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Abstract. The study of ecological boundaries and their dynamics is of fundamental
importance to much of ecology, biogeography, and evolution. Over the past two decades,
boundary analysis (of which wombling is a subfield) has received considerable research
attention, resulting in multiple approaches for the quantification of ecological boundaries.
Nonetheless, few methods have been developed that can simultaneously (1) analyze spatially
homogenized data sets (i.e., areal data in the form of polygons rather than point-reference
data); (2) account for spatial structure in these data and uncertainty associated with them; and
(3) objectively assign probabilities to boundaries once detected. Here we describe the
application of a Bayesian hierarchical framework for boundary detection developed in public
health, which addresses these issues but which has seen limited application in ecology. As
examples, we analyze simulated spread data and the historic pattern of spread of an invasive
species, the hemlock woolly adelgid (Adelges tsugae), using county-level summaries of the year
of first reported infestation and several covariates potentially important to influencing the
observed spread dynamics. Bayesian areal wombling is a promising approach for analyzing
ecological boundaries and dynamics related to changes in the distributions of native and
invasive species.

Key words: Adelges tsugae; boundary analysis; ecotones; edge detection; hemlock woolly adelgid;
invasive species; spatial statistics.

INTRODUCTION

A central challenge in ecology is determining the

factors influencing species distributions and how these

factors change across space and time (Holt and Keitt

2005). The increasingly serious threats to natural

systems posed by global change emphasize the practical

importance of identifying the environmental factors

associated with range edges (e.g., Gavin and Hu 2006)

and of determining how environmental factors may

influence the distributions of both native and invasive

species. At its core, understanding the dynamics of

species distributions is both a statistical problem of

identifying boundaries between where a species is

present (or abundant) and absent (or rare), and an

ecological problem of determining environmental fac-

tors associated with these boundaries (Gaston 2003,

Fortin et al. 2005).

Two major challenges limit detailed analysis of

ecological and evolutionary processes underlying the

formation, persistence, and change of range edges. First,

the spatiotemporal data required for inference are

lacking (Parmesan et al. 2005). When such data are

available, it is most common for them to be spatially

homogenized as summaries over geopolitical or ecolog-

ical regions such as counties, states, or biomes. Such

aggregation obscures fine-scale spatiotemporal charac-

teristics in the data. Second, data arising from neigh-

boring regions are often more similar than those from

distant neighbors. The spatial structure inherent in the

data is often of ecological interest, but must be

accounted for to make valid inferences (Legendre

1993). Acknowledging spatial structure is particularly

important when considering the spread of invasive

species because ecological dynamics are inherently

correlated in space and time.

Over the last decade a large body of ecological

research has addressed boundary analysis with a

corresponding increase in the number of analytical

approaches available for detecting and analyzing

boundaries (see Jacquez et al. [2000] and Fagan et al.

[2003] for recent reviews and Jacquez et al. [2008] for a

recent special issue on the topic). Wombling, a type of

boundary analysis named in recognition of a pioneer in

the field (Womble 1951), is a technique for determining

zones of rapid change of a quantity of interest as it

varies across some geographical or Euclidean space

(Fortin and Dale 2005). A common secondary concern
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is to assign statistical significance or probabilities to the

identified boundaries.

At present, much of the published literature on

boundary analysis in ecology considers point-referenced

data (i.e., geostatistical data comprised of spatial

locations of points with known coordinates, such as

latitude–longitude) that are either regularly (lattice or

grid) or irregularly spaced. Although point-referenced

data are becoming increasingly accessible (Graham et al.

2004), ecological data covering broad spatial and

temporal scales are more commonly available as

summaries over geographic regions. For example,

locality information for plants from herbaria or from

the USDA PLANTS database (available online)8 is often

provided as county- or state-level summaries rather than

specific locations from where the plants were observed.

Boundary analysis of such areal data is well-developed

in public health fields, but it has received minimal

attention in ecology. Further, most of the boundary

analysis approaches in current use in ecology assign

significance or probabilities to detected boundaries using

null distributions; such inferences are relative to

predetermined and often subjective choices.

