Quo Vadis-A Framework for Intelligent Routing in Large Communication Networks.

Thumbnail Image
Date
1994-12-16
Authors
Mikler, Armin
Wong, Johnny
Honavar, Vasant
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Wong, Johnny
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Computer Science

Computer Science—the theory, representation, processing, communication and use of information—is fundamentally transforming every aspect of human endeavor. The Department of Computer Science at Iowa State University advances computational and information sciences through; 1. educational and research programs within and beyond the university; 2. active engagement to help define national and international research, and 3. educational agendas, and sustained commitment to graduating leaders for academia, industry and government.

History
The Computer Science Department was officially established in 1969, with Robert Stewart serving as the founding Department Chair. Faculty were composed of joint appointments with Mathematics, Statistics, and Electrical Engineering. In 1969, the building which now houses the Computer Science department, then simply called the Computer Science building, was completed. Later it was named Atanasoff Hall. Throughout the 1980s to present, the department expanded and developed its teaching and research agendas to cover many areas of computing.

Dates of Existence
1969-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Computer Science
Abstract

This paper presents Quo Vadis, an evolving framework for intelligent traffic management in very large communication networks. Quo Vadis is designed to exploit topological properties of large networks as well as their spatio-temporal dynamics to optimize multiple performance criteria through cooperation among nodes in the network. It employs a distributed representation of network state information using local load measurements supplemented by a less precise global summary. Routing decisions in Quo Vadis are based on parameterized heuristics designed to optimize various performance metrics in an anticipatory or pro-active as well as compensatory or reactive mode and to minimize the overhead associated with traffic management. The results of simulation experiments within a grid network clearly demonstrate the ability of Quo Vadis to avoid congestion and minimize message delay under a variety of network load conditions.

Comments
Description
Keywords
Citation
DOI
Source
Copyright
Collections