Skip to main content
Platinum Nanoparticle Decorated SiO2 Microfibers as Catalysts for Micro Unmanned Underwater Vehicle Propulsion
ACS Applied Materials & Interfaces
  • Bolin Chen, Iowa State University
  • Nathaniel T. Garland, Iowa State University
  • Jason Geder, United States Naval Research Laboratory
  • Marius Pruessner, United States Naval Research Laboratory
  • Eric Mootz, Iowa State University
  • Allison Cargill, Iowa State University
  • Anne Leners, Iowa State University
  • Granit Vokshi, Iowa State University
  • Jacob Davis, Iowa State University
  • Wyatt Burns, Iowa State University
  • Michael A. Daniele, North Carolina State University
  • Josh Kogot, Naval Surface Warfare Center
  • Igor L. Medintz, United States Naval Research Laboratory
  • Jonathan C. Claussen, Iowa State University
Document Type
Publication Version
Published Version
Publication Date
Micro unmanned underwater vehicles (UUVs) need to house propulsion mechanisms that are small in size but sufficiently powerful to deliver on-demand acceleration for tight radius turns, burst-driven docking maneuvers, and low-speed course corrections. Recently, small-scale hydrogen peroxide (H2O2) propulsion mechanisms have shown great promise in delivering pulsatile thrust for such acceleration needs. However, the need for robust, high surface area nanocatalysts that can be manufactured on a large scale for integration into micro UUV reaction chambers is still needed. In this report, a thermal/electrical insulator, silicon oxide (SiO2) microfibers, is used as a support for platinum nanoparticle (PtNP) catalysts. The mercapto-silanization of the SiO2 microfibers enables strong covalent attachment with PtNPs, and the resultant PtNP–SiO2 fibers act as a robust, high surface area catalyst for H2O2 decomposition. The PtNP–SiO2 catalysts are fitted inside a micro UUV reaction chamber for vehicular propulsion; the catalysts can propel a micro UUV for 5.9 m at a velocity of 1.18 m/s with 50 mL of 50% (w/w) H2O2. The concomitance of facile fabrication, economic and scalable processing, and high performance—including a reduction in H2O2 decomposition activation energy of 40–50% over conventional material catalysts—paves the way for using these nanostructured microfibers in modern, small-scale underwater vehicle propulsion systems.

Reprinted with permission from ACS Applied Materials & Interfaces 8 (2016): 30941, doi:10.1021/acsami.6b10047.

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
File Format
Citation Information
Bolin Chen, Nathaniel T. Garland, Jason Geder, Marius Pruessner, et al.. "Platinum Nanoparticle Decorated SiO2 Microfibers as Catalysts for Micro Unmanned Underwater Vehicle Propulsion" ACS Applied Materials & Interfaces (2016)
Available at: