Glioblastoma derived exosomes contribute to tumor immune evasion

Keith Z Sabin
Danny Lebert
Vanessa Thibado
Richard A Rovin
Johnathan E Lawrence, et al.
IMMUNOLOGY RESEARCH

IR-01. CYTOMEGALOVIRUS SUBVERTS THE MONOCYTE LINEAGE TO BECOME GLIOMA PROPAGATING

Kristine Dziurzynski1, Jun Wei1, Wei Qiao1, Mustafa A. Hattigbuglu2, David J. Long2, Daniel P. Cahill2, Nicholas B. Levine1, Sujit S. Prabhu1, Ganesh Rao1, Raymond Saway2, and Amy B. Heimberger1; 1The University of Texas MD Anderson Cancer Center, Houston, TX; 2Royal University Hospital, Saskatoon, SK, Canada

We have identified a mechanism by which cytomegalovirus (CMV) interleukin-10 (IL-10) is utilized by glioblastoma multiforme (GBM) to maintain the immunosuppressive microenvironment. CMV has been ubiquitously detected within high-grade gliomas, and the aggressive nature not fully characterized. GBMs harvested ex vivo were analyzed by flow cytometry to determine CMV antigen expression. Distinct expressing subsets of cells, such as the myeloid lineage and CD133+ cells, were identified. CMV antigens US28, pp63, IE1, and gB were also present within four individual and fully characterized subtypes of glioblastomas. GBM exosomes stem cell (gCSC) populations was ascertained by flow cytometry. These gCSCs produce CMV IL-10 in a range from 5.62 to 111.11 pg/ml/10^6 cells/day. When human CD14+ monocytes, precursor cells to macrophages/microglia, were exposed to gCSC-conditioned medium or recombinant CMV IL-10 was able to induce the migration of gCSCs compared with the supernatant from CD14+ cells cultured in medium alone. This result indicates that CMV subverts GBM-associated macrophages/microglia to support the immune-suppressive microenvironment by shifting their phenotype to the immune-suppressive M2. The shift is subsequent to activation of the STAT3 pathway, resulting in the propagation of glioma angiogenesis via an increase in VEGF and by increasing glioma invasion. Therapeutic strategies involving immune-mediated cytotoxic responses now include strategies to reverse tumor-mediated immune suppression. This study suggests that including CMV as a target could enhance the effectiveness of immunotherapy.

IR-02. IMMUNE-MODULATORY PROPERTIES OF GLOBLASTOMA MULTIIFORME EXOSOMES

Jerome de Vrij1, Kitty M.C. Kwappenberg2, Syben L.N. Maas3, Anne Kleijn1, Martine L. Lamfers1, Clemens M.F. Dirven1, Marco W. Schilham2, and Marike L.D. Broekman1; 1Erasmus Medical Center, Rotterdam, the Netherlands; 2Leiden University Medical Center, Leiden, the Netherlands; 3University Medical Center Utrecht, Utrecht, the Netherlands

The cellular immune response in patients with glioblastoma multiforme (GBM) is characterized by anergy, and the aggressive nature not fully characterized. GBMs released exosomes were analyzed by flow cytometry. We observed higher CD14 expression and lower HLA-DR expression on monocytes after 3 days of exposure of the peripheral blood mononuclear cells to GBM exosomes than on monocytes exposed to medium alone. The effect on monocytes was associated with a purified monocyte population, indicating a direct effect. These results correspond to the changes in the phenotype of monocytes in peripheral blood of GBM patients and suggest an important immunomodulatory role for brain tumor exosomes.

IR-03. INTENSE HUMAN CYTOMEGALOVIRUS (HCMV) IMMUNE RESPONSE IN GLOBLASTOMA PATIENTS: A PROGNOSTIC FACTOR FOR SURVIVAL

Adela G. Garcia-Velasco1, Soana del Barco2, Raquel Alvarez1, Rafael Fuentes2, Jordi Marraccino3, Ovidiu Hernando4, Carmen Rubio1, Javier Mentendez1, Joan Brunet2, and Manuel Hidalgo3; 1Clara Campal Oncologic Center, University Hospital Madrid Sanchinarro, Madrid, Spain; 2Institut Catala`n d’Oncologia, Hospital Dr. Josep Trueta, Girona, Spain

INTRODUCTION: HCMV is a ubiquitous herpes virus found in nearly all humans worldwide, with persistent infection occurring in over 70% of adults. The virus has been implicated in the development of several human malignancies owing to the oncomodulatory effects of HCMV infection. There is growing scientific evidence about an association between HCMV and malignant gliomas. To study the prognostic value of the anti-HCMV immune response, we prospectively assessed the levels of serum HCMV immunoglobulins M and G (IgM and IgG) in newly diagnosed glioblastoma patients and correlated the results with the clinical course.

