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Surface Friction Guiding for
Reduced High-Frequency Lateral
Vibration of Moving Media
The free and forced vibration of a moving medium is examined in an application where
distributed friction guiding is used to control lateral position passively. Subambient pres-
sure features formed in the guides intentionally modify the naturally occurring self-
pressurized air bearing and increase the contact force between the medium and the
guide’s surface. These features increase friction to a level beyond that achievable based
on the nominal wrap pressure. The moving medium is modeled as a beam that is trans-
ported over frictional regions and subjected to prescribed boundary disturbances arising
from runout of a supply or take-up roll. For axial transport at a speed that is high
compared to the velocity of lateral vibration, Coulomb friction between the guides and
the moving medium can be well approximated by a derived expression for equivalent
viscous damping. The equation of motion is developed for the cases of a single cylindri-
cal guide and of a multiplicity of guides having arbitrary placement. The level of equiva-
lent damping for each mode decreases with transport speed, and critical speeds exist
where each vibration mode transitions between the overdamped and underdamped re-
gimes. Parameter studies in the contact pressure, transport speed, and guide geometry
identify preferred design configurations for maximizing dissipation in particular modes
and for attenuating high-frequency response. �DOI: 10.1115/1.2732354�

1 Introduction
In magnetic tape libraries used for high-density data storage,

lateral in-plane vibration of the tape undesirably misaligns the
data tracks relative to the read/write head. Lateral motion arises
from excitation sources, including the runout of supply and
take-up packs, and roller guides, and from impacts between the
tape and the flanges on packs and guides. The read/write head
structure is conventionally mounted on a servotracking mecha-
nism that can follow the tape’s vibration up to a certain cutoff
frequency, but higher-frequency vibration is problematic. The
head is preferably positioned on a data track within 5% of the
track’s width to write data, and within 10% to read. To achieve
reliable read/write operations in the presence of even submicron
lateral vibration, each bit cell in a data track must be many times
wider than its length in the transport direction. Reducing the bit
cell’s aspect ratio by reducing lateral tape vibration provides one
of the greatest opportunities for further increases in storage den-
sity.

Conventional guides apply constraint forces to the tape’s nar-
row edge, but even at modest levels, those forces can lead to
excessive wear and heating of the tape. The methodology of fric-
tion guiding eliminates edge contact in some portions of the path
by distributing lateral forces over the substantially wider face of
the tape. Flangeless grooved rollers and nonrotating cylindrical
posts are examples of guides that use friction to constrain lateral
motion of magnetic tape and of other weblike materials in indus-
trial manufacturing applications.

Surface friction guiding is effective for reducing high-
frequency lateral vibration, and for avoiding edge wear, but the
method has traditionally been limited by insufficient contact pres-
sure between the guide and the medium. The contact pressure

depends primarily on the winding tension T, the guide’s radius R,
and the medium’s width b. A “foil bearing” forms when air is
entrained between the moving medium and the guide, and that
thin film of air lubricates relative sliding motion between the ad-
jacent surfaces. The analysis of coupled moving media and foil-
bearing systems involves the simultaneous solution of the equa-
tions governing the medium’s elastic deformation and the air
bearing’s pressure. One-dimensional models �1,2� treat the foil
bearing as being infinitely wide and are useful to calculate dis-
placement and pressure along the bearing’s centerline. In the
steady state, the air pressure rises from the ambient atmospheric
value at the bearing’s inlet to the central value of approximately
T /Rb. In the exit region, where a flow constriction develops, the
pressure sharply rises and dips below ambient. Finite-width mod-
els additionally incorporate the effect of airflow out of the bear-
ing’s sides. Solution procedures include direct simulation of the
equilibrium equations �3,4�, inexact Newton iteration for faster
convergence, and adaptive mesh allocation to reduce the number
of nodal points needed in discretization �5�. The influence of sur-
face curvature has also been incorporated in a dynamic model of
the foil bearing �6�.

To establish direct frictional contact, the air bearing can be
vented intentionally by incorporating slots and channels on the
surface of the guide �7�. One embodiment of a friction guide is
shown in Fig. 1, where the lateral slot and pressure relief channel
are intended to vent the air bearing that would otherwise form.
The surface’s geometry can include other subambient features that
increase the contact pressure well beyond T /Rb as generated by
the wrap geometry alone. Alternatively, increased contact pressure
can be achieved with porous guides that develop suction through
an external pump. In either manner, higher friction forces develop
than would otherwise be achievable by, for instance, engineering
surfaces having a higher coefficient of friction. In turn, the fric-
tional forces attenuate high-frequency lateral vibration of the tape.

