existing alternatives. The residual tests of course re-
quire a model for each series, and it is worth empha-
sizing that to this point there is no satisfactory model-
free approach for testing for independence among se-
ries.

We also recall that if there is feedback among the
series or there are global exogenous variables with a
lag structure, then zero correlation in the errors is not
equivalent to zero correlation in the series. In this case,
tests for no synchrony should not be carried out based
on residuals. The bootstrap can be extended if a model
is specified (e.g., a linear multivariate autoregressive
model), but as in our simpler setting, there will be
difficulty in generating bootstrap tests directly, and the
recommendation is to approach the problem via con-
fidence intervals for suitable quantities.

Additional complications arise when there is mea-
surement error, which is typically present since pop-
ulation abundances must be estimated. One ramifica-
tion is that the correlations among the estimated abun-
dances are different than those among true abundances.
The model will also change. For example, if the true
abundances follow an AR(q) model and there is ad-
ditive measurement error with constant variance, then
the estimated abundances follow an ARMA(q, q) model
(see Box and Jenkins 1976:121). In practice, there are
typically standard errors to accompany the estimated
abundances and future work is needed to investigate
how to use this information to get at synchrony in true
abundance values. This is an important area that has
received no attention in the context of assessing syn-
chrony.

With many series, there are also approaches to as-
sessing synchrony that relate a measure of synchrony
(usually correlation) between pairs of series to the dis-
tance between the locations. (See Koenig [1999],

Bjørnstad et al. [1999], and references therein for dis-
cussion of this approach.)

The problem of assessing synchrony, whether
through estimation or testing, is essentially a problem
in multivariate time series and should be examined in
this context. We have outlined the fundamental issues
and strategies in a relatively simple context, but much
work remains before comprehensive recommendations
can be made that will cover the many complex models
encountered in practice.
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