METHODS: We analyzed serum from 32 glioblastoma patients treated with standard chemoradiotherapy at our institution between November 2008 and October 2010. CMV serologies were obtained by chemiluminescent quantitative analyses. HCMV IgM >0.5 UA/ml was considered diagnostic for acute HCMV infection, and HCMV IgG >16 UA/ml was regarded as positive for latent infection. Intense HCMV immune response was defined as HCMV IgG >100 UA/ml. All clinical and pathologic data were recorded in a database system using the SPSS version 13.0 statistics package. RESULTS: After a median follow-up of 18.2 months, 24 patients (75%) have died. HCMV IgG was positive for latent infection in 23 patients (72%). 10 of whom had an intense immune response (31%). Two patients had an acute HCMV reactivation with positive values for IgM. In univariate analysis, HCMV IgG >100 UAI/ml demonstrated a strong significant association with a longer overall survival (p = 0.0087). Positive HCMV IgG was found to be marginally associated with survival (p = 0.07). In multivariate analysis, HCMV IgG >100 UAI/ml retained statistically significant as a prognostic factor for longer survival (hazard ratio, 0.18; 95% CI 0.04-0.81; p = 0.02). CONCLUSION: Intense HCMV IgG immune response is significantly associated with longer overall survival in our series. Larger studies are required to validate HCMV IgG as a prognostic factor for survival in glioblastoma patients.

IR-04. TUMOUR-INFILTRATING T-CELL SUBPOPULATIONS IN GLOBLASTOMAS

Tae-Young Jung, Young-Hee Kim, Shin Jung, Woo-Youl Jung, Kyoung-Suh Min, In-Young Kim, Min-Choel Lee, and Je-Jun Lee; Chonnam National University Hwasun Hospital, Chonnam, Republic of Korea

This study was designed to determine the incidence and prognostic value of various populations of tumour-infiltrating T cells in glioblastomas. We also evaluated the difference in T-cell populations after conventional treatment. Sixty-seven patients with glioblastomas underwent surgery between 2003 and April 2009. Immunohistochemical staining was performed for CD3, CD4, CD8, and FoxP3, and the average number and percentage of positive cells were calculated. From eight patients, the average number of subpopulations was compared between the specimens obtained during the first and second operations. Age, gender, Karnofsky performance status, RTOG-RPA class, extent of removal, treatment modality, MGMT methylation status, and immunopositivity for CD3, CD4, CD8, and FoxP3 were analyzed as prognostic factors. There was an average of 12.8 ± 1.8 CD3+ T cells, 1.5 ± 0.5 CD4+ T cells, 6.8 ± 1.3 CD8+ T cells, and 0.6 ± 0.2 FoxP3+ T cells. The percentage of positive T-cell subpopulations was 89.6%, 22.4%, 77.6%, and 34.3% for CD3, CD4, CD8, and FoxP3, respectively. Among the eight patients there was no difference in the subpopulations between the first and second operations. The median progression-free survival was 7.0 months (95% CI, 5.2-8.9 months) and the overall survival was 14.8 months (95% CI, 11-18.7 months). Univariate analysis showed a statistically significant difference in progression-free survival for CD8 (p = 0.02) and in overall survival for

Published by Oxford University Press on behalf of the Society for Neuro-Oncology 2011.
IR-05. INTERLEUKIN-4 RECEPTOR ALPHA CHAIN (IL-4R-ALPHA) PROMOTES THE IMMUNOSUPPRESSIVE ACTIVITY OF GLIOMA-INFILTRATING MONOCYTES
Gary Kohanbash1, Kayla McKaveney2, Masashi Sakaki3, Aryan Mintz1, John Olfert1, Melissa Bondy3, Mitsugu Fujita4, and Hideho Okada1; 1University of Pittsburgh, Pittsburgh, PA; 2University of Wisconsin-Madison, Madison, WI; 3University of Minnesota, Minneapolis, MN; 4The University of Texas MD Anderson Cancer Center, Houston, TX; 5Aichi Cancer Center, Nagoya, Japan

IL-4R-alpha is expressed on immunosuppressive cells of monocyte lineage and mediates their production of transforming growth factor (TGF)-beta in response to interleukin-13. We thus hypothesized that IL-4R-alpha expression on monocytes plays a significant role in glioma development. Analyses of human glioma-infiltrating leukocytes revealed that glioma-infiltrating monocytes, but not peripheral blood CD14+ monocytes, express high levels of IL-4R-alpha, suggesting the unique up-regulation of IL-4R-alpha in glioma microenvironment. We next sought to address the functional significance of IL-4R-alpha in a murine glioma model. We induced gliomas in BALB/c background mice by intracerebroventricular transfection of oncogenes using the Sleeping Beauty transposon system and found that gliomas exhibited significantly higher levels of IL-4R-alpha than wild-type (WT) mice. Consistently, gliomas induced in WT mice were infiltrated with higher numbers of CD11b+Gr1+ monocytes than were gliomas induced in IL4ra-/- mice. We subsequently isolated glioma-infiltrating CD11b+Gr1+ monocytes to address their functions. RT-PCR and ELISA revealed that the monocytes derived from WT mice expressed significantly higher levels of TGF-beta. Additionally, depletion of these cells using anti-Gr1 antibody in mice significantly prolonged survival after tumor challenge. Analysis of in vitro cultured bone marrow cell cultures demonstrated that compared with cells derived from WT mice, IL4ra+/- mouse-derived cells contained lower numbers of CD11b+Gr1+ monocytes with lower arginase and TGF-beta expression as well as a decreased ability to suppress T-cells in vitro and in vivo. Because type-1 skewed T-cells in IL4ra-/- animals could have contributed to the observed better survival compared with WT mice, we next depleted CD4+ and CD8+ T-cells by using antibodies. Although T-cell depletion shortened the overall survival of WT and IL4ra-/- mice, T-cell-depleted IL4ra-/- mice still exhibited enhanced survival over T-cell-depleted WT mice. These data suggest that IL-4R-alpha expression on glioma-infiltrating monocytes promotes the immunosuppressive microenvironment of gliomas through a variety of mechanisms, including TGF-beta production and T-cell inhibition, thereby facilitating glioma development.

IR-06. IMMUNOLOGICAL SOIL AND PREVENTION OF BREAST CANCER BRAIN METASTASIS
Yan Liu, Masatsuke Ohno, and Hideho Okada; University of Pittsburgh Cancer Institute, Pittsburgh, PA

As therapies for cancer improve and patients survive longer, the risk of cerebral metastases increases. Therefore, the cerebral metastasis of cancers is a major obstacle that must be overcome before cancers can be cured by any means. In our recent data, mice bearing 4T1 breast cancers in the primary site (mammary pad) showed accumulations of myeloid-derived suppressor cells (MDSCs) in the brain before their brains demonstrated any presence of metastatic tumor cells. These observations were accompanied by marked up-regulation of the inflammatory chemokines S100A8, S100A9, and serum amyloid A3 (SAA3) in the pre-metastatic brains. Elevated levels of the cytokine tumor necrosis factor alpha and vascular endothelial growth factor, significantly more than MDSCs, were detected in the sera of 4T1-bearing mice. Chemokine CCL2 was also up-regulated in the pre-metastatic brain of 4T1-bearing mice, and anti-CCL2 treatment reduced MDSC infiltration. The cyclooxygenase-2 inhibitor celecoxib reduced secretion of TNF-alpha and Th1 cytokines as well as S100A8/S100A9, and SAA3 expression in the pre-metastatic brains of 4T1-bearing mice. On the other hand, neither MDSC accumulation nor up-regulation of S100A8, S100A9, nor SAA3 was detected in the brains of mice bearing 4C breast cancer cells, which which are non-metastatic. Our results suggest that tumor cells with high metastatic ability promote MDSCs to induce immunosuppressive conditions in the distant target organs, such as brain, and thereby promote metastasis. Anti-CCL2 and celecoxib treatments might be used to prevent the formation of pre-metastatic immunological soil. Further understanding of the mechanisms underlying the immunological soil will allow us to develop effective strategies to prevent cerebral metastasis of breast cancer.

IR-07. THE RCAS/TVA MODEL OF MURINE GLIOMA REPRODUCES IMMUNOSUPPRESSION PRODUCED BY MYELOID-DERIVED SUPPRESSOR CELLS IN HUMANS WITH GBM
Batsuki Raychaudhuri and Michael A. Vogelbaum; Cleveland Clinic, Cleveland, OH

Myeloid-suppressor cells (MDSCs) are a population of bone marrow-derived cells with potent immunosuppressive properties. We previously showed (Neurooncology, 2011) that MDSCs are found at elevated levels in the glioma tissue of patients with glioblastoma multiforme (GBM) and that they produce reversible T-cell dysfunction. We now show that MDSCs present in GBM tumors and that the mouse model overexpressing platelet-derived growth factor subunit B in Nestin-tva/mk4a+ arf/KO reproduces our observations with patients. We collected tumor tissue and blood from consented patients (n = 5) with newly diagnosed GBM. Peripheral blood mononuclear cells were isolated, and MDSC subsets were detected by fluorescence-activated cell sorting analysis. From the murine glioma model (n = 18 mice) we harvested glioma tumors, normal brain tissue, and hematological tissues. Cells were assessed for CD11b+Gr1+ and CD11b-Gr1+ MDSCs. MDSCs were present in both human and murine gliomas. In murine tumors there were more mononuclear MDSCs (Gr1low, > 5%) than neutrophilic MDSCs (Gr1high, > 3%), and both were present at much higher levels in the tumors than in normal brain tissue (p < 0.016). MDSCs were also higher in the circulation of mice with gliomas than of control mice, but there was greater subset predominance. GBM patients also had MDSCs present in tumor tissue (7.0 ± 3.1%). Classification of the MDSCs in the human samples indicated that lineage-negative MDSCs (CD15-/CD33+–HLA-DR-) were more prevalent than MDSCs with a neutrophilic subtype (CD15+–CD33+–HLA-DR-). We also found that the proliferation and intracellular interferon-gamma level of splenocytes isolated from normal mice were decreased in the presence of Gr1+ MDSCs from murine gliomas, indicating that this model reproduces the MDSC-induced immunosuppression seen in our GBM patients. We showed that MDSCs are present in both human and mouse glioma tumors and that the cells suppress T-cell function. Neutrophilic MDSCs predominated in the circulation of both species, whereas in the tumors the monocytes MDSCs dominate in mice and the lineage-negative subset dominates in humans.

IR-08. GLIOBLASTOMA-DERIVED EXOSOMES CONTRIBUTE TO TUMOR IMMUNE EVASION
Karen L. Horsfall1, 2, 3, 4, 5, 6, 7, 8 Keith Z. Sabin1, 2, 3, 5, 6, 7, 8, Danny Lebert2, 3, 5, 6, 7, 8, Vanessa Shibade2, 3, 5, 6, 7, 8, Richard Roiren2, 3, 5, 6, 7, 8, 9, John Lawrence2, 3, 5, 6, 7, 8, and Robert Winn1; 1Northern Michigan University, Marquette, MI; 2Upper Michigan Brain Tumor Center, Marquette, MI; 3Marquette General Hospital, Marquette, MI; 4Northern Michigan University, Marquette, MI; 5U-Mass General Hospital, Boston, MA; 6University of Pittsburgh, Pittsburgh, PA; 7University of Pittsburgh Cancer Institute, Pittsburgh, PA; 8University of Michigan, Ann Arbor, MI; 9University of Michigan, Dearborn, MI

Glialblastoma multiforme (GBM) is the most frequent and lethal primary brain tumor in adults. Despite intense biomedical research, the median survival after diagnosis is 15 months. One factor contributing to this poor prognosis is the immune protection afforded by the tumor microenvironment. Tumors have a diverse repertoire of immune-evasive techniques. One method of evasion not well explored is the release of tumor-derived exosomes. Exosomes are tiny membrane-bound vesicles of endocytic origin that contain viable mRNA and functional proteins that can affect the physiology of recipient cells. Exosome release has been reported for numerous cancer types, including GBM. Exosomes from colon cancer have been shown to carry Fas ligand (FasL) and to induce apoptosis of activated T cells. In this study, we examined several GBM cell lines for exosome secretion. In the sera of 4T1-bearing mice. Chemokine CCL2 was also up-regulated in the pre-metastatic brain of 4T1-bearing mice, and anti-CCL2 treatment reduced MDSC infiltration. The cyclooxygenase-2 inhibitor celecoxib reduced secretion of TNF-alpha and Th1 cytokines as well as S100A8/S100A9, and SAA3 expression in the pre-metastatic brains of 4T1-bearing mice. On the other hand, neither MDSC accumulation nor up-regulation of S100A8, S100A9, nor SAA3 was detected in the brains of mice bearing 4C breast cancer cells, which which are non-metastatic. Our results suggest that tumor cells with high metastatic ability promote MDSCs to induce immunosuppressive conditions in the distant target organs, such as brain, and thereby promote metastasis. Anti-CCL2 and celecoxib treatments might be used to prevent the formation of pre-metastatic immunological soil. Further understanding of the mechanisms underlying the immunological soil will allow us to develop effective strategies to prevent cerebral metastasis of breast cancer.
IR-09. CHARACTERIZATION OF THE IMMUNE RESPONSE TO ONCOTYPIC ADENOVIRUS THERAPY FOR MALIGNANT GLIOMA

