Skip to main content
Article
Predicting biomass partitioning to root versus shoot in corn and velvetleaf (Abutilon theophrasti)
Agronomy & Horticulture -- Faculty Publications
  • Kimberly D. Bonifas
  • John L. Lindquist, University of Nebraska-Lincoln
Date of this Version
1-1-2006
Disciplines
Comments
Published in Weed Science, 54:133–137. 2006. Copyright © 2006 Weed Science Society. Used by permission.
Abstract

Knowledge of how plants will partition their new biomass will aid in understanding competition between crops and weeds. This study determined if the amount of biomass partitioned to the root versus the shoot can be predicted from tissue carbon [C] and nitrogen [N] concentrations and the daily gain in C (GC) and N (GN) for each unit shoot and root biomass, respectively. Pots measuring 28 cm diameter and 60 cm deep were embedded in the ground, and each contained one plant of either corn or velvetleaf. Each plant received one of three nitrogen treatments: 0, 1, or 3 g of nitrogen applied as ammonium nitrate in 2001 and 0, 2, or 6 g of nitrogen in 2002. Measurements of total above- and below-ground biomass and tissue [C] and [N] were made at 10 different sample dates during the growing season. Fraction of biomass partitioned to roots (Pr) was predicted from [C], [N], GC, and GN. Accurate prediction of the fraction of biomass partitioned to roots versus shoots was evaluated by comparing observed and predicted Pr across all treatments. The coordination model has potential as a reliable tool for predicting plant biomass partitioning. Normalized error values were close to zero for corn in 2001 and 2002 and for velvetleaf in 2001, indicating that biomass partitioning was correctly predicted.

Citation Information
Kimberly D. Bonifas and John L. Lindquist. "Predicting biomass partitioning to root versus shoot in corn and velvetleaf (Abutilon theophrasti)" (2006)
Available at: http://works.bepress.com/john_lindquist/8/