Here we describe a promising technique for ecological

analysis of areal data developed by public heath

researchers (e.g., Lu and Carlin 2005, Ma et al. 2006,

Wheeler and Waller 2008) that has as yet seen little use

by ecologists. The method employs a Bayesian hierar-

chical framework that (1) uses areal data; (2) accounts

for spatial structure in these data and the spatial and

nonspatial uncertainty associated with them; and (3)

provides a natural means of assigning probabilities to

boundaries using posterior estimates of the modeled

parameters. As examples, we analyze simulated spread

data and the historic pattern of spread of the invasive

hemlock woolly adelgid (HWA; Adelges tsugae An-

nand). Although this pest threatens hemlock forests

(both eastern hemlock, Tsuga canadensis and Carolina

hemlock, Tsuga caroliniana, are susceptible; see Plate 1)

throughout eastern North America (Orwig et al. 2002)

and is of great concern to both researchers and land

managers, data on HWA spread exists primarily as

county-level summaries documenting the year HWA

infestations were reported in that area. Such reporting is

ad hoc and thus not equally spaced in time. In contrast

to classical approaches, the Bayesian framework incor-

porates prior information (in this case, the likely

correlation between year of first HWA infestation in

spatially adjacent regions) in order to produce improved

estimates of all underlying model parameters. These

parameters are themselves regarded as having probabil-

ity distributions in light of the data (posterior distribu-

tions), which among other things permits direct

estimation of the probability that two geographic

regions are separated by a boundary while simulta-

neously accounting for spatial dependencies (Lu and

Carlin 2005). Our goal is to improve inference between

PLATE 1. A monospecific stand of eastern hemlock (Tsuga canadensis) at Dean Brook, Shutesbury, Massachusetts (USA).
Hemlock is a late-successional conifer that by virtue of its structural and functional attributes supports unique terrestrial and
aquatic ecological communities. As no other co-occurring tree species fill the same ecological role as hemlock, its removal from the
landscape by the hemlock woolly adelgid (Adelges tsugae) is likely to acutely and chronically impact ecosystem processes,
hydrology, and biodiversity. Photo credit: M. C. Fitzpatrick.

8 hhttp://plants.usda.govi

December 2010 3449BAYESIAN AREAL WOMBLING
R

ep
orts



observed spread patterns and underlying ecological

processes by identifying boundaries across which spread

is slower than expected and to determine whether such

boundaries are associated with aspects of the environ-

ment.

METHODS

Study system.—HWA is a small, flightless insect

native to Asia that was first collected from hemlock in

the eastern United States in 1951 in Richmond, Virginia.

HWA infestations were collected next in 1969 in

Philadelphia, Pennsylvania, followed shortly thereafter

by counties southwest of Richmond, Virginia (Fig. 1a,

see the Appendix for a detailed description of these

data). The observed pattern of county-level spread

following these early events largely mimics a diffusive

process although outlying infestations also have ap-

peared in northwestern New York State. As an

exploratory tool, ordinary kriging on the county-level

spread pattern shows slow initial spread from the three

distinct early infestations, followed by spread to the

northeast and southwest (Fig. 1b). Compressed contours

along the Appalachian Mountains suggest that environ-

mental or topographic aspects of this feature may be

associated with reduction of spread rate to the west. In

contrast, spread has been relatively rapid in the

southeastern Appalachians, where contours are spaced

broadly, suggesting topography alone may not influence

spread rate. Despite their proximity to the initial

infestation, counties south of Richmond, Virginia

remain uninfested presumably because of a lack of

hemlock.

Although population and dispersal dynamics of HWA

remain poorly understood, we expect the pattern of

spread to be a function of both environmental and social

factors. Environmental factors such as hemlock abun-

dance and winter temperature (Paradis et al. 2008,

Trotter and Shields 2009) may alter spread rate by

influencing population and dispersal dynamics. Social

factors such as human population density may influence

the pattern of spread both by altering the environment

(e.g., by reducing forest cover or planting hemlocks as

landscape trees) and by influencing the detection and

reporting of HWA infestations. To account for these

processes, we generated a set of covariates for each

county that could influence the spread and detection of

the advancing HWA front, including mean winter

(December–March) temperature, human population

density, and hemlock abundance (see the Appendix for

details regarding the calculation of these variables). We

did not consider physical barriers to spread such as

rivers or mountains (e.g., Wheeler and Waller 2008) in

this analysis because passive dispersal of HWA by wind

and birds is unlikely to be influenced by such features at

the county level.

Bayesian areal wombling.—We follow recent work by

Lu and Carlin (2005) and use a Bayesian hierarchical

model to perform areal wombling. Wheeler and Waller

(2008) extended Lu and Carlin’s (2005) research on

human disease incidence to the spread of rabies using

county-level reporting of rabid raccoons. Following

Wheeler and Waller (2008), we modeled Yi, the number

of months elapsed between the first reported HWA

infestation in the study region in 1951 and the first

reported HWA infestation in each county i as follows:

FIG. 1. Observed pattern of spread of the hemlock woolly adelgid (a) at the county level and (b) smoothed using ordinary
kriging of these dates. Colors indicate time elapsed between the initial infestation in Richmond, Virginia, USA (indicated by red
star) in 1951 and each county’s first reported infestation.
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Yi ; N li;
1

s

� �
ð1Þ

where

li ¼ aþ xibþ /i ð2Þ

is the expected number of months elapsed to first

reported HWA infestation in county i, a is an intercept,

s is the precision, xi is a vector of the covariates, and /i

is a spatial random effect. The spatial random effect /i is
given an intrinsic conditionally autoregressive (CAR)

prior expressed as

/ ; CARðsCÞ ð3Þ

/ j/j 6¼i ; N /̄i;
1

ðsCmiÞ

� �
ð4Þ

where mi is the number of counties neighboring county i

and sC is the precision. The use of a CAR prior for the

random effects serves two functions. Foremost, invasive

spread is a spatial process, with neighboring counties
more similar in date of first infestation than distant

counties. Second, the CAR prior provides a degree of

spatial smoothing and thereby may prevent the errone-

ous detection of barriers that arise from spurious

departures from the overall spatial trend. For example,

detection and reporting of HWA infestations could be

delayed in counties where populations remain at low

densities (Fitzpatrick et al. 2009) because of scarcity of

hemlock or where winter temperatures cause high

mortality (Paradis et al. 2008, Trotter and Shields

2009). In our analysis, we consider counties to be

neighbors if they share a common boundary; more

sophisticated choices such as inverse distance weighting

warrant investigation.

The above framework provides a smoothed expected

value for the number of months to HWA infestation in

each county. Although spread rate is itself of ecological

interest, our goal is to identify barriers that separate

counties with substantially different times to first

infestation and to assign probabilities to these bound-

aries. A boundary likelihood value (BLV) for boundary

(i, j ) can be defined as the absolute difference in months

(Lu and Carlin 2005) of first HWA infestation reported

in neighboring counties i and j as

Dij ¼ jYi � Yjj: ð5Þ

Estimates of Dij can be obtained using a Markov chain

Monte Carlo (MCMC) algorithm to draw G samples of

the modeled response lðgÞi , g ¼ 1, . . . , G from the

posterior distribution p(li j y) (where y represents

observations of the response variable, in this case, the

number of months to first infestation) for each county i

and each MCMC iteration g to obtain

DðgÞij ¼ jl
ðgÞ
i � lðgÞj j: ð6Þ

Boundary probabilities are then estimated by counting

the number of samples of DðgÞij that exceed a threshold c,

where c is some number of months of interest. For

example, if we wanted to know which county boundaries

were associated with preventing spread for five years

(i.e., the difference in the date of first reported HWA

infestation between adjacent counties is five years), c

would equal 60 months. To estimate the boundary

probability for this value of c, we would draw G samples

(G equaled 2000 in our analysis) from the posterior

distribution of the differences in date of first infestation

(DðgÞij ), count the number of these samples that exceed 60

months (i.e., DðgÞij . 60), and divide this number by total

number of samples G, or

p̂ij [ P̂ðDij . c j yÞ ¼
DðgÞij . c

G
: ð7Þ

This approach to determining boundary probabilities is

known as fuzzy wombling. Alternatively, crisp wom-

bling can be performed if boundaries are assigned a

value of 1 when the BLV exceeds some predetermined

threshold (e.g., 0.5) or 0 otherwise.

Although BLVs based on the expected values li offer
one means of investigating boundary probabilities, a

potentially more informative approach is to calculate

BLVs using the spatial random effects /i. In essence, the

/i can be interpreted as spatial residuals. High-

probability boundaries based on residuals delineate

regions that differ in their unmodeled heterogeneity

and thus highlight boundaries that are not explained by

the covariates. In contrast, if few boundaries exist in a

map of residual-based boundaries, then the covariates

explain (or are at least correlated with factors that

explain) detected boundaries. Close examination of

boundary probabilities based on spatial residuals could

prove extremely useful in ecological studies where the

goal is to elucidate the factors determining range edges

and how these vary across space.