Annette Klempf, Jannenne Kloeseman, Elke Treffers-WesteraLekken, Giulia Fulci, Sieger Leemstra, Clemens Dirven, René DeBets, and Martine Lamfers; 1Erasmus Medical Center, Rotterdam, the Netherlands; 2Massachusetts General Hospital, Harvard Medical School, Boston, MA.

The oncotypic adenovirus Delta-24-RGD has demonstrated highly effective anti-tumor efficacy in various intracranial xenograft models for glioblastoma. However, the species specificity of human adenovirus has restricted preclinical studies to immunocompromised animals. As a result, the role of the immune response has not been clearly delineated and may be greatly underestimated in this type of therapy. Therefore, we set up a syngeneic immune-competent intracranial model with murine glioma cells found to be semi-permissive to human adenovirus replication and investigated both the innate and adaptive immune response to Delta-24-RGD treatment. C57BL/6 mice were injected stereotactically with GL261 cells and treated five days later with AdΔ24RGD or phosphate-buffered saline. At different times, early and late time points post-treatment, brain, blood, and spleen samples were collected. Splenocytes were co-cultured with Delta-24-RGD or GL261 cells and assessed for interferon (INF)-gamma production. Brain sections were immunohistochemically stained for various immune cells. Serum samples were tested for the presence of neutralizing antibodies. A rapid influx of CD45+/F4/80+ macrophages was detected within 24 hours after virus treatment. Splenocytes from virus-treated animals co-cultured with Delta24-RGD produced high levels of INF-gamma. Interestingly, splenocytes from virus-treated mice also produced INF-gamma when co-cultured with 20% supernatant or phosphate-buffered serum-treated mice did not respond to virus or to GL261 cells. High-level neutralizing antibodies were detected in the sera of mice starting 96 hours post-treatment. In conclusion, the GL261 murine glioma model offers a system to gain insight into the role of the innate and adaptive immune response to oncotypic adenovirus treatment in the brain.

We demonstrated that splenocytes from Delta-24-RGD-treated mice recognized both virus and tumor antigens. We also demonstrated that a humoral response was attempting to neutralize the activity of the virus. Future experiments will be performed to gain more insight into this response and to develop strategies to enhance the anti-tumor immune response.

IR-10. STEREOTACTIC RADIOSURGERY COMBINED WITH DOUBLE IMMUNOTHERAPY WITH ANTI-CTLA-4 AND ANTI-4-1BB YIELDS LONG-TERM SURVIVAL AND PROTECTIVE ANTITUMOR RESPONSE IN A MOUSE ORTHOTOPIC GLIOBLASTOMA MODEL

Zache Belcaid, Jillian A. Phallen, Jing Zeng, Alfred P. See, Emilia Albesiano-Nicholas, M. Durham, Betty Tyler, Henry Brem, Drew M. Pardoll, Charles Drake, and Michael Lim; Johns Hopkins University, Baltimore, MD.

Despite the best available therapies for glioblastoma multiforme, prognosis for patients remains poor. We tested an immunotherapeutic approach using two monoclonal antibodies in combination with stereotactic radiosurgery; anti-CTLA-4 blockade and anti-4-1BB agonist. CTLA-4 downregulates pathways of T-cell activation, while signaling through 4-1BB triggers T-cell expansion. We hypothesized that radiation treatment, along with anti-CTLA-4 antibody, would promote tumor remission and activate tumor-specific T cells. We established orthotopic glioblastoma models using two monoclonal antibodies in combination with stereotactic radiosurgery. To monitor immune infiltration, we analyzed cytokine production in serum and tumor tissue. We demonstrated that the double immunotherapy with anti-CTLA-4 and anti-4-1BB significantly improved survival compared to controls and naive animals. These data demonstrate the potential of combining immunotherapy and stereotactic radiosurgery to improve outcomes for glioblastoma patients.