Ono �8� analyzed the mechanics of a moving string where lat-
eral position was controlled through friction with a cylindrical
guide having constant radius. Coulomb friction between the guide
and the string was approximated by viscous damping when the
velocity of vibration was much smaller than the �orthogonal�
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transport velocity. Yang �9� analyzed the dynamics of steady mo-
tion for threads moving over rotating rollers of arbitrary axisym-
metric shape. A closed-form expression for response with a circu-
lar roller was compared to results for tapered and parabolic
rollers. A rotating string in contact with point guides �10� has been
taken as a model for the dynamics of more complex rotating and
guided systems. The sensitivity of the natural frequencies with
respect to the guide’s stiffness and the rotation speed was exam-
ined, and the critical rotation speed was shown to be independent
of stiffness. The vibration of beams in the presence of friction was
analyzed in the context of systems where viscous damping had
“stationary” and “moving” components �11�. The nature of the
vibration response varied significantly even for seemingly small
changes in the two damping coefficients. Also with a view toward
dissipation sources, Garziera and Amabili �12� examined the ef-
fect of winding mechanics and the take-up roll’s boundary condi-
tion on the damping of lateral vibration. Other related investiga-
tions have treated the linear response of a traveling string guided
by an elastic support with dry friction �13�, the stability of an
axially accelerating string subjected to pointwise frictional forces
�14�, and free vibration of a traveling string that couples with a
stationary spring-mass-damper subsystem �15�.

The objective of this paper is to evaluate the free and steady-
state forced response of a moving medium in the presence of
friction that is provided by distributed guides having subambient
pressure features. The moving medium is treated as a flexible
beam that translates over spatially distributed guides. Vibration is
excited by prescribed motion applied at the end points as caused
by runout of the supply and take-up rolls. For transport at a high
speed relative to the velocity associated with vibration, the Cou-
lomb friction between the guides and moving medium is shown to
be well approximated by equivalent viscous dissipation. The equa-
tions describing the beam’s dynamics are developed for motion
across a single cylindrical guide and are then extended to multiple
guides of arbitrary placement and friction characteristics. The ei-
genvalue structure exhibits critical speeds where each mode tran-
sitions between the overdamped and underdamped regimes. The
forced response of the medium is obtained for harmonic boundary
excitation, and the efficacy of friction guides in attenuating high-
frequency vibration is examined. Parameter studies identify op-
portunities to optimize the design of such surface friction guides.

2 Measurement
Figure 2 depicts an experimental magnetic tape transport sys-

tem �Advanced Research Corporation� having three flanged post

guides and one test guide that can either be a smooth cylindrical
guide, which forms a self-pressurized air bearing, or a surface
friction guide of the type shown in Fig. 1. The supply pack was
adjacent to the test guide, and the pack’s flange was intentionally
misaligned to graze the tape during each rotation of the pack as
the tape was unwound. An optical displacement sensor �MTI In-
struments� was used to measure the lateral displacement of the
tape at a position slightly downstream of the test guide’s location
in Fig. 2�b�. The three flanged posts between the sensor and the
take-up pack reduced the component of displacement occurring at
the sensor’s location that arose from the take-up pack’s smaller
runout.

Measurements were performed for two different test guides. In
the baseline case, the tape passed over a cylindrical guide of width
and radius identical to the one shown in Fig. 1 but without the
subambient pressure features. The smooth surface enabled an air
bearing to develop between the moving tape and the guide’s sur-
face. In the second case, the friction guide of Fig. 1 was oriented
such that the subambient pressure slot engaged the tape’s wrap
with direct frictional contact. In both cases, the 9 �m thick and
12.65 mm wide tape was transported between the supply and
take-up packs at 4 m/s and under a tension of 1 N. Lateral vibra-
tion was measured at a sampling frequency of 5 kHz. Figure 3
depicts typical displacement records for the two cases. The addi-
tion of friction damping reduced the peak-to-peak vibration am-
plitude from 45 �m to 20 �m. Most notably, the amplitude reduc-
tion was achieved without contact between the tape’s relatively
fragile edge and the guide. Figure 4 depicts the corresponding
frequency spectra. The amplitude of the 100 Hz component that
arose from rotation of the supply pack decreased from nearly
20 �m to 5 �m through friction guiding. The near total reduction
in Fig. 4�b� of the higher harmonic content is particularly advan-
tageous to the extent that those components are poorly compen-
sated by the read/write head’s tracking servomechanism.

Fig. 1 „a… Magnetic tape is transported over a cylindrical sur-
face friction guide that incorporates a subambient pressure
feature. „b… The pressure relief channel vents the self-
generated air bearing.

Fig. 2 „a… Tape transport test stand for friction guiding mea-
surements, „b… the path comprises three flanged posts and one
test guide
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3 Friction Guiding Vibration Model
Figure 5 shows, in schematic form, a transport system for a

tape, web, or any other flexible moving medium that has two
friction guides located between its end supports. The medium is
modeled as an Euler-Bernoulli beam that convects at the constant
speed v over guides of radii R�1� and R�2�, respectively. The guided
segments are the regions �x0

�1� ,xe
�1�� and �x0

�2� ,xe
�2��, and they are

intended to constrain and control the beam’s lateral vibration w in
the central portion �xe

�1� ,x0
�2��. The supports are located at x=0 and

x=L, and have prescribed motions e1�t� and e2�t� that arise from
runout of the supply and take-up rolls. The beam has width b,
cross-sectional area A, mass density �, and flexural rigidity EI. In
Fig. 6, a segment of the beam is isolated in the contact region
between points S1 and S2 on its neutral axis. In many tape or
web-handling applications, the flexural rigidity in the transverse
direction is negligible when compared to that in the lateral direc-
tion, and therefore the tension gradient across the beam’s thick-
ness, which arises from the guide’s curvature, is neglected here.
The tension, however, does increase from T0

�i� to Te
�i� across

�x0
�i� ,xe

�i�� owing to friction. The tension is constant in the free
spans �0,x0

�1��, �xe
�1� ,x0

�2��, and �xe
�2� ,L�, but it attains a different

value in each.
Over the span of any particular guide i out of the total NG

guides, a reaction of magnitude N�i� per unit of length acts on the
beam and is directed outward from, and normal to, the guide’s
surface at P. The friction force F�i� per unit of length acts in the
plane of the guide’s surface, and it is modeled here in the classical
Coulomb form. By applying the analysis developed in �8� for a
string in contact with a cylindrical guide, friction develops in
response to two velocity components: the beam’s transport speed
v along its neutral axis and the lateral velocity associated with w.
The lateral component of F�i� changes direction in response to
vibration, while the axial component opposes steady transport and
does not reverse direction. The friction force per unit of length
becomes

F�i� = − N�i���x
�i� 0

0 �z
�i� � dr/dt

�dr/dt�
�1�

where t denotes time, r is the position vector of P relative to the
guide, and � · � denotes vector magnitude. Here, �x

�i� and �z
�i� are the

coefficients of friction in the x and z directions. The quantity

Fig. 3 Measured lateral vibration at the test guide’s location
„a… with a conventional air bearing guide and „b… with a friction
guide that incorporates subambient pressure features

Fig. 4 Measured spectra for lateral vibration at the test guide’s
location „a… with a conventional air bearing guide and „b… with a
friction guide that incorporates subambient pressure features

Fig. 5 Schematic diagram of a beam translating over two dis-
tributed contact friction guides and excited by prescribed dis-
placements at its boundaries

Fig. 6 Detail of the contact region on a friction guide
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�dr /dt� / �dr /dt� sets the direction of the friction force to oppose
the strip’s instantaneous velocity. In applying Eq. �1� to the moti-
vating technology, the transport speed for computer storage appli-
cations is on the order of several meters per second, substantially
exceeding the peak vibration velocity in the lateral direction,
which is only on the order of centimeters per second. With the
approximation �dr /dt � �v, Eq. �1� becomes

F�i� = − ��x
�i� 0

0 �z
�i� �	N�i�

v

dr

dt
�2�

and the dissipation in this particular situation can be well approxi-
mated by an equivalent viscous damping model �Appendix A�.

The beam’s tension across guide i increases exponentially ac-
cording to

T�i��x� = �T0
�i� + p�i�R�i�b� exp��x

�i�

R�i� �x − x0
�i��� − p�i�R�i�b �3�

for x� �x0
�i� ,xe

�i��, where 1� i�NG, T0
�i� is the tension at x0

�i�, and
p�i� is the subambient pressure generated over the guide. The nor-
mal reaction becomes

N�i��x� =
T�i��x�

R�i� + p�i�b �4�

The equation of motion governing the beam’s lateral vibration
over �0,L� is

�A�w,tt + 2vw,xt + v2w,xx� − �T�x�w,x�,x + �EIw,xx�,xx

= − 
i=1

NG
�z

�i�

v
�T�i��x�

R�i� + p�i�b��w,t + vw,x�W�i��x� �5�

where W�i� is a windowing function having unit value over the ith
guide and vanishing elsewhere. Equation �5� has terms corre-

sponding to the local, Coriolis, and centripetal acceleration com-
ponents, the spatially varying tension, and the friction that devel-
ops in response to the total velocity �w,t+vw,x� as measured by a
stationary observer. With the dimensionless variables

x* =
x

L
, w* =

w

L
, b* =

b

L
, R*�i� =

R�i�

L
�6�

t* = t� EI

�AL4 , v* = v��AL2

EI
, T�i�* =

T�i�L2

EI
, p�i�* =

p�i�L4

EI

�7�

Equation �5� is recast as

w,t*t*
* + 2v*w,x*t*

* + v*2w,x*x*
* − �T*�x*�w,x*

* �,x* + w,x*x*x*x*
*

= − 
i=1

NG
�z

�i�

v* �T*�x*�
R*�i� + p*�i�b*��w,t*

* + v*w,x*
* �W�i��x*� �8�

The beam’s forced response is determined for the prescribed
motions e1

*=e1 /L and e2
*=e2 /L at its end points and subject to the

conditions w,x*x*
* �0, t*�=w,x*x*

* �1, t*�=0. The time-varying bound-
ary conditions are rendered homogeneous through the shift of co-
ordinates

w* = u* + �1 − x*�e1
* + x*e2

* �9�

in terms of the new displacement field u*, which satisfies u*

=u,x*x*
* =0. The working form of the equation of motion becomes

u,t*t*
* + 2v*u,x*t*

* + v*2u,x*x*
* − �T*u,x*

* �,x* + u,x*x*x*x*
* + 

i=1

NG
�z

�i�

v* �T*�x*�
R*�i� + p*�i�b*��u,t*

* + v*u,x*
* �W�i��x*�

= − �1 − x*�e1
*� +�2v* − 

i=1

NG
�z

�i�

v* �T*�x*�
R*�i� + p*�i�b*��1 − x*�W�i��x*��e1

*� −��T*�x*�,x*�,x* + 
i=1

NG

�z
�i��T*�x*�

R*�i� + p*�i�b*�W�i��x*��e1
*

− x*e2
*�

−�2v* − 
i=1

NG
�z

�i�

v* �T*�x*�
R*�i� + p*�i�b*�x*W�i��x*��e2

*� +��T*�x*�,x*�,x* + 
i=1

NG

�z
�i��T*�x*�

R*�i� + p*�i�b*�W�i��x*��e2
* �10�

where �·��=d /dt* and is subject to u*�0, t*�=u*�1, t*�
=u,x*x*

* �0, t*�=u,x*x*
* �1, t*�=0.

Previous work in the area of moving media vibration has ad-
dressed the response to general forms of excitation by using
modal analysis and Green’s function methods �16–19�. A variety
of expansion functions can be used in the discretization of Eq.
�10�. For instance, in the stability analysis of a traveling beam in
contact with an elastic point guide �20�, the complex normal
modes of an unguided beam were used to obtain the free and
forced response solutions. In �21�, discretization methods and
their accuracy and convergence characteristics were discussed for
a variety of expansion function choices. A basis comprising modes
of a translating beam did not exhibit better convergence than one
comprising modes of a nontranslating beam. Here, the orthonor-
mal basis Xn=�2 sin�n�x*�, for n=1,2 , . . . ,NU, constitutes solu-
tions to the proximate problem for vibration of a nontranslating

beam without friction, and it satisfies the essential boundary con-
ditions of Eq. �10�. With the separable series solution u*

=n=1
NU Xn�x*��n�t*�, the discretized form of the equation of motion

becomes

M�� + �C + G��� + �Kc + Knc�� = f �11�

which includes the symmetric and speed-dependent damping ma-
trix C associated with friction in Eq. �2� and the skew-symmetric
gyroscopic matrix G associated with Coriolis acceleration. The
stiffness matrix comprises the conservative component Kc repre-
senting the beam’s flexural rigidity and tension, and the noncon-
servative component Knc that arises from the dissipation compo-
nent that is proportional to vw,x. Elements of these matrices are
listed in Appendix B. The solution of the complex eigenvalue
problem yields the mode shapes and natural frequencies. The
eigenfunctions are complex ��n=�n

R+ i�n
I ,n=1,2 , . . . �, and the
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real parts of the eigenvalues �n
* determine the level of modal

damping.