The model described above can be fit in WinBUGS

(Spiegelhalter et al. 2003) and output analyzed and

plotted in R (R Development Core Team 2009). For

all models described below we used a burn-in period

of 100 000 iterations and an additional 100 000

iterations were used to estimate model parameters

(see Bolker 2008:233–238). For calculation of BLVs,

we sampled 2000 iterations (the value of G in Eq. 7)

from the posterior distributions of l and /. We

assessed model convergence using the Gelman-Rubin

potential scale reduction statistic (Brooks and Gelman

1998). Details of model construction and selection of

priors are available from the code provided in the

Supplement.

EXAMPLE ANALYSES

Simulation study.—Our first example considers an

analysis of simulated county-level spread data. We

simulated, with added noise, the number of months to

infestation as a linear function of distance from

December 2010 3451BAYESIAN AREAL WOMBLING
R

ep
orts



Richmond, VA (Fig. 2a). By design, York County,

Pennsylvania and counties adjacent, do not follow this

pattern (Fig. 2b). Because distance from Richmond

should not explain the detected boundaries around these

outlier counties, even after smoothing, we expect high

probability boundaries in the vicinity of York County,

Pennsylvania for both l- and /-based BLVs. We found

the expected pattern: nearly all of the detected bound-

aries (Fig. 2c) are explained by the distance covariate

other than those surrounding York County, Pennsylva-

nia (Fig. 2d).

Historic spread of HWA.—A model fit to the observed

HWA spread data incorporated three covariates: human

population density, mean winter temperature, and

FIG. 2. Bayesian areal wombling on (a) simulated dates of infestation; and (b) a single simulated covariate related to distance
from Richmond, Virginia. By design, York County, Pennsylvania (red shading) and counties immediately adjacent, do not follow
the simulated pattern and are expected to be separated by high probability boundaries. Panels c and d show posterior probabilities
for boundaries for the expected values l and the spatial residuals /, respectively, and a threshold of 60 months. Darker shades of
red indicate high boundary probabilities.
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hemlock abundance. This model suggests several fea-

tures of the spread of HWA (Fig. 3a). Most notably,

boundary probabilities are highest (1) in the vicinity of

counties where HWA first established and where spread

may have been slow due to lag effects (Kowarik 1995)

related to HWA population dynamics, (2) along ridges

of the Appalachian Mountains north of Tennessee, and

(3) in the northernmost portions of HWA’s range in

New England. In contrast there are few barriers south of

Virginia’s southern border, where spread has been rapid.

However, mean winter temperature and hemlock

abundance are not significantly associated with barriers

to spread; only the coefficient for human population

density emerged as significantly different from zero.

Except in some northern counties and those in central

Pennsylvania, boundary probabilities based on the

spatial residuals (Fig. 3b) largely reflect those calculated

using the expected value l (Fig. 3a), demonstrating that

the covariates do not explain most of the detected

boundaries.

FIG. 3. Posterior probabilities for Bayesian areal wombling boundaries calculated using either (a) the expected values l or (b)
the spatial residuals / and a threshold of 60 months, and posterior probabilities for Bayesian local edge wombling boundaries
calculated using either (c) the expected values d or (d) the spatial residuals w and a threshold of 36 months. Darker shades of red
indicate high boundary probabilities.
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In retrospect, the failure of temperature and hemlock

abundance to explain barriers to spread of HWA may

not be surprising. Global covariates, though useful in

detecting and visualizing boundaries, do not couple

regional heterogeneity in environmental conditions to

local barriers to spread. For example, HWA can spread

rapidly under warm temperatures only where hemlock is

available. In addition, spread patterns are strongly a

function of where propagules are first introduced. In the

case of HWA, the earliest dates of infestation are found

in counties with little or no naturally occurring hemlock.

To better model the landscape influences that hinder

spread, Bayesian spatially varying coefficient models

(Banerjee et al. 2004) can be used for wombling (e.g.,

Wheeler and Waller 2008), although these models offer

greater technical challenges. Alternatively, rather than

modeling the data arising from areal units, wombling

can be performed on the county borders themselves (Ma

et al. 2006, 2010). In this approach, every boundary

segment is a data point and the response for each

segment is the difference in the modeled value of interest

between adjacent units. In the context of invasive

spread, ‘‘local edge wombling’’ is likely to be ecologically

more sensible because differences (or similarities)

between adjacent areal units may be more important

for, and therefore may better explain, spread dynamics

than mean values of covariates within counties. This

approach also provides a more straightforward means to

represent physical barriers such as rivers, mountains or

urban areas as binary indicator variables.

