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JOE PATER AND ELLIOTT MORETON

STRUCTURALLY BIASED PHONOLOGY:
COMPLEXITY IN LEARNING AND TYPOLOGY*

ABSTRACT: This paper presents structurally biased phonology, a program of research
that aims to formalize and better understand the role of structural complexity in
phonological learning and typology. The paper situates the program with respect to
other research in generative phonology, and provides a framework for it, termed
Incremental MaxEnt with a Conjunctive Constraint Schema (IME/CCS). This framework
extends previous proposals in generative phonology, cognitive psychology and machine
learning to the study of structural complexity. IME/CCS is successfully applied to
model some illustrative cases in which structurally simpler patterns have been found
easier for humans to learn. It is also shown to make predictions about skews toward
simplicity in typology, in conjunction with a model of iterated learning.
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0. INTRODUCTION: THE PROGRAM

Structurally biased phonology is a program of research that aims to
understand the role of structural complexity in phonological learning and
typology. Lab experiments have repeatedly found that the difficulty of
learning a pattern increases along with the number of phonological features
on which it crucially depends (reviewed in Moreton & Pater to appear).
Among natural languages, featurally-complex inventories and phonological
patterns are also under-represented relative to featurally simple ones
(Clements 2003; Mielke 2004, Ch. 6; Moreton 2008; Mackie & Mielke
2011). As we explain in what follows, current phonological theory does
not provide an account of either of these effects of structural complexity.
Although a form of structurally biased phonology was originally proposed
in Bach and Harms (1972), it seems not to have been subsequently
much pursued. We seek to better understand: (1) what effects structure
has on learning and typology, (2) whether and how the learning effects
are causally connected with the typological ones, (3) what properties a
learner must have to account for them, and (4) whether and how these
effects are connected to other domains in and out of linguistics.

The main goal of this paper is to present a theoretical framework for this
research, including some initial illustrative results. In the sections that
follow this one, we present Incremental MaxEnt with a Conjunctive
Constraint Schema (IME/CCS; suggested pronunciation ['aim ks]) using
some relatively simple examples of the modeling of learning and typology
(section 1), before turning to some somewhat more complex modeling
(section 2). These simulations illustrate the general predictions that our
model makes for both learning and typology. The framework is largely
based on previous proposals in linguistics, and its component parts have
also seen broad application in cognitive psychology and machine learning.
The novelty here is in its use to derive structural biases in phonology
(though see Martin 2011 for related work).

In this first section 0, we place the general program of research within
the context of other programs of research currently being pursued in
phonology. Our aim in doing so is not only to contextualize and to hopefully
stimulate interest in the particular framework we have been developing,
but also to inspire the construction of competing frameworks for research
in structurally biased phonology.

Joe Pater and Elliott Moreton
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0.1  Simple examples of structural complexity
To set up the discussion, we start with a pair of examples of the role of
structural complexity in typology and learning. The following typological
example is due to John Kingston (p.c.). The tables in (1) provide examples
of obstruent stop inventories that differ in how they use the [+/–voice]
feature across places of articulation.

(1) Patterns of [+/–voice] contrast across place

A [Lab] [Cor] [Dor]
[–voice] p t k
[+voice]

B [Lab] [Cor] [Dor]
[–voice] p t k
[+voice] b d g

C [Lab] [Cor] [Dor]
[–voice] p t k
[+voice] b d

Inventory A has a simple description in phonetic terms: voiceless labial,
coronal, and dorsal stops.  Inventory B is only slightly more complicated:
voiced and voiceless labial, coronal, and dorsal stops. But Inventory C’s
description is more complex, since it requires stipulations about which
feature values can co-occur: voiced and voiceless labial and coronal
stops, and voiceless dorsal stops. The same is true of any other inventory
that has [p, t, k] and some but not all of [b, d, g].

Natural-language inventories tend to be like A or B, not C.  Table 1 is
based on those languages in the genetically and areally balanced UPSID-
92 database (Maddieson & Precoda 1992) whose inventories have all
of [p, t, k]. Of these, 244 have both [b] and [g], 153 have neither [b] nor
[g], 43 have only [b], and 11 have only [g].  The Observed/ Expected
ratios compare the actual counts to those that we would expect if [b]
and [g] occurred independently of each other. Clearly, they are not
independent: Inventories which have [b] tend to also have [g], and vice
versa (chi-squared = 257, df = 1, p < 0.001).

Structurally biased phonology
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(2) Distribution of voicing contrasts by place in UPSID-92

[b] no [b]
[g] 244 11

(O/E = 1.52) (O/E = 0.12)
no [g] 43 153

(O/E = 0.34) (O/E = 2.13)

This cross-linguistic tendency for inventories to avoid “bumps” and
“holes” is documented in Clements (2003) and subsequent work
(Clements 2009, Mackie & Mielke 2011).

Saffran and Thiessen (2003) provide experimental results on learning by
9-month-olds that show that the class of segments defined by just
[+/–voice] is easier to learn than a class that requires both [+/–voice]
and place of articulation to define. The experiment involved both learning
of a phonotactic pattern and word segmentation. In the first training
phase the infants were exposed to isolated words of shape C1V C2.C1V
C2, where C1 and C2 were each limited to a set of three consonants. In
the second training phase, they were exposed to 4 new words in a
continuous stream, with only two fitting the pattern from the first training
phase. In subsequent testing, listening time was measured (using visual
fixation) for each of the 4 words from the second training phase, presented
in isolation. When the pattern was featurally simple, with voiceless [p, t,
k] in one position, and voiced [b, d, g] in the other, the infants displayed
a novelty preference for non-conforming items. When the pattern was
featurally complex, with [p, d, k] in one position, and [b, t, g] in the other,
there was no significant difference in listening time between conforming
and non-conforming items.

0.2  Structure and substance in generative phonology
These and similar data from learning and typology have yet to have
been given an account. Chomsky and Halle’s (1968:334) evaluation
procedure prefers grammars that use fewer features, but it was originally
proposed only as a means of choosing between analyses of a single set
of data, and does not make one pattern easier to learn than another, or
predict that one pattern should be more common typologically (though
see Bach and Harms 1972 for a possible extension). It is possible that a

Joe Pater and Elliott Moreton
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learning algorithm incorporating the evaluation procedure or some other
Minimum Description Length principle could be used to account for
simplicity biases in learning and typology, but this remains to be shown.
Complex patterns can be learned, just with more difficulty, and are only
typologically under-represented, not absent. These sorts of probabilistic
tendencies fall out of the scope of most current phonological theories.

Generative phonology, as it has developed from Chomsky and Halle
(1968) onwards, aims to provide a formal characterization of the space
of possible phonological systems. This research program has yielded a
wealth of information about the structure of phonological systems, and a
wide range of useful formalizations of this structure. The dominant
framework for this research in the last twenty years has been Optimality
Theory (OT; Prince & Smolensky 1993/2004), which makes use of
violable constraints to analyze individual languages and to generate
typological predictions. Even though OT incorporates violable constraints,
its typological predictions are still all-or-nothing – either a language is
generated by a set of constraints, or it is not (though see Coetzee 2002
and Bane & Riggle 2008 for possible extensions). Other theories of
phonology are sometimes claimed to make more gradient predictions.
For example, in a review of pre-OT research on feature geometry,
McCarthy (1988:84) states that “[t]he goal of phonology is the
construction of a theory in which cross-linguistically common and well-
established processes emerge from very simple combinations of the
descriptive parameters of the model”. Similar statements about a
relationship between simple feature geometric formalisms and
typologically common patterns are also found in Clements (1985) and
Sagey (1990). However, in all cases, the causal mechanism linking the
formalism and typology is left completely unspecified. We discuss other
versions of this issue in the conclusions of 1.2 and 2.2, after we have
shown how learning can provide the link from formal grammatical
structure to gradient typology.