4 Natural Frequency and Mode Structure

4.1 Analogous Guided String Model. The structure of the
eigenvalue loci and the onset of critical damping for Eq. �10� can
be interpreted in the context of a simpler, but analogous, model
for which a closed-form solution is available. When a string is
transported between end supports and is in contact with a fric-
tional surface of the form �2� over its entire length, an eigenvalue
structure results that is similar to that for the beam. By only ne-
glecting the tension gradient T,x here the nondimensional equation
of motion for this alternative system is

u,t*t*
* + 2v*u,x*t*

* + �v*2 − 1�u,x*x*
* + 	2�z�

*

v* 
�u,t
* + v*u,x

* � = 0

�12�

where u*=u /L, v*=v /�T /�A, and �*= �L /2R��1+ pbR /T� is the
nondimensional contact force per unit of length. With the solution
form u*=exp��*t*+	*x*�, Eq. �12� yields the dispersion relation

�v*2 − 1�	*2 + 2�v*�* + �z�
*�	* + �*2 + 	2�z�

*

v* 
�* = 0

�13�

between eigenvalues �* and wave numbers 	*, with roots

	*�1,2� =
1

1 − v*2��v*�* + �z�
*� ± ��*2 + 	2�z�

*

v* 
�*

+ ��z�
*�2�1/2� �14�

Applying the end conditions u*�0, t�=u*�1, t�=0, the characteris-
tic equation for the string’s vibration yields the nth eigenvalue
pair

�n
*�1,2� = − 	�z�

*

v* 
 ± i���n��2�1 − v*2� − 	�z�
*

v* 
2��1 − v*2��1/2

�15�

In the absence of friction, the eigenvalues reduce to �n
*�1,2�

= ± i�n���1−v*2�, which is the expected classical solution for a
traveling string. For v*
1, the natural frequencies decrease
monotonically with friction until each mode becomes critically
damped at �cr

* =2�n�v*�2�1−v*2 /�z. A notable characteristic of
the eigenvalue structure in Eq. �15� is the independence of Re��n

*�
from the mode number n. The magnitude �Re��n

*�� for each eigen-
value pair increases with friction and contact pressure, but it de-
creases asymptotically with v*. Similar characteristics are present
in the solutions to Eq. �10�, as discussed next.

4.2 Tensioned Beam Eigenvalues and Mode Shapes. The
model �10� is applied to the two guide system2 in Fig. 5. The
subambient pressure characteristic of the guides is defined by co-
efficient � that represents the fraction of atmospheric pressure
generated beyond the nominal wrap pressure. In the absence of
friction, the eigenvalues of the beam are strictly imaginary and
nonzero. As the transport speed increases, the natural frequencies
progressively decrease until the first critical speed is reached, at
which point the fundamental frequency vanishes. The addition of
friction, which varies inversely with speed in Eqs. �2� and �10�,
has a stabilizing effect. In Fig. 7, the evolution with increasing

transport speed of the eigenvalues is depicted for �z=0.1 and �
=0.2. For the �low-� speed range shown in Fig. 7, each real eigen-
value component is negative. The lowest speed shown in Fig. 7
�v*=0.01� is still an order of magnitude greater than the lowest
speed at which the equivalent viscous approximation �2� is valid
for vibration amplitudes that are typical of the motivating appli-
cation. At that speed, the eigenvalues corresponding to the third
and higher vibration modes are complex. For v*�0.04, the lowest
two modes are overdamped, with each locus being bifurcated.
Both branches of the first locus, denoted 1�i� and 1�ii�, as well as
one branch of the second locus are discernible over the range of
ordinate values shown in Fig. 7. As the level of friction damping
decreases with v*, the two real companion branches converge un-
til the mode becomes critically damped, and subsequently at
higher speeds, underdamped. In this illustrative case, critical
damping occurs at v*=0.09 for the first mode and at v*=0.04 for
the second mode. For v*�0.09, all modes are underdamped. After
the real eigenvalue branches for any mode have coalesced, further
increases in v* drive the decay constants �Re��*�� to decrease
monotonically.