We modified our model (Eqs. 1–3) for local edge

wombling by examining the difference in months to first

infestation between adjacent counties:

Dij ¼ Yi � Yj ð8Þ

Dij ; N dij;
1

s

� �
i adjacent to j ð9Þ

where

dij ¼ aþ xijbþ wij: ð10Þ

As before, a spatial random effect (w) is included and is

given a CAR prior. The vector of covariates xij in this

model represents differences in covariates across bor-

ders. Because the response is the difference in months to

first infestation across borders, the calculation of BLVs

is simplified slightly. Here, BLVs are determined using

the absolute values of the posterior estimates of dij (or wij

for residual-based boundaries) themselves as opposed to

post hoc calculation of these differences as in Eq. 6. Code

for fitting this model is provided in the Supplement.

A local edge wombling model incorporating as

covariates differences in population density, mean

winter temperature, and hemlock abundance across

county borders reveals similar results to those derived

from the areal wombling model: high probability

boundaries are concentrated in the east and northeast

(Fig. 3c). However, in this model the coefficients for

hemlock abundance and population density are signif-

icantly different from zero and as a result, there are few

boundaries that remain unexplained (Fig. 3d). As

before, boundaries associated with early spread in the

eastern portion of the study region remain after

accounting for the effects of the covariates, potentially

reflecting demographic lag effects unrelated to environ-

mental factors (Kowarik 1995).

CONCLUSIONS

Bayesian areal wombling is promising approach for

analyzing ecological boundaries and the dynamics of

range expansion. Many other applications for areal

wombling can be envisioned. For example, wombling is

commonly used in public health research to identify

boundaries where disease incidence is higher/lower than

expected. The same principle can be applied in ecology

to understand patterns of both invasive species richness

and distribution as well as patterns of diversity of native

species (e.g., Is species richness higher/lower than

expected at the biome level and what explains differences

in richness across biomes?). Important targets for future

improvement of these models in ecology include

exploration of alternate parameterizations for spatial

smoothing, such as distance weighting or to estimate

smoothing parameters from the data (Ma et al. 2010).

By providing probability distributions for the mod-

eled parameters and accounting for spatial dependen-

cies, wombling in a Bayesian framework permits direct

estimation of boundary probabilities and the uncertainty

associated with them—something that is not possible

with classical approaches. Although classical models can

declare the ‘‘statistical significance’’ of a potential

boundary, they cannot estimate the probability that

any particular segment is part of the boundary. Bayesian

models can also estimate missing data over space and

time. However, it is difficult to make generalizations

regarding the quality of data (in terms of number of

observations in space and time) needed for Bayesian

wombling as it will depend on particulars of the study

system. Although there is not yet a single software

package or R library that can be used to perform

Bayesian areal wombling analyses of the sort described

here, the code and data provided in the Supplement

illustrate how to integrate several software packages to

implement areal wombling models. Additional statistical

challenges remain. The use of a CAR prior encourages

local smoothing of dates of infestation toward those of

neighboring counties. Ideally, this accounts for uncer-

tainty in detection, if, for example, a single county

reports a much later date of first infestation than its

neighbors. Local smoothing can, however, have unan-

ticipated effects. For example, a county that is colonized

early but that is surrounded by counties with much later

dates of colonization could have a modeled (smoothed)

later date of first infestation. Although it is possible for

the actual date of first infestation to be earlier than the
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reported date, it is unlikely that the actual date of first
infestation would be later than the reported date

(barring misidentification or data entry errors). Finally,
the incorporation of spatially correlated errors may alter
estimates of fixed-effects coefficients in ways that are

only beginning to be explored and which could lead to
misinterpretation of residual-based wombling maps.
Despite these issues, Bayesian areal wombling should

be considered a complement to existing methods for
ecological boundary analysis as an approach that can
explore dynamics related to changes in the distributions

of native and invasive species using coarse resolution
datasets common in ecology and biogeography.
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APPENDIX

Detailed description of data and covariates used for wombling (Ecological Archives E091-246-A1).

SUPPLEMENT

Data and the R and WinBUGS code used in the paper (Ecological Archives E091-246-S1).
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