The fact that phonological frameworks only make categorical predictions
about typology is just one reason why they require amendments to serve
as frameworks for structurally biased phonology. Another issue is that
they have typically conflated what are called structural and substantive
factors, and these may well be the products of separate systems. Before

Structurally biased phonology
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turning to the problem, it’s worth recognizing that there are good
arguments for incorporating substance into a theory of phonological
typology. From the outset of generative phonology, it was realized that a
purely formal system would not distinguish between common phonological
patterns and unattested ones (Chomsky & Halle 1968, Ch. 9). It is not
merely the structural complexity of a pattern that determines whether it
is typologically attested. It is straightforward to change a typologically
well-motivated phonological rule or constraint into one that generates
undesired results by substituting one feature or variable for another, which
keeps complexity constant. For example, a coda devoicing rule becomes
a voicing rule by substituting a plus ‘+’ for the minus in [–voice], and a
constraint banning voiced codas can as just easily become one that bans
voiceless ones. A theory that generates coda voicing is generally held to
be undesirable insofar as it fails to fit the attested typology, which lacks
this process (see Blevins 2004 for challenges to both the theoretical
assumption and the empirical facts; see Kiparsky 2006 for a response).

It is uncontroversial that a full account of phonological typology needs to
take into consideration the ‘substance’ of rules and/or constraints, which
usually means their connection to articulation, perception, and perhaps
other aspects of language use. What is controversial is how and whether
this substance should be incorporated into the phonology itself, that is,
into the formal system that is taken to characterize speakers’ knowledge
of the sound system of a language. Bach and Harms (1972) challenge
the notion in Chomsky and Halle (1968, Ch. 9) that the purely formal
evaluation procedure should incorporate substantive markedness
principles. Anderson (1981) argues against attempts, such as that of
Stampe (1979), to define a privileged set of phonetically ‘natural’
phonological rules (see also Anderson 1985). Ohala (1990) criticizes the
idea that formally simple rules should yield common patterns, arguing
that the explanations are to be found in the phonetics itself, and in patterns
of language change. Finally, Blevins (2004) and Hale and Reiss (2000,
2008) draw on this line of earlier critique in questioning the use of
substantive factors in determining the contents of OT’s universal
constraint set (see especially Hayes, Kirchner & Steriade 2004 on
explicitly phonetically driven versions of OT, and Archangeli & Pulleyblank
1994 for a pre-OT precedent).

Joe Pater and Elliott Moreton
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There are two main worries about substantively grounded theories of
phonology that permeate these critiques, worries that seem to us legitimate.
The first is that there are well-documented instances of productive
phonological patterns that do not have a synchronic phonetic basis (see
e.g. Icelandic velar fronting in Anderson 1981, NW Karaim consonant
harmony in Hannson 2007, and Sardinian [l] ~ [ ] alternations in Scheer
forthcoming).1 The second is that it seems in principle possible to derive
the fact that many phonological patterns are phonetically grounded from
their diachronic emergence from the phonetics itself – see Yu (to appear)
for a recent collection of papers on ‘phonologization’.

The first of these concerns might be met by developing a substantively
biased framework for phonology (Wilson 2006). Instead of adopting
substantively grounded phonology’s hard requirement that phonological
rules or constraints be phonetically motivated, which makes ungrounded
phonology unlearnable, one might instead build a theory in which grounding
facilitates learning (this is also the intent of Chomsky and Halle 1968,
Ch. 9 and Stampe 1979). Wilson (2006) motivates such a theory on the
basis of artificial language learning experiments that are claimed to provide
evidence of greater generalization of phonetically grounded patterns.
Our own reading of the results of Wilson’s experiments, as well as other
related ones, is that the evidence for substantive bias is weak at best,
especially in comparison with the strong evidence from this experimental
paradigm for structural biases like that seen in the Saffran and Thiessan
experiment reviewed above (see Moreton & Pater 2012 for extended
discussion). Based on current evidence, it remains plausible that many
of the substantive skews in phonological typology, especially the ones
most clearly related to phonetics, do arise in phonologization, rather than
being encoded in a phonological inductive bias. We follow Wilson in
seeking a framework that incorporates inductive bias in learning, but the
biases that we seek are structural, rather than substantive (though see
further section 1.1).
1 Kiparsky (2006) and Kingston and de Lacy (to appear) provide examples of patterns
that they claim are ruled out by Universal Grammar (UG), and which cannot be produced
by patterns of historical change. It remains to be seen whether a fully explicit theory of
UG can deliver these results, yet still allow for the acquisition of patterns like the ones
we have listed in the text (see also Hayes, Zuraw, Siptar & Londe 2009 for further
challenges).

Structurally biased phonology
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Given the concerns that have been expressed about substantively grounded
phonology, why has it been the focus of such sustained research activity?
There are likely as many answers as there are phonologists, but we can
see a few reasons why alternatives have not yet been sufficiently
explored. The main one is that as we have mentioned above, some type
of substantive grounding has been crucial to the success of all theories
of phonology as theories of typology. To take the case of OT, the
typological predictions of the theory rely on the presence vs. absence of
constraints from its universal constraint set, and often constraints that
are formally identical lie on opposite sides of this divide. For example,
Prince and Smolensky’s (1993/2004) syllable structure typology relies
on the presence of constraints demanding onsets and banning codas,
and the absence of constraints that ban onsets and demand codas. There
is nothing that formally distinguishes ONSET and NOCODA from NOONSET

and CODA: there is no general formal property that picks out the first two
as special. They are only distinguished by their substance, that is, by the
particular configuration of structural elements involved. This is not a
peculiarity of OT – the parametric theories from which it descended
have similar stipulations about the contents of their sets of parameters.

There is a body of current research pursuing alternatives to substantively
grounded phonology, but it has yet to address the role of structural
complexity in learning in typology. One approach pursues purely formal
theories of phonology, but leaves the learning component unspecified
(e.g. Hale & Reiss 2008, Samuels 2011). The result is that these theories
make no predictions about the effects of structural complexity in learning,
nor do they have anything concrete to say about its effects on typology.2

Another approach is to study how phonetics and diachrony can explain
skews in phonological typology. A prominent example of this research is
Blevins (2004), which does push that program of research forward, but
contains no explicit proposal about the structure of the phonological
component, and says nothing concrete about the role of phonological
complexity in learning and typology.

2 Hale and Reiss (2008) and Samuels (2011) eschew typological restrictiveness as an
evaluation metric on theories, but it is not clear what replaces it.

Joe Pater and Elliott Moreton
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In sum, current phonological theory seems to be at an impasse.
Typological evidence points to the role of substantive factors in shaping
phonology, yet individual phonological systems are apparently content to
maintain ungrounded patterns (and even innovate them, according to
Bach & Harms 1972). Based on the experimental evidence surveyed in
Moreton and Pater (to appear), it also seems that learners have no problem
in acquiring phonetically ungrounded systems. The best way forward, it
seems to us, is to take on the difficult task of constructing theories of
phonological typology in which the phonological component itself is not
directly constrained by the phonetics. This task is difficult because it
involves constructing interacting theories of phonetics, phonology, learning,
and change, and measuring the outcome of this interaction against
typology. The empirical work involved in this sort of research program
also raises its own set of challenges: how do we go about teasing apart
the effects of inductive bias in phonological learning from the effects of
phonetic transmission? One answer to this question is provided in Moreton
(2008), where the study of phonetics and artificial phonology learning is
used to argue that a set of typological skews are the joint product of a
structural inductive bias (aka analytic bias) and the effects of phonetic
transmission (aka channel bias – see Yu 2012 for discussion of whether
this was measured properly).

