Skip to main content
Article
Feedback Control of Low Dimensional Models of Transition to Turbulence
Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, 2005
  • John A. Burns
  • John R. Singler, Missouri University of Science and Technology
Abstract
The problem of controlling or delaying transition to turbulence in shear flows has been the subject of numerous papers over the past twenty years. This period has seen the development of several low dimensional models for parallel shear flows in an attempt to explain the failure of classical linear hydrodynamic stability theory to correctly predict transition. In recent years, ideas from robust control theory have been employed to attack this problem. In this paper we use these models to develop a scenario for transition that employs both classical bifurcation theory and robust control theory. In addition, we present numerical results to illustrate the ideas and to show how feedback can be used to delay transition. We close with a specific conjecture and discuss some previous results along this line.
Meeting Name
44th IEEE Conference on Decision and Control, and the European Control Conference, 2005
Department(s)
Mathematics and Statistics
Sponsor(s)
United States. Air Force. Office of Scientific Research
Keywords and Phrases
  • Shear Flows,
  • Transition,
  • Turbulence
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2006 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
1-1-2006
Citation Information
John A. Burns and John R. Singler. "Feedback Control of Low Dimensional Models of Transition to Turbulence" Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, 2005 (2006)
Available at: http://works.bepress.com/john-singler/21/