In Fig. 8�a�, the evolution of eigenvalues with v* is shown for
the beam with friction acting over the entire span x� �0,1�, in-
stead of over the two distributed guiding regions. This eigenvalue
structure follows the qualitative behavior exhibited in Eq. �15� for
the string model, and it is also similar to that of Fig. 7, where
overdamped modes become underdamped at certain speeds.
Analogous to Eq. �15�, the Re��n

*� pairs for any overdamped mode
converge in Fig. 8�a� to a common asymptotic locus. However,
with the transition to a partial frictional foundation over
�x0

*�1� ,xe
*�2�� as in Fig. 8�b�, the dissipation for individual modes

develops with friction to different extents. Damping Re��*� be-
comes dependent on the particular mode, and the Re��n

*� loci are
distinct. This behavior in Fig. 7 is therefore attributed to the par-
ticular placement of the guides rather than to the distributed fric-
tion mechanism itself. As the width of the guided span�s� narrows
in Figs. 8�a�–8�c�, the first mode transitions from the overdamped
to the underdamped regimes at lower transport speeds.

Figure 9 depicts evolution of the eigenvalues with respect to �

2Unless noted otherwise, the model parameters are as follows: axial friction co-
efficient, �x=0.1; lateral friction coefficient, �z=0.1; tension at x*=0, T0

*=8.65;
transport speed, v*=0.15; central position of guide 1, x*=0.3; central position of
guide 2, x*=0.7; guide wrap angles, �i�=� /4; and guide radii, Rg

*�i�=0.159.

Fig. 7 „a… Real and „b… imaginary eigenvalue component loci
with increasing transport speed; �z=0.1 and �=0.2. The first
two modes have branches labeled „i… and „ii… that bifurcate at
critical speeds for overdamping. The frequency loci for an un-
guided beam are shown by the lighter line.
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for the dual guide system of Fig. 5. The contact pressure contrib-
utes to the beam’s stiffness in several respects; in Eq. �10�, dissi-
pation introduces the nonconservative stiffness component v*w,x*

* ,
and the beam’s tension gradient increases stiffness. For the range
of pressure coefficients depicted in Fig. 9, the first mode becomes
increasingly damped as � grows, and the fundamental natural fre-
quency vanishes near �=0.95 at the critical damping condition.
Over the same range of �, the third and higher frequencies rise in
response to the tension gradient, the stiffening effect of which
outweighs the frequency reduction associated with greater damp-
ing. In accordance with Eq. �15� for the analogous string model,
the magnitude �Re��n

*�� of the decay constant for each mode in-
creases nearly linearly through ��0.5, although the loci are dis-
tinct here because of the placement of multiple guides.

Figure 10 depicts the first five mode shapes of the beam in Fig.

5 for �=0.02. The mode shapes are complex, owing to convection
and friction. The beam’s tension gradient, in part, produces asym-
metry in the shapes. In the light of Eq. �3�, the relative increase in
tension between the ends of a guide i depends not only on the
guide’s radius, wrap angle, and �, but also on T0

�i�. Therefore, even
though the guides are identical, the relative tension increases
across guide i=1 is greater than that across guide i=2. The ten-
sion increases 19% between the ends of the first guide, and over
17% across the second guide. From a design standpoint, the in-
creased tension due to friction should not exceed an allowable
limit for the web material, and the guide’s characteristics should
be selected to maximize damping while satisfying any constraint
on peak tension.

4.3 Parameter Selection for Overdamping. In a particular
application, the transport speed can be dictated by considerations,

Fig. 8 Evolution of the eigenvalue loci with transport speed for three choices of guide
placement: „a… full friction guiding over x*« „0,1…, „b… partial guiding over x*

« †x0
*„1… ,xe

*„2…
‡, and „c… two narrow guides with placement as in Fig. 5

Fig. 9 „a… Real and „b… imaginary eigenvalue component loci
with increasing subambient pressure, �z=0.1 and v*=0.4. The
fundamental mode bifurcates into branches 1„i… and 1„ii… above
the critical pressure coefficient for overdamping. The fre-
quency loci for an unguided beam are shown by the lighter line.

