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Eddy Current Probe Signals Due to a Crack at a Right-Angled Corner
John R. Bowler , Theodoros P. Theodoulidis , and Nikolaos Poulakis
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Department of Mechanical Engineering, University of Western Macedonia, 50100 Kozani, Greece

Department of Electrical Engineering, Technological Educational Institute of Western Macedonia, Koila, 50100, Greece

In eddy current testing, a flaw in a metal is detected when it gives rise to a change in the electrical impedance of the probe that induces
current in the material. Theoretical models and computer codes have been developed to predict the probe signals as an aid to improving
inspections and the interpretation of measurements. Model calculations can be efficient for a restricted class of problems in which the
conductor geometry is simple, such as an infinite plate or tube. The computational cost is usually low in such cases because dedicated
Green’s kernels are available, allowing numerical approximations of integral equations to be found using only a few unknowns to rep-
resent the field in the flaw region. In this study, the aim has been to perform eddy current calculations on corner cracks efficiently using
an approximate Green’s function for a conductive quarter-space, thereby extending the class of problems that benefit from the use of a
dedicated kernel. The properties of the kernel mean that numerical solutions based on boundary or volume elements can be found for
an edge crack by rendering as a discrete approximation only the field at the surface of the flaw or the field within it respectively. Volume
element calculations have been carried out to determine the field at a corner crack and from it the probe response. Comparisons of the
calculated probe impedance due to edge notches show good agreement with experimental measurements.

Index Terms—Boundary elements, conductive wedge, cracks, eddy current, Green’s function, integral equation, nondestructive eval-
uation, volume elements.

I. INTRODUCTION

T HIS paper examines the problem of computing the quasi-
static electromagnetic field due to a corner crack in a con-

ductor excited by an eddy current probe. A well-established
scheme for finding the field of a flaw is one based on an elec-
tric field integral equation used to get numerically predictions
via the moment method [1]–[4]. Provided an integral kernel is
available that satisfies the appropriate interface condition for
the homogeneous conductor, a solution can be sought by rep-
resenting only the field at the flaw region in a discrete form.
Using a kernel for the particular conductor geometry has the
advantage of greatly limiting the number of unknowns required
to determine the flaw field but kernels that embody the conti-
nuity conditions at material interface are currently available in
close form for only a few simple shapes such as a half-space [1],
[2], [5], infinite cylinder [6], [7] or a sphere [8], each of which
can, if needed, contain piecewise uniform layers. Clearly, it is
of great value to extend the number of host conductor shapes
for which Green’s functions are available in a convenient form
for numerical evaluation. The creation of new dedicated ker-
nels is of particular practical benefit if they are constructed for
computing the response of cracks near edges since cracks tend
to nucleate in such regions. With this aim in view, we have de-
rived an approximate dyadic kernel for the quasi-static field in
a conductive quarter-space adjoining a three-quarter space of
zero conductivity. The dedicated wedge kernel has been used
to compute the eddy current probe signals due to cracks in the
region of the edge.
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We apply the domain truncation approach used previously to
compute the field of a coil in the presence of a homogeneous
right-angled wedge [9], [10] and at the edge of a homogeneous
plate [11]. Truncation of the problem domain and the impo-
sition of additional boundary conditions has the effect of im-
posing a periodic solution that approximates the corresponding
unbounded domain field. However, the errors introduced in the
vicinity of the scatterer can be made as small as desired by in-
creasing the size of the unit cell of the periodic system to ensure
that the artificial boundaries are far enough from the region of
interest to make their influence on the local solution negligible.
The truncation means that a field can be expressed in the form of
series expansions rather than integral transforms and a solution
found by manipulating matrix relationships between expansion
coefficients. The series is limited to a finite number of terms
to compute numerical results and although this leads to a fur-
ther approximation, the series truncation errors are controlled
by simply adjusting the number of terms to achieve a desired
accuracy. In the next section, we outline the problem formu-
lation in which the electromagnetic field is expressed in terms
of transverse electric and transverse magnetic scalar potentials.
The corresponding quasi-static scalar kernels are derived in se-
ries form for different configurations including a truncated pen-
etrable quarter-space. The latter are then used to form a dyadic
kernel which guarantees that the solution of the electric field
integral equation for the flaw field will satisfy the correct conti-
nuity conditions at the intersecting surfaces forming a right-an-
gled wedge. A basic application of the moment method gives
the flaw signals which are validated by comparison with mea-
surements on notches. Finally, the conclusions are summarized
with reference to the prospects for future developments.

II. FORMULATION

A. Outline of Problem

In the problem considered, a crack lies in a plane mutually
perpendicular to and bounded by the horizontal and vertical

0018-9464/$31.00 © 2012 IEEE
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Fig. 1. Edge crack in a plane mutually perpendicular to surfaces of a right-
angled conductive wedge.

faces of a conductive quarter-space; see Fig. 1. An induction coil
whose axis is normal to the horizontal surface of the conductor
carries an alternating current and thereby interacts inductively
with the cracked conductor. In our preliminary work, the coil
impedance as a function of position with respect to the edge of
a homogeneous (flawless) quarter-space was determined using
an eigenfunction expansion of the truncated domain solution
[9]. Good agreement with experiment was obtained with this
approach by using a series solution with just 40 terms. The in-
duced current density in a flawless quarter-space conductor due
to a coil has also been determined [10]. In effect, this is the in-
cident field for the present problem.
To derive the required kernel for a quarter-space, we use a

Cartesian coordinate system, Fig. 2, with the -axis parallel with
the edge of a right-angled conductive wedge and the edge is at

. Later, when we compare theory and experiment we shall
refer to the coordinate system in Fig. 1 with the origin at the
midpoint of the edge. For the field calculation, the domain of
the problem is restricted in the direction to a region between

and with one wedge face at the half plane ,
. The other face is in the plane and limited to

. The problem region is also truncated in the -di-
rection with truncation boundaries at and . Trun-
cation in is not essential but prepares the way for an efficient
numerical implementation using Fourier series. On the bound-
aries formed by domain truncation, we assume either that the
tangential electric field is zero or that the tangential magnetic
field is zero. These are referred to as a perfect electrical con-
ductor (PEC) boundary condition and a perfect magnetic con-
ductor (PMC) boundary condition, respectively. Boundary con-
ditions for the present problem are summarized in Table I. They
are nominal in the sense that they are imposed at remote loca-
tions where the field is in fact negligible compared with that
close to the primary source. The choices reflect a desire to keep
the series expansions as simple as possible.

B. Scalar Decomposition

We express the time-harmonic magnetic field, varying at an
angular frequency as the real part of , in terms of
second order potentials

with (1)

Fig. 2. Singular source at P in truncated conductive quarter-space.

TABLE I
TRUNCATION BOUNDARY CONDITIONS

where is a unit vector. Let refer to either the transverse
electric potential or the transverse magnetic potential .
Using the transverse gradient , the TE and
TM potentials satisfy

(2)

for the field in air (we refer to the field arising from eddy cur-
rents in the wedge and not to the field from the driver coil).
For the conductive region, the potential satisfies the modified
Helmholtz equation

(3)

where with denoting the conductivity,
and the vacuum and relativemagnetic permeabilities, respec-
tively. For reference, the following expressions for the electro-
magnetic field are given. Firstly, the magnetic field is expressed
as

(4)

and the components of the magnetic field are therefore

(5)

(6)
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and

(7)

The electric field in source-free regions is given by

(8)

and its components are therefore

(9)

(10)

and

(11)

By using a scalar decomposition with as the preferred direc-
tion, Fig. 2, and selecting the truncation boundary condition ju-
diciously we have avoided coupling of the TE and TMmodes at
the surface.1 At the plane, however, mode coupling
is unavoidable. This implies that a TE field which migrates up-
ward to interact with the field in the upper region at the plane

will give rise to both TE and TM fields, partially trans-
mitted through the surface and partially reflected. Furthermore,
we note that the interface is divided at by the
edge of the truncated quarter-space. Consequently, a field com-
ponent of a given spatial frequency defined with respect to the
direction will couple with terms of all other spatial frequen-

cies associated with the field variation in . Thus mode coupling
takes place in two forms at the plane. It couples the TE
and TM modes and it couples terms in the Fourier series expan-
sions with respect to whose spatial frequencies are different
as well as those which are the same. Clearly, the solution must
take account of these effects.

C. Scalar Green’s Functions

In order to construct the required dyadic kernel we first in-
troduce scalar Green’s functions that embody the effects of in-
terface coupling between the transverse modes. These include
the function representing a TE potential due to a TE
source and representing a TE mode emanating from
the interface by mode coupling from a TM source, simi-
larly for the TM mode. Thus, to determine solutions of the field
equations, we define a Green’s function satisfying

(12)

for the external region and

(13)

1With the same preferred direction, a different set of boundary conditions can
give rise to mode coupling for zero order terms in a series expansion of the TM
potential; see [9].

for the conductive region. In addition, it is convenient to define
functions , etc. called the integrated kernels, such that

(14)

Because satisfies a modified Helmholtz equation (3), with
transverse Laplace operator , the integrated kernel
is identified as a TE potential due to a TE delta function source,
whereas is also a TE potential but arises from a TM
source via mode coupling at an interface. Similarly,
and are identified with the TM potential due to a delta
function source.

D. Dyadic Kernel

The scalar Green’s functions have been determined in series
form and then used to construct a dyadic Green’s function for
generating the electric field from an electric source in the con-
ductor. The aim is to find solutions of Maxwell’s equations in
the quasi-static limit for an internal induced electric dipole den-
sity , representing the effect of a flaw
in a material whose permeability is that of free space and whose
conductivity , which differs from that of the host conduc-
tivity in the flaw region. The linear quasi-static field equa-
tions with the electric source

(15)

and

(16)

have a solution that can be found from an integral equation
which expresses the electric field as the sum of an incident field

and a field due to the presence of a flaw [2]

(17)

where is the domain of the flaw and is a dyadic
Green’s function for transforming an electric source in a
conductive region into an electric field. The quarter-space
dyadic kernel can be expressed in terms of ,

, , and using a generalization
[12] of the corresponding expressions in the absence of mode
coupling [13].
Once the dipole density is computed, the coil impedance

change due to the flaw can be calculated by using the
reciprocity theorem as follows: [2]

(18)

E. Scalar Mode Coupling

Before entering unfamiliar territory it is often helpful to be-
come further acquainted with its more easily recognizable fea-
tures. Likewise, before considering the dyadic kernel for the
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Fig. 3. Singular source at P in a truncated homogeneous conductive region.

Fig. 4. Singular source at P in a conductive region below a plane surface above
which is a nonconductive region.

corner crack problem, some simpler results will be examined
to set the quarter-space analysis in context. We therefore ex-
amine first singular sources in uniform domains truncated in the
and direction; see Fig. 3. Then compare these preliminary

results with those for the case of a domain divided by a hor-
izontal plane into conductive and nonconductive regions; see
Fig. 4. The scalar decomposition throughout is with respect to
the -direction. Hence the preferred direction in the horizon-
tally divided region is parallel to the surface of the conductor.
As a result, TE and TMmodes are coupled at the dividing plane.
Eventually this bitruncated half-space configuration provides a
useful link with the quarter-space solutions since it represents
a limiting case of the latter in which ; see Fig. 2. Next
we determine scalar kernels for a vertically divided domain; see
Fig. 5. In this case the preferred direction is normal to the in-
terface and there is no coupling between TE and TM modes.
Quarter-space scalar Green’s functions are then expressed in
terms of the corresponding kernels for the vertically divided do-
main plus terms representing field migration from the
plane. Having reached that point, we check consistency of the
quarter-space results with the horizontally divided domain ex-
pressions in the limit as . Then the quarter-space dyadic
kernel is assembled from its scalar modes.

Fig. 5. Singular source at P in a conductive region adjacent to a non-
conductive region .

Fig. 6. Arbitrary source in a bitruncated quarter-space.

III. SCALAR KERNELS FOR UNIFORM TRUNCATED REGION

We seek first the transverse electric Green’s function and
the transverse magnetic Green’s function , defined with re-
spect to the -direction for a homogenous conductive truncated
domain, with each scalar kernel arising from a corresponding
singular source; see Fig. 3. Boundary conditions on are
the same as those on and those on the same as those
on ; see Table I.
A solution vanishing at and at can be expressed

in terms of a sine series in both and . Thus the TE solution of

(19)

can be written in the form

(20)

The PMC boundary condition at is satisfied by making
and the PEC condition at is

satisfied by putting . Substitute (20) into
(13), multiply by , and integrate with respect
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to between zero and and with respect to between zero
and , and we have that (20) satisfies (13) if

(21)

where . The solution of (21), contin-
uous at but with a discontinuity of 1 in the -derivative, is
simply

(22)

Equation (20) with (22) gives the TE Green’s function for a
homogeneous bitruncated domain. The TM Green’s function,
found in a similar way, is

(23)

A Fourier series representation of the TE and TM kernels im-
plies that the solution can be regarded as periodic in an extended
infinite domain in which the singular source in a unit cell gives
rise to a regularly spaced infinite sequence of images. A summa-
tion of contributions from the original source and its images pro-
vides an alternative expression to the Fourier series form for the
truncated homogeneous domain kernels. Next we consider cou-
pling between modes due to an interface at a horizontal plane.

IV. DOMAIN DIVIDED HORIZONTALLY

A. Arbitrary Source

Fig. 4 shows a truncated domain divided horizontally at
. Rather than starting with a point source at P, we consider ini-
tially formal expressions for the scalar fields due to an arbitrary
distributed source below the plane where . Later
we examine the corresponding Green’s functions for the TE and
TM modes as a special case of the arbitrary source problem. In
general, however, the TE potential has the form

(24)

where and the upper limit of the source region

is at . The coefficient is associated with field migra-

tion from the source whereas and are associated, re-
spectively, with transmission and reflection at the interface. The

TM solution for the region of the conductor where
can be written

(25)
Coefficient is associated with field migration from the

source and with migration from the interface. The expan-
sion coefficients, being linearly related, can be written in terms
of transmission and reflection coefficients

(26)

and

(27)

which are determined by the field continuity conditions for the
interface. The continuity of , and are ensured,

in the weak sense, by enforcing continuity of moments of the
field components. This is done by having

and

are continuous at for all and . Using the continuity
conditions gives, respectively

(28)

(29)

and

(30)
from which the reflection coefficients are found to be

(31)

(32)

(33)
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and

(34)

Defining

(35)

these relationships can be written succinctly as

(36)
The interface coefficients are next used in constructing the di-
vided domain Green’s functions.

B. Singular Sources

In the case of truncated half-space solution for point sources,
can be identified with if it originates at a TE source

and with if it arises from a TM source. Similarly can
be identified with and . Thus comparing (19), (20), and
(23) with (3), (24), and (25), one concludes that for a singular
source at

(37)

It follows that the modal Green’s functions for the horizontally
divided domain are

(38)

where

(39)

It is of passing interest that the scalar kernels for the truncated
half-space can be used to construct a dyadic kernel for solving
scattering problem of a flaw in a half-space conductor. In the
case of an infinitesimally thin crack in a plane, only the
TM mode is perturbed by the defect and the scattering problem
could therefore be formulated only in terms of the TM mode.
However, this is not a line of enquiry we pursue here.
Fourier coefficients in two dimensions have been matched

across the horizontal interface in order to get expressions for

the scalar kernels in a bitruncated half-space with the results
expressed above in the form of a double series. In the case of the
quarter-space problem, in contrast, Fourier components defined
with respect to the -direction do not match on a term-by-term
basis across the plane because of the nonuniformity of the
horizontal interface. Instead there is coupling between Fourier
components containing and for example, with
triple series expressions for the kernels to account for it. Before
dealing with mode coupling at a divided interface, we consider
next a simple case, that of a vertically divided domain.

V. VERTICALLY DIVIDED DOMAIN

A. TE Mode

For the TE mode in a bitruncated domain divided at a vertical
interface at the plane , Fig. 5, we form a solution

(40)

where , and the eigen-
values are determined from the continuity of the normal mag-
netic flux density and tangential magnetic field at the
interface. The continuity of at implies that

(41)

whereas the continuity of at the implies that

(42)

The values of and hence are sought using (41) and (42).
Eliminating , one finds the values of from the roots of

(43)

The roots can be found using an algorithm which systemati-
cally searches the complex plane for the zeros of a function [10],
[14]–[16]. The coefficients in (40) are determined by using a set
of eigenfunctions defined by

(44)

and having the orthogonal property

(45)

where

(46)
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By substituting (40) into (12) and (13), using (44)–(46) and the
orthogonality property of to determine , one finds
that

(47)

where is given by (22). Hence the Green’s func-
tion for the conductive region has the same general form as that
for a homogeneous truncated domain. However, complex series
coefficients now replace the domain dimension and the
complex eigenvalues replace the real values denoted by .

B. TM Mode

The TM Green’s kernel for the vertically divided truncated
domain takes the form

(48)

where . The TM kernel satisfies the con-

dition that for , ensuring that the tangen-
tial component of the electric field on the truncation boundaries
is zero. The continuity of the tangential magnetic field at the
air-conductor interface implies that at , where
the subscript refers to the limiting value as the boundary is ap-
proached from the conductive side. Putting
satisfies this condition. To find the expansion coefficients, one
substitutes (48) into (13), multiplies by and
integrates with respect to from zero to and with respect to
from zero to with , to give

(49)

This completes the derivation of the decoupled modal Green’s
functions for the vertically divided domain. To define truncated
quarter-space kernels, (47) and (49) are modified by adding the
effect of field migration from an interface at the plane .
This has been done by first defining a set of transmission and
reflection coefficients for TE and TM potentials due to an arbi-
trary source in the conductor.

VI. QUARTER-SPACE SOLUTIONS

A. Arbitrary Source

We derive the Green’s function for a source in a quarter-space
by first deriving interface transmission and reflection coeffi-
cients needed for these kernels. Consider, therefore, an arbi-
trary source distribution in the conductor below a plane
(Fig. 2), either an electric or magnetic dipole distribution or a
combination of both. As in the case of a vertically divided do-
main, the field in the conductor is matched with the field in air
across the vertical boundary in the plane . In addition, the
field in the region is matched with the field in the
upper region of the problem domain across the hori-
zontal boundary at . We begin by noting the scalar modes
in the different regions of the arbitrary source problem. The TE
potential for the region above the plane can be expressed,
as in (24), in

(50)

where . For the region , that is,
below the upper surface of the conductor but above the source,
the TE potential has the form

(51)

where the superscript V indicates that the coefficient is predeter-
mined by satisfying the vertically divided domain interface con-
ditions. The TM solution for the region of the conductor above
the source can be written as

(52)
for and . The unknown coefficients, ,

, and , are found by enforcing the continuity of the
tangential magnetic field and the normal magnetic flux density
at air-conductor interfaces.

B. Formal Solution

The coefficients and are determined by the so-
lution of the corresponding vertically divided domain problem
for a given source. With these coefficients prescribed for the
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quarter-space problem, the remaining coefficients, being lin-
early dependent on those for the vertically divided domain, can
be expressed in the form

(53)

and

(54)

where and are elements of

reflection matrices. and are elements of
transmission matrices. In constructing a Green’s kernel for an
internal scattering problem, only and are needed.
These can be expressed as

(55)

where etc., are matrices and etc., are column
vectors.

C. Application of Interface Conditions

The coefficients in the forgoing expansions are determined
using the interface conditions at the surface which ensure
the continuity of , and . These conditions, applied in
the weak sense, as in Section IV, give, respectively

(56)

(57)

and

(58)

Matrices , and are defined in Appendix A. Matrices
, etc., are diagonal and contain the eigenvalues. Elimi-

nating from (57) and (58) gives the linear system

(59)

(60)

from which and can be found. We have defined

(61)

(62)

From (59), (60) we get

(63)

where

(64)

and hence from (59)

(65)
Comparing (65) and (63) with (55) shows that the reflection
matrices are given by

(66)

which agrees with (36) in the limit as .