0.3  Structurally biased phonology in generative phonology
In this paper, we will not take on the full task of showing how a structurally
biased phonology can jointly produce typological distributions with theories
of phonetics and learning. Instead, we take on the smaller, yet still
challenging, job of developing a framework that can make predictions
about the role of structural complexity in learning and typology. We see
this as only one piece of a much larger and quite complicated system,
whose dynamics we will only be able to understand by building explicit
models of each part. Here we sketch how the model we develop relates
to previous streams of research in generative phonology.

Our research in structurally biased phonology is firmly within the
generative tradition in its concern with explicit formal description and
typological explanation, but departs from much research within it in a
number of ways. The first is that we adopt probabilistic grammar

Structurally biased phonology
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formalisms, which have only recently become popular within
‘mainstream’ phonology (see Coetzee & Pater 2011 for discussion).
Probabilistic grammars are useful, maybe even indispensible, in modeling
the course of learning and of language change (see e.g. Jarosz 2010 for
an overview of models of the development of phonological production
that use probabilistic grammars, and Zuraw 2003 on probabilistic models
and diachrony).

The biggest difference between structurally biased phonology and most
generative research is in that it seeks to formalize soft, as well as hard
restrictions on learning and typology. The adoption of probabilistic
grammar models does not in itself automatically deliver accounts of
probabilistic typological tendencies such as the tendency towards feature
economy. To create such accounts, we draw on a line of research that
largely sets itself outside of the generative tradition, which involves the
creation of computational models of agent-based or iterated learning to
model change and probabilistic typological generalizations (see Wedel
2011 for an overview; see Hare & Elman 1995 for the pioneering
application to structural simplicity in phonology). Much of the work on
iterated learning, including Wedel’s own, uses analogical mechanisms to
capture agent-internal generalizations that would be attributed to
grammars in generative phonology. We are impressed by the general
success of grammar-based research on language, and hence adopt
grammatical rather than analogical models, but their relative merits within
an iterated learning framework deserve further scrutiny. In the work
presented below, we proceed by identifying learning biases that emerge
from a model of grammar and its learning, and by then generating
typological probabilities through repeated runs of iterated learning using
this model.

The final distinctive feature of structurally biased phonology with respect
to at least the bulk of generative research is its use of laboratory methods
to study learning biases. While the rise of Laboratory Phonology (starting
with Kingston & Beckman 1990, see Pierrehumbert et al. 2000) has
made experimental methods a core component of phonological practice,
it is still the case that most proposals about the contents of a phonological
UG come from the traditional method of constructing a theory that comes

Joe Pater and Elliott Moreton
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as close as possible to generating all and only the patterns attested
amongst the world’s languages. The laboratory study of learning is a
powerful, if undoubtedly imperfect, way of teasing apart inductive biases
such as UG from the typological effects of phonetic transmission. There
are two other methods that we are aware of, but that we will not make
use of in this paper. One is to conduct experiments (e.g. “wug”-tests,
nonce word judgments) with speakers of naturally learned languages to
find out how their internalized knowledge corresponds to patterns in the
hypothesized learning data (for data suggestive of simplicity biases, see
Hayes et al. 2009 and Becker et al. 2011). Another is to construct explicit
models of phonetic transmission and learning, in order to see what is left
over for phonology to explain (see Wedel 2011 and Yu to appear for
references and a recent collections of papers). An important precedent
in this latter area to our own work is that of Boersma and Hamann
(2008) and Boersma (2011), because the model of grammar and learning
developed there is so close to ours, to which we will now turn. The main
difference is a matter of focus: Boersma and colleagues have not studied
the structural biases that are our concern.

1. A FRAMEWORK: INCREMENTAL MAXENT WITH
A CONJUNCTIVE CONSTRAINT SCHEMA

The desiderata for a framework for structurally biased phonology are
quite different from those for many other approaches to phonology. Most
fundamentally, within this framework we will not expect a theory of
some domain, like vowel harmony, to generate only the patterns observed
cross-linguistically, since we expect typological generalizations to emerge
from the interaction of theories of phonology, phonetics, learning and
change. Instead, we require models that will deliver just the preferences
for structural simplicity observed in learning, and that will predict skews
toward structural simplicity in typology. Because the aims of structurally
biased phonology are different from other programs of research in
phonology, it would be surprising if a successful framework for it directly
resembled a framework designed for other purposes. Because the
empirical domain of structurally biased phonology overlaps considerably

Structurally biased phonology
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with that of other approaches, it would also be surprising if there were
nothing to be gained here from importing formalisms from preceding
theoretical frameworks. Our own proposals build on research in OT by
using violable constraints, though we depart in several ways from the
framework presented in Prince and Smolensky (1993/2004). The primary
usefulness of violable constraint grammars in the present context is that
they have associated well-developed learning algorithms. It turns out
that a bias for structural simplicity, the basic desired property of theories
of structurally biased phonology, falls out directly from relatively minimal
assumptions about the nature of the grammar and learning algorithm.

As mentioned in the preceding section, our framework uses probabilistic
grammar models, as opposed to the categorical one proposed in Prince
and Smolensky (1993/2004). Here we adopt maximum entropy or MaxEnt
grammars (Goldwater & Johnson 2003, Hayes & Wilson 2008). Unlike
the original proposals just cited, we combine these models with an on-
line, gradual learning algorithm, which is suitable for modeling the course
of learning. The combination of a MaxEnt grammar with an incremental
learner was first explored in generative phonology by Jäger (2007), who
calls the learning algorithm a sampling version of Stochastic Gradient
Ascent. Here, we follow Johnson (2007) and Pater (2008) in referring
to this learning algorithm as the Perceptron update rule (after Rosenblatt
1958), leaving Stochastic Gradient Ascent for the non-sampling version
(see Johnson 2007 for the formalizations). This is the same learning
algorithm that Boersma and Pater (to appear) call HG-GLA, and it’s
also referred to as the Delta Rule in connectionist research. Because
we use incrementally learned MaxEnt grammars, we refer to our
framework as Incremental MaxEnt, though it’s likely that many of our
results could also be obtained with other gradually learned probabilistic
grammar models, like Boersma’s (1997) incrementally learned stochastic
version of OT.

A MaxEnt grammar uses weighted constraints to define a probability
distribution over a set of representations. We use two kinds of these
grammars in our simulations. In the type proposed by Goldwater and
Johnson (2003), the probability distribution is defined over the candidate
set of outputs for a given input (e.g. over candidate phonological surface
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representations for a given underlying representation). We also follow
Hayes and Wilson (2008) in using a MaxEnt grammar that defines a
probability distribution over a space of possible words, that is, as a
probabilistic model of phonotactics. In either case, the probability of a
representation is proportional to the exponential of its weighted sum of
constraint scores. Constraint scores can be violations or rewards – we
use rewards for convenience in our simulations. The weighted sum of
scores is the quantity termed Harmony in Harmonic Grammar
(Smolensky & Legendre 2006, Pater 2009), so we can say that probability
is proportional to exp(H).

The other fundamental assumption of our framework is that the constraint
set has a particular structure, which follows from the application of a
conjunctive constraint schema to a given set of features; hence the
framework as a whole is dubbed Incremental MaxEnt with a Conjunctive
Constraint Schema (IME/CCS). We will introduce this assumption in
the context of the simulation that follows.

1.1  Learning with a MaxEnt phonotactic grammar
To show how a simplicity bias can be straightforwardly obtained with
these assumptions about grammar and learning, we’ll use a simplified
version of the learning scenario in the Saffran and Thiessen (2003)
experiment described above. We assume as a space of possible
representations the 6 consonants in Table 2: voiced and voiceless labials
[b] and [p], coronals [d] and [t], and dorsals [g] and [k]. The sum of the
probabilities within this representational universe adds up to 1. We’ll see
that a learner that starts with probability equally distributed amongst the
consonants will shift the probability to observed [p, t, k] more quickly
than to observed [p, d, k], that is, it will learn the [p, t, k] distribution
more quickly than [p, d, k].