IR-11. MODULATION OF NEUTROPHIL ACTIVATION BY TUMOR AND TUMOR-ASSOCIATED NECROSIS IN GLIOBLASTOMA

Ezhana R. Sulpie, Jason White, Rae Ruszel, and Allen Waziri; University of Colorado Anschutz Medical Campus, Aurora, CO.

We recently identified an immunosuppressive mechanism in GBM patients that results in high neutrophil counts and release of granules. We hypothesized that the modulating factors of granule release and their effect on T-cell function might be reversible in T-cell dysfunction. We noted isolated instances of increased neutrophil infiltration of GBM, but the mechanism through which significant numbers of activated neutrophils persist within the peripheral circulation remains unclear. We hypothesized that tumor-associated factors are responsible for the activation and subsequent alteration of surface-binding proteins of neutrophils within the tumor microvasculature. To initially explore this hypothesis, normal donor neutrophils were incubated with tumor-conditioned medium or necrotic material. Induction of degranulation was measured via flow-cytometric quantification of surface markers associated with neutrophil activation. Following incubation with conditioned medium or necrotic material, increased surface expression was observed for both CD11b (1.6- and 1.5-fold, respectively) and CD66 (1.7- and 1.4-fold, respectively), confirming tumor-specific induction. In further exploration of baseline characteristics of circulating neutrophils in GBM patients, resting and degranulated populations were purified from peripheral blood using a dual-density Histopaque gradient. Baseline expression of CD66 on CD11b-expressing neutrophils was equivalent to those of normal donor neutrophils, and functional analysis using FMLP-induced activation confirmed parallel degranulation responses. As expected, degranulated neutrophils from GBM patients demonstrated elevated expression of CD11b co-receptor with activated CD11b and CD66. Our data suggest that peritumoral activation may result in degranulation without effective intratumoral infiltration. These results provide a preliminary explanation for the prevalence of degranulated neutrophils within the peripheral circulation of GBM patients. In addition, we propose that factors present within the tumor microvasculature induce important changes in the functional binding characteristics of these cells.
IR-13. COMPREHENSIVE CHARACTERIZATION OF HUMAN CYTOMEGALOVIRUS INFECTION IN THE LONG-TERM INFECTED T98G CELL MODEL
Han Qing Yi¹, Ying Ling Duan¹, Cui Qing Yang¹, Keun Seok Seo², Gregory Bohach², Elizabeth Fortunato², and Min Hua Luo¹; ¹Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; ²University of Idaho, Moscow, ID

HCMV is the leading viral cause of birth defects, affecting primarily the central nervous system. It is also strongly associated with glioma in adults and plays a role via oncomodulation. Previously we created an HCMV-infected T98G cell line long-term infection model (J Virol 2007). We investigated HCMV infection by culturing infected cells longer term without passaging and viral genome persistence in infected cells with continuous passaging. HCMV Ag⁺ cells formed clusters during long-term culture without passaging. Maintenance of the viral genome in T98G cells was determined by PCR, nested PCR, and FISH, and viral genome copy number was analyzed by qPCR. PCR and nested PCR results showed that viral genome lasted to passage 7 (24 days post-infection) and to at least passage 13 (42 days post-infection), respectively; there was a high copy number of the viral genome at earlier passages, and the copy number was maintained around 400 from passages 10 through 13. To confirm that the viral genome was retained in Ag⁻ (GFP-IE2⁻) cells, GFP-fused virus (WT-J-eGFP) was used for infection, purified Ag⁺ cells were collected and cultured with continuous passaging, and viral genomes were detected by FISH. All cells had about 30 spots of HCMV genome in the nuclei. To investigate the HCMV infection feature in T98G cells, cells were transfected with p53 (host factor) and the IE1 protein-positive rate increased one-fold; for viral factors, pp71 mutant virus (T223A) and clinical isolates (TR and Tolledo) were used to infect cells. Cells with the mutant virus infection had a higher IE1 protein-expressing rate; clinical isolates went into latency directly or faster. Thus, HCMV infection in T98G cells without the disturbance of passaging forms Ag⁺ clusters, indicating that infection in the brain without interference may become worse. High copy number, HCMV genome persistence, and cellular and viral factors affected HCMV gene expression but could not change the infection, indicate a promising latent infection model that would be useful in glioma oncomodulation studies.