Fig. 10 First five mode shapes; �=0.02. Real components are
shown by the solid line, and imaginary components, the
dashed line
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such as transfer rates in data storage, printing rates in paper han-
dling, or process requirements in sheet metal rolling. The guide’s
characteristics can be varied in such situations to increase friction
damping, even to the point of overdamping certain modes. Figure
11 illustrates regimes in the �−v* parameter plane where the fun-
damental mode is overdamped. At low �, the mode is overdamped
only at the lowest speeds, and with �=0, v*
0.08 for overdamp-
ing. As the pressure coefficient is increased, however, the funda-
mental mode remains overdamped at higher speeds, even with the
same value of the friction coefficient. In Fig. 12, the parameter
region where the fundamental mode is overdamped is shown as a
function of v* and the wrap angle in Fig. 6. By increasing ,
greater friction is applied to the beam, and the fundamental mode
remains overdamped across a broader range of speed.

5 Forced Response and High-Frequency Attenuation
Run out of the supply and take-up rolls can be a significant

excitation source of lateral vibration. The response to sinusoidal
motion e1

*=W1
* sin��1

*t*� at the left-hand boundary, where W1
*

=W1 /L and �1
*=�1 /�EI /�AL4 are the dimensionless excitation

amplitude and frequency, is depicted in Fig. 13. The beam’s de-
flection is shown over one cycle of excitation for the representa-
tive value �1

*=20. At �=0, the displacement over the two guided
spans is similar to that without any guiding �dashed line type in
Fig. 13�a��, indicating that the standard wrap pressure alone gen-
erates only a small amount of contact pressure and damping. With
�=0.2 �Fig. 13�b��, damping is sufficient to reduce the beam’s
amplitude over the guided regions, and the peak-to-peak displace-
ment amplitude at midspan is reduced by nearly 60%. For a given
�*, however, increasing � improves attenuation only up to a point
beyond which the degree of attenuation plateaus. For example,
with �1

*=20, the amplitude at x*=0.45 �a location offset from the
nodes of the anti-symmetric modes� falls rapidly as subambient
pressure is increased from �=0 to �=0.05 and reaches a mini-
mum of 33% of the baseline displacement at �=0. For ��0.05,
there is no substantial further decrease in amplitude even though
the peak tension continues to increase.

A key feature of friction guiding for moving media is the ability
to attenuate high-frequency vibration. Figure 14 depicts the
beam’s frequency response function at x*=0.45 when it is subject
to boundary motion e1

*. With �z=0.1 and the nominal belt wrap
pressure ��=0�, only the first two modes are overdamped �Fig.
14�b��. However, with subambient pressure beyond the wrap pres-
sure �Figs. 14�c� and 14�d��, all modes within the frequency range
shown are favorably overdamped.

6 Summary
The free and forced lateral vibration of moving media in the

presence of distributed friction guiding has been analyzed. Vibra-
tion is examined in the context of an application where subambi-
ent pressure features on the surface of the guide increase the con-
tact force between the medium and the guide. With steady
transport at a high speed relative to the lateral vibration velocity,
Coulomb friction in this particular application can be well ap-
proximated by an equivalent viscous damping model. The magni-
tude of damping �Re��n

*�� for each mode is speed dependent, and
the eigenvalue structure exhibits critical speeds where each mode
transitions between the overdamped and underdamped regimes.
The tension gradient that arises along the length of the medium

Fig. 11 Hatched region denotes v*−� parameter combinations
where the fundamental vibration mode is overdamped

Fig. 12 Hatched region denotes v*−� parameter combinations
where the fundamental vibration mode is overdamped

Fig. 13 Deflection envelope over one cycle of excitation with
„a… ambient contact pressure „�=0… and „b… subambient con-
tact pressure „�=0.2…; �1

* =20. The dashed line in „a… denotes
the envelope in the absence of friction.
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distorts the mode shapes and limits the level of guide friction that
can practically be imposed. Parameter studies are performed with
respect to the pressure coefficient, transport speed, and guide
placement in order to identify their contributions to dissipation.
The subambient pressure guides are shown to be particularly ef-
fective for attenuating response at high frequencies.
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Appendix A
The transition between the Coulomb and the viscous damping

regimes in Eq. �2� is investigated here in the context of the analo-
gous single-degree-of-freedom oscillator shown in Fig. 15. The
mass m is attached by a spring of stiffness k to a frame traveling
at constant speed v over a horizontal surface. Classical Coulomb
friction is present between m and the surface. The mass is con-
strained to vibrate in the direction orthogonal to the frame’s pre-
scribed motion. In a manner similar to the beam of Fig. 5, the
contacting surfaces do not stick and the directions of transport v
and vibration w are orthogonal. The related problem involving
self-excited vibration of an oscillator resting on a moving belt is

discussed in �22�, although in that case m vibrates in the same
direction as the belt’s velocity, and self-excitation of the oscilla-
tor’s vibration occurs.