The table in (3) uses just three constraints to show how a MaxEnt
phonotactic grammar works. The first two constraints [+Vce] and
[–Vce] reward consonants that are voiced and voiceless respectively,
assigning a score of +1 in each case. The third constraint [+Vce] [+Cor]
rewards a conjunction of features and thus assigns +1 to the voiced
coronal [d]. The weights of the constraints are shown in the first row

Structurally biased phonology
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underneath their names, and each consonant’s weighted sum of scores,
or Harmony, is shown in the column labeled H. For example, the H
score for the voiced coronal is (1 × – 4) + (1 × 8) = 4. The probabilities
result from dividing exp(H) for each consonant by the sum of all 6 of
these numbers. With these constraint weights, the probability is roughly
equally divided between [d], [p], [t] and [k], with a vanishing amount of
probability reserved for [b] and [g]. Negatively weighted [+Vce] and
positively weighted [–Vce] both shift probability onto the voiceless
consonants, while positively weighted [+Vce] [+Cor] allows [d] to retain
a non-negligible proportion of the probability mass.

(3) A MaxEnt phonotactic grammar

[+Vce] [–Vce] [+Vce] [+Cor]
– 4 4 8 H P

[b] 1 – 4 < 0.001
[d] 1 1 4 0.25
[g] 1 – 4 < 0.001
[p] 1 4 0.25
[t] 1 4 0.25
[k] 1 4 0.25

We apply the Perceptron update rule to MaxEnt phonotactics as follows.
Each learning step begins by sampling a single learning datum from the
target distribution. An example of a target of learning within our 6
consonant universe is a uniform probability distribution of 0.33 for each
of the voiced consonants, with voiceless consonants having probability
0. Sampling from this distribution might yield [d]. Next, a representation
is sampled from the distribution defined by the current grammar.
Assuming the grammar in Table 1, there is a 25% chance that we would
sample [p]. We then take the difference in the scores of the two
representations, which yields the vector (1, –1, 1) for the constraints in
Table 1. This vector is scaled by the learning rate, and the result is added
to the current weights to get the updated weight values. This would here
increase the weights of [+Vce] and [+Vce] [+Cor], and decrease that
of [–Vce], thus shifting probability from [p] to [d].

Joe Pater and Elliott Moreton
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For our simplified simulation of the Saffran and Thiessen results, we
model the learning of two target distributions over these 6 consonants.3

In the ptk language, the voiceless consonants each have 1/3 of the
probability, and the voiced ones have none. In the pdk language, the
voiceless labial and dorsal each have 1/3 of the probability, as does the
voiced coronal, while the rest of the consonants have probability 0. For
each of the languages, the constraint set consists of the constraints that
reward each observed single feature, as well as each two-feature
conjunction. We thus have the constraint sets in (4). We have not included
in (4) the single feature constraints for the 3 place features, which were
included in the simulations, but played no role in the results.

(4) Constraint sets for learning simulation

a. ptk language: [–Vce], [+Lab] [–Vce], [+Cor] [–Vce],
[+Dor] [–Vce]
b. pdk language:[–Vce], [+Vce], [+Lab] [–Vce], [+Cor] [+Vce],
[+Dor] [–Vce]

The constraint weights started at zero, and the learning rate was set at
0.01. The graph in Figure 1 shows the probability assigned to the observed
forms over the course of 2000 learning trials, at 50 trial intervals. These
probabilities are the averages over 10 runs. At every point in learning,
the ptk learner assigns higher probability to the observed forms in its
language than the pdk learner does.

3 All simulations were run as scripts in R (R development core team 2010). The basic
script, which can be straightforwardly modified to replicate the simulations, can be
found at http://blogs.umass.edu/hgr/perceptron/.

Structurally biased phonology
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Figure 1: Probability assigned to observed forms

The following three figures show why ptk is easier to learn than pdk
under these assumptions. First, for every mismatch between the target
datum and the one generated by the current grammar, the ptk learner
adds positive weight to [–Vce]. This constraint thus rises quickly, as
shown in this graph of constraint weights over the first 500 trials. The [–
Vce] constraint is labeled vcl in the graph, while the two-feature
constraints are labeled with the consonants they reward: [p], [t], and
[k]. The place constraints remain around zero, since the target probability
distribution is uniform with respect to place.

Figure 2: Constraint weights, first 500 trials, ptk condition
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In contrast, there is no single constraint that picks out the observed forms
for the pdk learner. Because voiceless consonants predominate, [–Vce]
does get a positive weight, and [+Vce] (vcd) a negative weight. Their
joint effects must be overcome by a high weighted [+Cor] [–Vce] (d)
constraint (a similar configuration is shown in table (3)).

Figure 3: Constraint weights, first 500 trials, pdk condition

The weights of the voicing constraints lead to some over-generalization
in the early stages of learning. As shown in Figure 4, the learner assigns
higher probability to [t] than to [d] in trials 50 through 200, even though
it never sees [t].

Figure 4: Probabilities of consonants, pdk condition
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This over-generalization is reminiscent of the behavior of connectionist
models (see e.g. Rumelhart & McClelland 1986), and has a similar source,
since the model we have presented here is essentially a notational variant
of a single layer feedforward network trained with the same update rule
(see further the discussion of Gluck & Bower 1988ab in section 2.1).

This grammar and learning model displays a simplicity bias in that the
pattern that can be described with a single voicing feature is learned
faster than the one that requires both place and voicing. This bias was
not written into the model in terms of a prior over constraint weights, as
in Wilson’s (2006) substantively biased phonology (see Johnson 2007 on
how to formalize priors as decay terms in on-line models; see also Jesney
and Tessier’s 2011 use of learning rate and initial weights). The key
assumptions are (1) that the learner’s internal vocabulary for representing
generalizations consists of constraints that are stated in terms of
conjunctions of one or more phonological feature values, and (2) that the
contribution of each constraint to the learner’s grammar is only adjusted
on learning trials for which that constraint is relevant.  If a pattern can
be stated with reference to a few general conjunctive classes, it will be
learned fast, since the constraints that support it will be both relevant
and right on many training trials, and will therefore advance quickly.  If
a pattern can only be stated with reference to many particular classes, it
will be learned slowly, since the correct constraints (a) being relevant on
just a few training trials, will advance slowly, and (b) can’t force a correct
decision until they have become strong enough to outvote the incorrect
general constraints which, being relevant on many trials, will gain strength
quickly but be wrong about the details of the pattern (like positively
weighted [–Vce] and negatively weighted [+Vce] in the pdk learner).

Thus the only necessary assumption, besides those included in the basic
structure of the framework, regards the structure of the constraint set.
A complete account requires guaranteeing that the constraint set will
contain these general constraints, presumably by incorporating their
construction into a constraint induction procedure (see Hayes & Wilson
2008 on constraint induction for non-incremental MaxEnt; see Moreton
2010 on on-line constraint induction). The simplicity bias requires the
general single feature constraint [–Vce]; an alternative model that
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contains only the two-feature constraints learns both languages at the
same rate. The assumption that constraint sets include such general
constraints is uncontroversial, but not without content: it implies that
learning involves abstraction from the featural make-up of individual
forms. For example, there is no observed form that is [–Vce], without
also being specified for some place feature. Note too that we are making
substantive assumptions about the feature set: we included a feature
that groups [p, t, k], and no feature that groups [p, d, k]. In just this way,
there is in fact a sort of substantive bias in this theory (see further Moreton
and Pater to appear: section 4.4).

Compared to the assumptions that are typically made about constraint
sets in OT, our assumptions are quite weak. It remains to be seen to
what extent stronger assumptions about the constraint set need to be
made to account for phonological learning and typology in this framework,
especially once models of phonetics and its learning are incorporated.4

1.2  Typology with MaxEnt with candidate sets
To provide a simple illustration how this grammar and learning model
can leave an imprint on typology, we turn to a different empirical domain,
since feature economy requires a discussion of contrast, which we would
like to put off until the next section. The basic specific-to-general
relationship between the constraints in the last simulation obtains between
many other sets of constraints, and can lead to similar biases in learning.
For example, morpheme-specific phonology can be formalized in terms
of lexically specific versions of general constraints (Pater 2000, 2010).
The constraint set that we posit for this simulation is as in (5):

4 See Moreton (2012) for evidence that phonological learning requires variables on
constraints to account for the privileged status of featural identity (see relatedly Berent
et al. 2012), and see Staubs (in prep.) on requirements on stress constraints for a
typological model of the correlation between main stress position and directionality of
footing.

Structurally biased phonology
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(5) Constraint sets for typological simulation

a. Stress-R/L
Assign a reward to if stress is on the right-/leftmost syllable
b. Word-X-Stress-R/L
Assign a reward if stress on Word X is on the right-/leftmost
syllable

As in the last simulation, there is a general constraint that applies across
contexts, as well as constraints that apply in only specific contexts. Here
the contexts are words, rather than places of articulation. We use stress
for this example to emphasize the wide scope of our proposals, which
are in no way limited to segmental phonology (or even to phonology).
The features across which we are applying the conjunctive constraint
schema are stress position and Word, with rightmost vs. leftmost stress
being a stand-in for a more developed representational theory of stress.

The typological skew that we will model is one that most linguists would
likely agree exists, and whose existence seems to be a fundamental
assumption of linguistic theory, but which remains to be quantified. The
skew is towards regularity. That is, we will show that this even though
this model of learning and grammar can produce lexical stress, in which
stress position is an arbitrary feature of individual words, it predicts a
typological skew towards regular stress, where stress position is uniform
across words. When one of the general constraints in (5a) has a
particularly high weight, stress will be placed uniformly on the right or
leftmost syllable. Lexically arbitrary stress arises when stress placement
is controlled by the word-specific constraints of the form in (5b). Partially
regular systems result from weightings that allow the joint effects of the
word-specific and general constraints to be seen.

The typological skew towards regularity is produced by a tendency for
grammars to have a high weighted general constraint. Regularization of
exceptional stress as seen in in acquisition (e.g. Hochberg 1988), and in
diachrony (e.g. Phillips 1984, Sonderegger & Niyogi in press) can be
modeled using this sort of constraint set in the present framework; see
Pater (to appear) for a demonstration. Here we generate typological
predictions by examining the outcome of the interaction of learner-teacher
pairs. In each run, two agents repeatedly produce learning data for one
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another, with one of the two randomly selected as the teacher in each
trial. At the end of a given number of trials, we have a language. A
distribution over these languages can be interpreted as the typological
prediction of the learning and grammar model. This is not meant to be a
realistic model of language use and change; rather, it is a fairly abstract
means of generating typological predictions from a theory of both learning
and grammar. It abstracts from the possible effects of phonetic
transmission, since production and perception are fully accurate, yet it is
a step towards greater realism than standard generative models, which
consider only the typological effects of a grammar, and not the learning
algorithm. This method of modeling typology might be referred to as an
Interactive Grammar-Learning model: ‘interactive’ because it generates
predictions from the results of interaction between agents in the
simulations, and also because the grammar and the learning algorithm
are interacting. This model is in principle independent of our proposals
about learning and grammar; one could also implement it with other
grammar and learning models.

As in the last simulation, we use a MaxEnt grammar model with the
Perceptron update rule, but instead of Hayes and Wilson’s (2008) MaxEnt
phonotactic model, we use Goldwater and Johnson’s (2003) OT-like
model. That is, we now have probability distributions over candidate
sets for individual words, rather than a single distribution over the space
of possible words. There are 4 words, and each has two candidates: one
with final/rightmost stress, and one with initial/leftmost stress. There are
thus 10 constraints – the two general constraints preferring left- and
rightmost stress respectively, as in (5a), and the 4 lexically specific
versions of each of these two, as in (5b). The constraints started with
zero weight, which produces initial equal probability for the candidates.
In each trial, the randomly selected teacher’s grammar is used to pick
one of the candidate stress positions for a word randomly selected from
a uniform distribution. This is then used as the learning datum for the
other agent, whose grammar generates the stress position for the same
word. These two input-output pairs are used for the Perceptron update
described in the last section. Each run consisted of 10,000 learning trials
with the learning rate set at 0.1, and there were 50 runs, which produced
50 languages. Any negative weights produced by the update were
changed to zero.

Structurally biased phonology
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The measure of interest is the extent to which stress is in the same
position across words. For each word at the end of each run, the candidate
with higher probability was taken as the choice of stress position for that
word (the two agents always agreed). A baseline probability for uniform
stress can be derived as follows. There are 4 words each with a binary
choice of stress position, so there are 24 = 16 possible stress position
combinations across them. Of these, only 2/16 = 0.125 have stress in
same position – one with all words having leftmost stress, and the having
all rightmost. In the outcome of the simulation, 40/50 = 0.80 of the runs
produced uniform stress, a distribution that diverges considerably from
chance (p < 0.001 by a two-sided exact binomial test).5

To provide a more fine-grained view of a subset of the results, we show
in (6) the outcome for the first 12 of 50 runs, each time averaged over
the two learners. For each row, the column headed ‘Word’ indicates the
word at issue, and ‘S’ the location of stress, either left- or rightmost.
After 10,000 trials, the learners have moved quite far from the uniform
0.50 probability of the initial state. We clearly see the tendency toward
regularity: in every run except R9 and R10, the higher probability candidate
in every candidate set is uniformly either left stressed (L) or right (R).
Note too that the probabilities are tending towards 1 and 0. It may well
be of some independent significance that a tendency toward categorical
outcomes is emerging from the interaction of learners operating with
probabilistic grammar models. Here this tendency is the result of a much-
noted outcome of agent-based modeling: the agents are coming to agree
on a ‘form’ for each ‘meaning’ (see e.g. Liberman 2002 in linguistics,
and Schultz et al. 2010 in robotics).

5 Robert Staubs notes that repeatedly assigning random weights to the constraints from
a uniform distribution bounded by 0 and 1, without running the learner, produces 40%
uniform stress: higher than chance, but lower than the learner and grammar together.
Bootstrapping evaluation yields a significant difference (p < 0.001) between grammar
vs. grammar + learner.
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(6) Average probabilities assigned to each stress location

Word S R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

1
L 0.04 0.98 0.98 0.00 0.98 0.37 0.02 0.01 0.09 0.85 0.01 0.98
R 0.96 0.02 0.02 1.00 0.02 0.63 0.98 0.99 0.91 0.15 0.99 0.02

2
L 0.03 0.99 0.66 0.03 0.97 0.05 0.17 0.02 0.25 0.23 0.01 0.99
R 0.97 0.01 0.34 0.97 0.03 0.95 0.83 0.98 0.75 0.77 0.99 0.01

3
L 0.02 0.99 0.85 0.02 0.99 0.03 0.06 0.01 0.74 0.96 0.02 0.98
R 0.98 0.01 0.15 0.98 0.01 0.97 0.94 0.99 0.26 0.04 0.98 0.02

4
L 0.11 0.98 0.95 0.01 0.99 0.37 0.01 0.01 0.03 0.35 0.00 0.98
R 0.89 0.02 0.05 0.99 0.01 0.63 0.99 0.99 0.97 0.65 1.00 0.02

The movement away from 0.50 probability is a sort of “rich get richer”
effect. When the teacher picks a form and the learner disagrees, the
update will move probability toward the teacher’s form. Over time, this
process will tend to accumulate probability on one of the choices for
stress for each of the words.

The consistency across words emerges from the activity of the general
constraint. As an illustration, consider the update when the teacher
supplies a left-stressed version of Word 1, and the learner’s grammar
generates a right-stressed one. The difference vector used in the update
is shown as T – L in (7).

(7) A difference vector for a weight update

Stress-R Stress-L Word-1-R Word-1-L

Word 1
Teacher: Left 1 1
Learner: Right 1 1
T – L –1 +1 –1 +1

Based on this example of a left-stressed word, the learner will not only
raise the weight of Word-1-L and lower the weight of Word-1-R, but it
will also raise and lower the weights of the general Stress-L and Stress-
R constraints. This increases the probability assigned to left-stressed
words in general, and hence increases the probability that when in the
future this learner is the teacher it will produce a left-stressed word as a
learning datum, leading eventually again to a “rich get richer” snowballing.

Structurally biased phonology
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To verify that it is the inclusion of the general constraint that leads to the
emergence of uniform stress, we ran the simulation without it. This time,
uniform stress was only produced in 5 out of the 50 runs. This 0.10
probability comes close to the 0.125 predicted by chance (p = 0.83 by a
two-sided exact binomial test), unlike the 0.80 probability of consistent
stress produced when the general constraint was included.

While the quantitative data remain to be gathered for lexical stress and
for other similar cases, we suspect that languages do indeed tend to be
regular, as our simulations predict, and as attested regularization in learning
and change would lead us to expect. Even though regularity is taken to
be the norm in generative phonology, it does not seem that any typological
skew in that direction is in fact predicted by other current generative
theories. Insofar as a theory incorporates a mechanism to account for
morpheme-specific phonology, which is required for descriptive adequacy,
then it remains to be explained why languages should tend not to use this
mechanism. For some discussion of similar issues in syntax from the
perspective of this framework, see Pater (to appear) – the simulation
presented here is in fact a slightly disguised version of one presented
there for syntactic headedness, with categories, rather than words,
providing the basis for the specific constraints. See also Kirby and Hurford
(2002: “Why Social Transmission Favors Linguistic Generalization”) for
useful discussion of why regularization emerges from the dynamics of
this sort of system, as well as a comparison with what they take to be
standard generative assumptions.6

In the next section, we present more elaborate versions of these two
simulations, again using MaxEnt phonotactics for the learning simulation,
and an OT-style MaxEnt grammar for the typological simulation.7 The
first of these examines the predictions of the learning model for a featural
complexity scale originally studied in concept learning. The second of
these applies the typological model to making predictions about feature
economy.

6 A methodological advantage of the present Interactive Grammar-Learning model over
Kirby and Hurford’s Iterated Learning model is that we do not need to find the number
of learning trials per generation that will yield what they call the ‘bottleneck’ effect.

7 There is nothing that limits the application of each of these grammatical models to
each of these domains. For example, we have applied with some success the OT-style
model to simulations of learning experiments that involve learning alternations.
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2. FURTHER RESULTS

2.1  Predictions for a complexity scale
One reason that structural complexity has been so little studied to date in
phonology may be that simplicity biases were assumed to trivially follow
from existing grammar and learning models. In both of the preceding
sections, we have emphasized that standard generative theories do not
make probabilistic predictions about typology, but it may well be that
there are many theories in the generative literature that could be realized
as probabilistic models with appropriate learning algorithms, and which
would generate the same type of basic predictions as we have generated
with our models. It is also the case that many cognitive models from
outside of linguistics predict simplicity biases, as Culbertson et al. (to
appear) have pointed out in a discussion of biases for uniform syntactic
headedness. However, it would be a mistake to assume that all simplicity
biases trivially follow from any reasonable model. The literature on
simplicity biases in concept learning shows that if we make learning
problems even slightly more complex than the one in our simulation in
1.1 above, we are able to tease apart the predictions of competing models
(see Ashby & Maddox 2005 and Goodman et al. 2008 for recent
reviews). We expect that this prior research in cognitive psychology will
lay the groundwork for much future research in structurally biased
phonology. We were first led to this literature by Andrew Cohen’s
observation that the phonotactic version of IME/CCS presented in 1.1
closely resembles Gluck and Bower’s (1988ab) configural cue model, a
single layer feedforward network model of category learning that uses
as cues each feature, and each of their conjunctions.

The seminal study in concept learning is that of Shepard et al. (1961),
who examined the relative difficulty of learning categories based on
three binary features8. The tables in (8) show the 6 ways that a stimulus
space can be partitioned into two even-sized categories with three binary
features, using the phonological features [+/ labial], [+/–voice] and [+/–
continuant]. These 6 Types exhaust the possibilities for formally distinct

Structurally biased phonology

8 The possible relevance of the Shepard hierarchy for phonological learning has been
discussed previously by Silverman (1999, 2006) in connection with the structural
relationship between allophones of a phoneme. This approach emphasizes the effects of
practice in reducing between-type differences in difficulty.
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patterns; any other pattern can be obtained by substituting one feature
for another. The divisions are indicated by bolding and italicizing the
members of one of the categories, which we will arbitrarily call the IN
class.

(8) Shepard et al. patterns as phonological inventories

Type I Type II Type III
p           f p           f p           f
b           v b           v b           v
t           s t           s t           s
d           z d           z d           z

Type IV Type V Type VI
p           f p           f p           f
b           v b           v b           v
t           s t           s t           s
d           z d           z d           z

The Type I pattern uses a single feature to divide the space, and here
the IN class is [+voice]. The Type II pattern uses two features, in an
exclusive-or fashion. Here the IN class consists of segments that are
[+labial, –continuant], or [–labial, +continuant]. Types III to V use all
three features, but a subset of the stimuli can be described in terms of
just two of the features – two of members of the IN class can be identified
as the non-labial continuants. The Type VI pattern requires all three
features to distinguish each of the segments in the IN class from the
OUT segments.

The Saffran and Thiessen (2003) experiment discussed in the introduction
examines a pair of patterns that instantiate the Type I vs. Type II
distinction (though it uses just 6 rather than 8 segments): classes that
can be distinguished by voice alone vs. ones that need voice and place
of articulation. The survey of artificial phonology learning experiments
in Moreton and Pater (to appear), which involve a wide range of
methodologies with both infant and adult learners, finds several other
examples of Type I vs. Type II, as well cases of Type II vs. Type VI. In
every instance, Type I is easier that Type II, and Type II than Type VI.
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The results indicate a consistent effect for featural complexity, but they
are not particularly informative about the underlying model. For example,
all of the models studied in the concept learning literature predict the I <
II < VI difficulty ordering.

In discussing the predictions for the full Shepard typology of an IME/
CCS implementation of the configural cue model, it will be useful to
refer to the abstract characterization of the stimulus space shown by the
cubes in Figure 5. Underneath the cubes are the pattern types illustrated
with the sort of categories that would be used in a typical concept learning
study: objects that are differentiated in terms of binary features of shape,
size and color. The IN class is indicated with boxes around the stimuli.
The cubes show the categories in a three-dimensional space
corresponding to the three features, with the IN class indicated with
black dots on the vertices. In these diagrams, the top and bottom faces
of the cubes correspond to black and white in the shapes below, left and
right to circle and triangle, and front and back to small and big.

Figure 5. Categories with color, shape and size as features,
and cubical abstractions

We implement the phonotactic version of IME/CCS for this sort of space
by creating constraints that reward the presence of each feature, and
each two-way and three-way conjunction (where here ‘feature’ means
the [–] or [+] value of each binary feature, except that opposite values
of the binary features are not combined into a constraint). Each of the 6
single-feature constraints corresponds to one of the faces of the cube,
each of the 12 two-feature constraints corresponds to an edge at the
boundary of two faces, and each of the 8 three-feature constraints
corresponds to one of the vertices at the boundary of three faces.

