Skip to main content
Article
Arithmagons and Geometrically Invariant Multiplicative Integer Partitions
Acta Mathematica Universitatis Comenianae
  • J. A. Franco, University of North Florida
  • J. Champion, Boise State University
  • J. W. Lyons, Nova Southeastern University
Document Type
Article
Publication Date
1-1-2016
Disciplines
Abstract
In this article, we introduce a formal definition for integral arithmagons. Informally, an integral arithmagon is a polygonal figure with integer labeled vertices and edges in which, under a binary operation, adjacent vertices equal the included edge. By considering the group of automorphisms for the associated graph, we count the number of integral arithmagons whose exterior sum or product equals a fixed number.
Copyright Statement

This document was originally published in Acta Mathematica Universitatis Comenianae by AMUC Journal. Copyright restrictions may apply.

Citation Information
J. A. Franco, J. Champion and J. W. Lyons. "Arithmagons and Geometrically Invariant Multiplicative Integer Partitions" Acta Mathematica Universitatis Comenianae (2016)
Available at: http://works.bepress.com/joe_champion/16/