D. Quarter-Space Modal Green’s Functions

The quarter-space scalar Green’s functions can be expressed
in terms of those for the vertically divided domain, and

, given in Section V, plus additional terms representing the
field migration from the interface at the plane containing
the reflection matrices in (54) and (55). The decomposition is
expressed as

(67)

for the region and we define integrate kernels for the
reflection terms such that

(68)

The Green’s functions can be deduced from the results of the
previous section by identifying and in the verti-
cally divided domain problem for the case where sources are
singular. A similar procedure was adopted in Section IV for
finding the Green’s functions for the horizontally divided do-
main. In making the assignment, one must be aware that the
corresponding TE/TM potential for a point source is the inte-
grated kernel. Hence, to identify , we operate on (51) with

and compare the appropriate term for the conductive re-
gion with the corresponding one in (47). Similarly with (52) and
(49), one identifies . In this way we assign

(69)

and

(70)
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Then from the terms in (51) and (52) representing field migra-
tion from the interface at , we have (71), as shown at the
bottom of the page, which may be compared with the reflection
terms in the horizontally divided domain problem; see (38) and
(39).

E. Quarter-Space Dyadic Green’s Function

The dyadic Green’s function in (17) for the bitruncated
quarter space, expressed in terms of scalar modes taking ac-
count of mode coupling in the plane , is

(72)

This is of the same general form as the quasi-static dyadic kernel
representing a dipole source in a conductive region adjacent to
an infinite circular cylindrical hole and may be derived in the
same way [12].
For calculations on an ideal crack, in a plane mutually per-

pendicular to the surfaces of the quarter space (Fig. 1), only the
component is needed. Operating
on (72) to isolate this component yields

(73)

Similarly, if the crack opening is small, one can neglect com-
ponents of the induced dipole density at the crack other than the
-component and compute the response using . Eval-
uating the terms in (73) using the decomposition given in (68)
together with (71) gives

(74)

(75)

(76)

and

(77)

The method of moments provides a means of converting the
integral equation for the induced dipole density at the flaw into a
matrix equation which can be solved to give an approximate so-
lution in a discrete form. This has been done by approximating
the flaw field using piecewise constant volume elements and
the solution sought by using the fact that, in the quasi-static
limit, the normal current at the surface of a crack is zero. Ap-
plying this condition at matching points on the crack surface
each at the center of the face of a volume element in the form
of a rectangular parallelepiped defines the matrix [4], [12]. De-
tails of the incident field calculation for a coil near the edge of
a truncated quarter space are given in [10].

VII. RESULTS AND VALIDATION

In order to test the theory and numerical predictions,
impedance measurements have been carried out using two
coils and two test pieces. Two aluminum blocks with edge
notches were used, each in a plane mutually perpendicular to
the intersecting surfaces forming the edge. The notches were
made with Electrical Discharge Machining (EDM). Each block
is sufficiently large compared with the coil and scan dimensions

(71)
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TABLE II
TEST PARAMETERS

Fig. 7. Graphs show (a) resistance and (b) self-inductance variation of a coil
with position as it passes over the edge of an aluminum block. Resistance and
self-inductance values for the coil in air have been subtracted. Small filled cir-
cles show the calculated impedance variation when the axis of the coil is in the
plane of an edge notch whereas the unfilled circles represent the corresponding
calculated results without including the effect of the edge notch. Calculations
assumed a frequency of 10 kHz and test parameters given in Table II.

so that it can be represented as a conductive quarter-space.
The coils were moved by a precision XY scanner (spatial
resolution 0.025 mm) and measurements were made using the
precision LCR bridge Agilent 4284A. The whole setup was
PC controlled using Labview. We used two types of line scans
in gathering the measurement data. In a crack scan the eddy
current coil was moved along the notch and across the edge of
the block, that is, in the -direction shown by the coordinate
system illustrated in Fig. 1. Crack scan measurements were
performed using the test parameters in Table II. The coils are
wound with a self-bonding wire and do not have a former. The
block conductivity was measured using the conductivity mode
of GE Phasec 2-D eddy current instrument. Calculated varia-
tions of the coil resistance and self-inductance with position
at an edge near and away from the notch are shown in Fig. 7.
The variation of the normalized resistance and reactance at
1 kHz due to the notch is displayed in Fig. 8, showing good
agreement between theoretical predictions and experiment.
The corresponding impedance plane display of the same data is
shown in Fig. 9. Normalization is carried out by dividing by the
free-space coil reactance . A small discrepancy is observed

Fig. 8. Graphs show variation in resistance and reactance of an induction coil
with position due to an edge notch. Results are normalized with respect to free
space reactance of the coil. Experimental parameters are summarized in Table II.
Coil is moved with it axis in the plane of the notch towards and over the edge
while being excited at 1 kHz. Circles represent experimental data and solid line
the calculated results.