Structurally biased phonology
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This way of forming the constraint set is parallel to the simulation in 1.1,
except that here we used a fixed constraint set for all of the ‘languages’
or patterns, whereas the constraint sets for the two patterns in 1.1 were
based on the observed features and combinations for each one (this
does not affect the outcome in any crucial way). When we learn this
model using the Perceptron update rule (or Stochastic Gradient Ascent),
we get the following order of difficulty. Like the simulation in 1.1, the
learning data consist of a sequence of samples from a distribution over
the space of possible forms: the learner saw each of the 4 IN stimuli
with equal probability. Predicted greater difficulty means that probability
is shifted onto the observed forms more slowly.

(9) Predicted order of difficulty: phonotactic IMECCS

Type I < Type III, Type IV < Type II, Type V < Type VI

Why should this order obtain? Note in particular that this is not the order
that would be obtained by a model in which difficulty correlates with the
number of features needed to define the pattern: as mentioned beneath
(8), Types III and IV need more features than Type II. Recall from 1.1
that ptk was learned quickly because the [–Vce] constraint gained weight
quickly. The pdk language had no single-feature constraint that
distinguished all of the IN forms from all of the OUT ones. Referring to
the cubes now, we can see that for a Type I language, there are two
faces that have only IN stimuli (black dots) or OUT stimuli (white dots)
at their corners. The first of these corresponds to a single feature
constraint that can shift probability onto only IN stimuli when it is given
positive weight, and the second corresponds to one that can remove
probability from only OUT stimuli when it gets negative weight. There
are no such constraints for any of the other Types. Similarly, there are 4
edges in the Type I language that join two corners with IN stimuli, and 4
that join two corners with OUT stimuli. These correspond to the two-
feature constraints that target those stimuli to the exclusion of members
of the other class, and can thus shift probability onto just IN stimuli, or
off just OUT stimuli. No other Type has as many of these. It is the
number of such two-feature constraints/edges that distinguish the rest
of the Types. Types III and IV have 3 + 3 = 6 each, Types II and V have
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2 + 2 = 4, and Type VI has none. When a pattern has more of these
constraints that target only IN or only OUT stimuli, it is learned more
quickly, and is predicted to be easier.

This order of difficulty is consistent with all of the phonological
experiments surveyed in Moreton and Pater (to appear), since it contains
the I < II < VI order. It is not, however, completely consistent with the
usual full ordering found in supervised learning of visual categories
(Shepard et al. 1961, 21; Nosofsky et al. 1994, 356; Smith et al. 2004,
403).

(10) Attested order of difficulty: supervised concept learning

Type I < Type II < Type III, Type IV, Type V < Type VI

IME/CCS predicts that Type II should be harder than Types III and IV,
but it is usually found to be easier (though cf. Nosofsky & Palmeri 1996
and Love 2002). Because it makes the wrong prediction here, the
configural cue model has been rejected in the concept learning literature
in favor of alternatives including the revised configural cue model in
Nosofsky et al. (1994), Kruschke’s (1992) ALCOVE, Feldman’s (2000,
2006) algebraic model of complexity (cf. Lafond et al. 2007), Love et
al.’s (2004) SUSTAIN, and the Rational Rules model of Goodman et al.
(2008).9

It is thus of no small interest to test the full Shepard typology in
phonological learning. Not only will this help to differentiate between
models of structural complexity in phonology, but it might also shed light
on commonalities and differences between language learning and non-

9 The Rational Rules model seems particularly amenable to implementation as a model
of language learning with a structural bias that would generate distinct predictions from
our IME/CCS. This model produces a probability distribution over the derivations of
a context-free grammar, which lends it considerable expressive power. Intriguingly, its
bias for featurally simple patterns emerges from a prior distribution that is chosen to
maximize uncertainty, not simplicity. And usefully, a similar Bayesian model (with a
stipulated simplicity prior) has been studied in the context of iterated learning (Griffiths
et al. 2008).

Structurally biased phonology
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linguistic category learning.10 The first such test is a recent study by
Moreton and Pertsova (2012) that uses the phonotactic learning paradigm
of Moreton (2008). This study replicates once again the I < II < VI
order that is common to all models, and finds a partial order on the rest
of the Types that does not clearly choose either IMECCS or any of the
alternatives from the concept learning literature. Some evidence in favor
of the particular model discussed here comes from the behavior of
individual types of stimuli across the conditions.

Fig. 6 Number of two-feature constraints
rewarding each IN and no OUT stimulus

Figure 6 shows the number of two-feature constraints that reward each
of the IN stimuli and that do not reward any OUT stimulus, that is, the
number of edges that connect only IN stimuli. The counts for the
constraints that reward only OUT stimuli are symmetrical within each
Type. Moreton and Pertsova (2012) used a forced choice task that
involved choosing between IN and OUT stimuli (CVCV words that
either fit a pattern or not – all were nonce words, which had also not
been seen in training). They found that across conditions/Types, the
probability of choosing the IN stimuli increases with the sum of the number
of these “valid edge” constraints that apply to the two stimuli in the trial
(which ranges from 0 to 6, since there is a maximum of 3 for the IN and
3 for the OUT stimulus). As Moreton and Pertsova (2012) show, this

Joe Pater and Elliott Moreton

10 We note that there are several differences between the phonological experiments on
the one hand, and the psychological experiments in the Shepard tradition on the other,
including at least the domain (phonological versus visual), the learning paradigm (usu-
ally unsupervised versus usually supervised), the number and kind of irrelevant fea-
tures, the internal organization of individual stimuli, the ease with which patterns can
be described verbally by typical participants, and the perceptual separability of the
stimulus dimensions.  These differences will have to be controlled or manipulated
directly to definitively test any hypothesis that the same, or different, structural
factors affect difficulty across domains.
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result follows directly from the IME/CCS implementation we have
discussed here; it remains to be seen whether it follows from any other
model.

2.2  Feature economy
We started this paper with a simple example of feature economy, the
tendency for languages to have a voiced consonant at one place of
articulation only if they have one at another. In this section, we show
that how our model can be extended to make predictions in this domain.
To do so, we need to incorporate a mechanism that will yield a preference
for contrast. Without such a mechanism, our model will simply prefer
systems that use fewer features, and will not yield realistic inventories.
Here the functional role of contrast is formalized by building on results in
bidirectional OT (see Boersma & Hamann 2008; Boersma 2011 and
papers cited there; see Wedel 2004 for a different approach to contrast
maintenance). Interestingly, in this model contrast emerges from the
dynamics of the system, and is not an independently stipulated principle.
Feature economy itself comes from the same effect of the general
constraints seen in the earlier simulations.

For this simulation there are 6 words at three places of articulation, with
three possible phonetic forms for each word: ones with voiced, voiceless
or aspirated versions of the initial consonants. The candidate sets are
shown in (11).

(11) Word 1 [bi]/[pi]/[phi] Word 4 [bi]/[pi]/[phi]
Word 2 [di]/[ti]/[thi] Word 5 [di]/[ti]/[thi]
Word 3 [gi]/[ki]/[khi] Word 6 [gi]/[ki]/[khi]

We will see that the model will tend to produce languages that have
laryngeal contrasts at each place of articulation.  We take feature
economy to be instantiated in the extent to which these contrasts are the
same (e.g. all voiced vs. voiceless, instead of voiced vs. voiceless at one
place, and voiceless vs. aspirated at another). That is, expect to see
featurally economical inventories like that in (12A), where the features
that occur at all occur in free combination, rather than inventories like
that in (12B), in which some combinations are unpredictably missing.
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(12) Patterns of larngeal contrast across place

A [Lab] [Cor] [Dor]
[Voice] b d g
[Plain] p t k
[Aspirated]

B [Lab] [Cor] [Dor]
[Voice] b d
[Plain] p k
[Aspirated] th kh

The constraint set includes three ‘Realization’ constraints for each Word,
demanding each of the three phonetic forms shown in (11). For
example,Word-1-[bi] assigns a reward to [bi] when it is a candidate for
Word-1. As in (12), we assume three monovalent laryngeal features
[Voice], [Plain] and [Aspirated], along with the three monovalent place
features [Labial], [Coronal] and [Dorsal]. There were general constraints
assigning a reward for each of the laryngeal features, as well as more
specific constraints rewarding the co-occurrence of each laryngeal feature
with each place of articulation. The most specific constraints are the
Realization constraints, which reward a laryngeal-place combination for
a given Word.

As in the interactive learning simulation presented in 1.2, a randomly
chosen teacher produces a form for learning by the other agent. This
time, however, the learner is not supplied with the Word that the phonetic
form is associated with. As can be seen in (11), there are two Words
that can correspond to each phonetic form. For example, [bi] is a possible
phonetic form for both Word 1 and Word 2. A learner would just be
given just [bi], and must interpret it as the realization of Word 1 or Word
2.

This is a case of hidden structure learning (Tesar & Smolensky 2000),
and we adopt a probabilistic version of Tesar and Smolensky’s (2000)
Robust Interpretive Parsing to deal with it (as in e.g. Boersma & Pater
to appear). The decision between underlying Words is made by sampling
from the probability distribution defined by the grammar, in particular by
the weighting of the Realization constraints that link phonetic form with
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the Words. In this use of the grammar Words compete as candidates for
a given phonetic form. The candidate Words are just those that have
Realization contraints linking them to the given phonetic form – for [bi],
these are Word 1 and Word 2. Once this choice is made, the learner
then proceeds as usual, generating its own phonetic form for the chosen
Word, and then updating the weights.

The constraints started out with zero weights, which resulted in a uniform
probability of 0.33 being assigned to each of the three candidates for
each Word (and also a uniform probability of 0.5 for each of the two
possible Words for each phonetic form in Robust Interpretive Parsing).
As in the stress simulation the learning rate was 0.1 and weights were
restricted to non-negative values, but here each of the 50 runs had 20,000
trials.

The most basic result is that the learners tended towards a single phonetic
form for each word. While the starting probability was uniformly 0.33, in
297 of the 300 Words (6 Words × 50 runs), the average probability assigned
to one of the phonetic forms by the learners’ final grammars was greater
than 0.50, and usually much greater than that. This is similar to what we
saw in the stress simulation in 1.2, where the agents came to agree on a
single stress position per word.

The learners also seemed to tend to avoid homophony. That is, within
each place of articulation, it was more often the case that the two Words
(e.g. Word 1 and Word 4) had different choices for the laryngeal feature
than would be expected by chance. The chance rate of homophony
avoidance would be 6/9 = 0.66, since for each of the two Words there
are 3 choices of laryngeal feature, and of the 9 combinations, 3 of them
result in the same choice for the two Words. Of the 147 occasions when
both Words each had one phonetic form with the majority of the
probability, in 125 of these those two phonetic forms were different,
yielding a rate of homophony avoidance of 0.85. This intriguing effect
awaits statistical confirmation, and a better understanding of the dynamics
that produce it. Nonetheless, it appears robust across various types of
simulation.
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Finally, the choice of laryngeal contrast across places of articulation
tended towards uniformity. To get a baseline rate, we start with the
observation that at each place of articulation, there are three possible
patterns of contrast (aspirated vs. plain, plain vs. voiced, and voiced vs.
aspirated). Combining these, there are 33 = 27 possible patterns of contrast.
Of these, only 3 use a single laryngeal contrast across places of
articulation (0.11), while 18 use two laryngeal contrasts (0.67), and 6
use different laryngeal contrasts at each place of articulation (0.22). We
compare this baseline rate to that in the 32 runs that had contrasts at
each place of articulation, that is, in which the two Words at a place of
articulation each had one candidate that got more than 50% of the
probability, and the two such candidates were different. Of these 32, 13
(0.41) had the same pattern of contrast across places of articulation, 16
(0.50) had a distinct pattern of contrast at one place of articulation, and
only 3 (0.09) had a distinct pattern at all three places of articulation.
Thus, there is a skew towards uniformity of laryngeal contrast across
places of articulation: the observed rate of uniform laryngeal contrast
(0.41) is much higher than that expected by chance (0.11) (p < 0.001 by
a two-sided exact binomial test). This effect is arising from the same
source as the other simulations in the paper: the constraint set and learning
algorithm skews the typology toward what would be described as
featurally simple systems. The crucial assumption about the constraint
set here is that it contains the general constraints assigning rewards to
each of [Voice], [Plain] and [Aspirated]. These are the constraints whose
high weight produces generalization across place. If we ran the simulation
without them, and had only the specific Voice-Place two-feature
constraints, we would not get this effect.

Like the other simulations in this paper, this is only an initial exploration
of this domain, but like the others it suggests that this model may yield an
account of data that escape current models of phonology. While feature
economy may provide evidence for features (Clements 2003, 2009;
though see Mackie & Mielke 2011), it is not fully explained by their
existence. Inventories exist of varying degrees of economy, and even
relatively non-economical ones need to be represented in a theory of
phonology, and must be able to be learned. A full explanation also requires
something like ease of learning for economical systems (as suggested
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by Martinet 1968:483), and a mechanism by which this ease can affect
typology. This is what we have formalized here. One important direction
for further research is to better understand why feature economy seems
to apply with greater strength along particular featural dimensions (see
Hall 2011 for relevant discussion), both in terms of the present model,
and more generally. This may provide evidence for a richer
representational structure over which our constraints are stated, or it
may prove to motivate a different model entirely.

3. CONCLUSIONS

We have shown how IME/CCS predicts that patterns described as
structurally complex will be learned more slowly, and also how its use in
the Interactive Grammar-Learning model of typology generates skews
toward structural simplicity. We emphasize that we have used simplicity
and complexity as purely descriptive terms throughout. We have not
proposed a theory in which the relative complexity of linguistic systems
is explicitly measured. Instead, these effects emerge from the structure
of the constraint sets used in the grammatical model and from the
mechanism for updating constraint weights. We offer this as an
observation about our model, rather than as a pre-emptive argument for
our approach over any future competitors that might use complexity
measures. Since structurally biased phonology has been so little studied,
it is important to explore the predictions of a range of formalizations.
Nonetheless, we do find the success of IME/CCS to date encouraging,
and we see a wide range of further applications.

IME/CCS straightforwardly captures the general finding in the artificial
phonology learning literature that featurally complex patterns are learned
with more difficulty (section 1.1), and some of its quite fine-grained
predictions have already found support in the Moreton and Pertsova
(2012) experiment discussed in section 2.1. The systematic study of the
role of structural complexity in phonological learning is only just beginning,
and there are a number of open research questions. For example: How
does supervised learning (≈ alternations) differ from unsupervised learning
(≈ phonotactics)? Is the effect of complexity constant across ages of
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learners? If not, what is the underlying mechanism that changes? What
is the relationship between the effects of complexity in linguistic and
non-linguistic category learning? (See further Moreton & Pater to appear).

When implemented in our Interactive Grammar-Learning model of
typology, IME/CCS also straightforwardly generates typological skews
toward regular stress (section 1.2), and toward feature economy (section
2.2). This opens up further large domains for future research. The
empirical data need to be more carefully studied from the perspective of
structural complexity, which will require amongst other things better
quantification (see e.g. Moreton & Pertsova 2012 on the Shepard types
in Mielke’s 2008 P-Base). The representational systems of the
phonological models will undoubtedly also need to be enriched compared
to the simple assumptions we have made here. The nature of the required
enrichment will not only depend on further experimental and typological
work, but also on a better understanding of how the phonological models
interact with theories of phonetics, and with theories of phonological
processing (e.g. production and lexical access). It is worth noting that
such integration may of course lead to discovering that phenomena that
we have attributed to phonological grammar are better explained in terms
of phonetics and/or processing. And finally, there is no reason to limit
this model of structurally biased phonology to phonology: with the right
constraint sets, it also predicts simplicity skews in morphological and
syntactic learning and typology.
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