The friction force has components in the x and z directions; the
former component opposes the frame’s transport, and the latter
opposes vibration w. In the absence of friction, the mass oscillates
with maximum displacement w0 and maximum velocity w0

�k /m.
With friction, the amplitude of motion decays with time in a man-
ner dependent on w0 and v. With N denoting the magnitude of the
normal reaction force between m and the surface, and � being the
friction coefficient, the oscillator’s nondimensional equation of
motion in the z direction is

w*� +
�N*

�v*2 + w*�2
w*� + w* = 0 �A1�

where �·�* denotes a nondimensional quantity. With the represen-
tative value �=0.1, Eq. �A1� can be simulated numerically for
different ratios �= ��k /m��w0 /v�, and the results are shown in Fig.
16. For ��1, �1+ �w*� /v*�2�1, and the displacement decay en-
velope based on the equivalent viscous approximation

w*� + 	�N*

v* 
w*� + w* = 0 �A2�

is shown superposed over the numerically determined displace-
ment from Eq. �A1�. For a low transport speed ��=10�, the enve-
lope of the mass’s decaying motion is sensibly linear, consistent
with the dominating Coulomb mechanism. As the transport speed
increases relative to the maximum velocity of the mass’s oscilla-
tion, the decay envelope more closely approximates the exponen-
tial character of the viscous damping approximation. Even for �
=0.5, the actual displacement envelope, and the approximate vis-
cous damping envelope, are indistinguishable in Fig. 16.

Fig. 14 Frequency response function at x*=0.45 for different
levels of friction guiding

Fig. 15 Analogous single degree-of-freedom oscillator that
undergoes lateral vibration in a frame that slides at speed v in
the orthogonal direction over a surface with Coulomb friction.
Force N acts orthogonal to the plane.

Fig. 16 Transient response of the analogous single-degree-of-
freedom oscillator and frame system moving over a surface
with Coulomb friction. The displacement envelope based on
the approximation „A2… „dark line… is superposed on the nu-
merical solution to Eq. „A1… „lighter line….
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Appendix B
The elements of the matrices in Eq. �11� are ��mn=1 if m=n,

�mn=0 otherwise�:

M�m,n� =
1

2
�mn �B1�

C�m,n� =
1

v*
i=1

NG
�z

�i�

R*�i�T
*�x0

*�i���
x0

*�i�

xe
*�i�

exp��x
�i��x* − x0

*�i��
R*�i� �

�sin�m�x*� sin�n�x*�dx �B2�

G�m,n� = nv*�1 − �− 1�m+n

m + n
−

1 − �− 1�m−n

m − n
��1 − �mn� �B3�

Kc
�m,n� =

�n��4

2
�mn −

�n�v*�2

2
�mn + �n��2

i=1

NG

T*�x0
*�i��

��
x0

*�i�

xe
*�i�

exp	�x
�i��x* − x0

*�i��
R*�i� 
 sin�m�x*� sin�n�x*�dx*

− �n��
i=1

NG
�z

�i�

R*�i�T
*�x0

*�i��

��
x0

*�i�

xe
*�i�

exp	�x
�i��x* − x0

*�i��
R*�i� 
 sin�m�x*� cos�n�x*�dx*

+ �n��2T*�0��
0

x0
*�1�

sin�m�x*� sin�n�x*�dx*

+ �n��2 
i=1

NG−1

T*�xe
*�i���

xe
*�i�

x0
*�i+1�

sin�m�x*� sin�n�x*�dx*

+ �n��2T*�0��
xe

*�NG�

1

sin�m�x*� sin�n�x*�dx* �B4�

Knc
�m,n� = �n��

i=1

NG
�z

�i�

R*�i�T
*�x0

*�i���
x0

*�i�

xe
*�i�

exp	�x
�i��x* − x0

*�i��
R*�i� 


�sin�m�x*� cos�n�x*�dx* �B5�
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