TABLE III
TEST PARAMETERS

in the real part of the impedance change and is attributed to
measurement errors. It is also interesting to observe the relative
magnitude of the impedance change from the same notch when
this located far from the edge. As shown in Fig. 9, the edge
notch has a much larger magnitude. A full parametric analysis
for further studying this behavior is currently underway.
For an edge scan, the probe is moved parallel to the edge and

therefore parallel with the -axis (see Fig. 1). Edge scan mea-
surements were carried out using the coil and notch character-
ized by the parameters given in Table III. While keeping its axis
vertical, the coil is moved incrementally along a line parallel
to the edge with the coil axis a distance 9.7 mm inbound from
the edge, a value equal to its outer radius, and 11.7 mm from
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Fig. 9. Variation in normalized impedance of an induction coil with position
due to a 4.98 mm long, 5.00 mm deep notch at the edge of an aluminum block;
see Table II for test parameters. Results are the same as those used to plot the
graphs shown in Fig. 8. Circles represent experimental data with the edge effect
subtracted off and solid line shows theoretical predictions of notch signal.

Fig. 10. Variation in normalized resistance and reactance of an induction coil
with position due to a rectangular notch at the edge of an aluminum block. Coil
is excited at 1 kHz and moved along the edge with its axis vertical, 9.7 and
11.7 mm inbound from the edge. Notch is in a plane as illustrated in
Fig. 1. Test parameters are given in Table III.

the edge, an extra 2 mm inbound. The coil impedance is deter-
mined as a function of position at 1 and 10 kHz as shown in
Figs. 10 and 11, respectively. Clearly, there is good agreement
between theory and experiment even though there are only 49
unknowns (7 7) needed for the calculations of impedance at

Fig. 11. Variation in normalized resistance and reactance of an induction coil
with position due to a rectangular notch at the edge of an aluminum block. Coil,
excited at 10 kHz, is moved along the edge with its axis vertical, either 9.7 and
11.7 mm inbound from the edge. Notch is in a plane as illustrated in
Fig. 1. Test parameters are given in Table III.

1 kHz and 147 (7 21) for impedance calculations at 10 kHz.
An impedance plane plot of the same data is shown in Fig. 12
together with results from impedance calculations using the fi-
nite element method (FEM).

VIII. CONCLUSION

Amodel of the interaction of eddy currents with a crack at the
corner of a quarter-space has been developed to compute fast
and accurate predictions of probe signals due to edge cracks.
Experimental results indicate that the predictions based on a
volume element scheme are reasonably accurate. Because cal-
culations that make use of a dedicated kernel need very few
unknowns, the results can be computed extremely rapidly, typ-
ically in just a few seconds once the system matrix has been
computed.
We computed predictions obtained with a dedicated kernel for

a conductive quarter-space and demonstrated that the results are
in good agreement with experiment. Similar calculation could
also be performed for a crack at the edge of a hole or at the
edge of a plate by adapting the truncated domain approach used
for the present problem. The central task is to derive a suitable
kernel in a convenient form for computing the matrix elements
for the conductive region. The resulting kernel can then be used
for either a boundary or volume element calculation of the flaw
signal.
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Fig. 12. Impedance plane plot of response of an induction coil interacting with
a notch at the edge of an aluminum block. Coil, excited at 10 kHz, is moved
along the edge with its axis vertical, 9.7 and 11.7 mm inbound from the edge.
Notch is in a plane as illustrated in Fig. 1. Test parameters are given in
Table III. Experimental data is compared with both volume element and finite
element calculations.

APPENDIX
MATRICES

The matrices introduced in (56), (57) and (58) are defined as
follows. For the matrix in (56) we write

(A1)

where

(A2)

and

(A3)

We also write

(A4)

where

(A5)

and

(A6)

Finally, we define

(A7)
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