CenH3 Evolution in Diploids and Polyploids of Three Angiosperm Genera

Thumbnail Image
Date
2014-12-01
Authors
Masonbrink, Rick
Gallagher, Joseph
Jareczek, Josef
Renny-Byfield, Simon
Grover, Corrinne
Gong, Lei
Wendel, Jonathan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Wendel, Jonathan
Distinguished Professor
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Ecology, Evolution and Organismal Biology
Abstract

Centromeric DNA sequences alone are neither necessary nor sufficient for centromere specification. The centromere specific histone, CenH3, evolves rapidly in many species, perhaps as a coevolutionary response to rapidly evolving centromeric DNA. To gain insight into CenH3 evolution, we characterized patterns of nucleotide and protein diversity among diploids and allopolyploids within three diverse angiosperm genera, Brassica, Oryza, and Gossypium (cotton), with a focus on evidence for diversifying selection in the various domains of the CenH3 gene. In addition, we compare expression profiles and alternative splicing patterns for CenH3 in representatives of each genus. All three genera retain both duplicated CenH3 copies, while Brassica and Gossypium exhibit pronounced homoeologous expression level bias. Comparisons among genera reveal shared and unique aspects of CenH3 evolution, variable levels of diversifying selection in different CenH3 domains, and that alternative splicing contributes significantly to CenH3 diversity. Since the N terminus is subject to diversifying selection but the DNA binding domains do not appear to be, rapidly evolving centromere sequences are unlikely to be the primary driver of CenH3 sequence diversification. At present, the functional explanation for the diversity generated by both conventional protein evolution in the N terminal domain, as well as alternative splicing, remains unexplained.

Comments

This article is from BMC Plant Biology 14 (2014): 383, doi:10.1186/s12870-014-0383-3. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections